You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am encountering an issue when trying to convert a model based on the hybridnets architecture using the torch2trt package. The error seems to be related to the conversion of a convolutional layer, specifically during the convert_Conv_trt7_functional process. I have followed the steps outlined in the documentation and updated both torch and torch2trt to the latest versions, but the problem persists.
Steps to Reproduce:
import torch
from torch2trt import torch2trt
model = torch.hub.load('datvuthanh/hybridnets', 'hybridnets', pretrained=True, device='cuda:0' if torch.cuda.is_available() else 'cpu').eval()
dummy_input = torch.ones(1, 3, 384, 640).cuda()
model_trt = torch2trt(model, [dummy_input], fp16_mode=True)
Error Traceback:
Traceback (most recent call last):
File "/home/user/Scrivania/H2politO/h2seg/compile_network.py", line 12, in
model_trt = torch2trt(model, [dummy_input], fp16_mode=True)
File "/usr/local/lib/python3.8/dist-packages/torch2trt-0.4.0-py3.8.egg/torch2trt/torch2trt.py", line 779, in torch2trt
outputs = module(*inputs)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/user/.cache/torch/hub/datvuthanh_hybridnets_main/backbone.py", line 109, in forward
p2, p3, p4, p5 = self.encoder(inputs)[-4:] # self.backbone_net(inputs)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/user/.cache/torch/hub/datvuthanh_hybridnets_main/encoders/efficientnet.py", line 73, in forward
x = module(x, drop_connect)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/user/.local/lib/python3.8/site-packages/efficientnet_pytorch/model.py", line 109, in forward
x = self._depthwise_conv(x)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/user/.local/lib/python3.8/site-packages/efficientnet_pytorch/utils.py", line 275, in forward
x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
File "/usr/local/lib/python3.8/dist-packages/torch2trt-0.4.0-py3.8.egg/torch2trt/torch2trt.py", line 310, in wrapper
converter"converter"
File "/usr/local/lib/python3.8/dist-packages/torch2trt-0.4.0-py3.8.egg/torch2trt/converters/conv_functional.py", line 46, in convert_Conv_trt7_functional
layer.stride_nd = stride
TypeError: (): incompatible function arguments. The following argument types are supported:
1. (arg0: tensorrt_bindings.tensorrt.IConvolutionLayer, arg1: tensorrt_bindings.tensorrt.Dims) -> None
Invoked with: <tensorrt_bindings.tensorrt.IConvolutionLayer object at 0x7fee9d995030>, ([1, 1], [1, 1])
Thank you for your assistance in resolving this issue.
The text was updated successfully, but these errors were encountered:
I am encountering an issue when trying to convert a model based on the hybridnets architecture using the torch2trt package. The error seems to be related to the conversion of a convolutional layer, specifically during the convert_Conv_trt7_functional process. I have followed the steps outlined in the documentation and updated both torch and torch2trt to the latest versions, but the problem persists.
Steps to Reproduce:
Environment:
Error Traceback:
Traceback (most recent call last):
File "/home/user/Scrivania/H2politO/h2seg/compile_network.py", line 12, in
model_trt = torch2trt(model, [dummy_input], fp16_mode=True)
File "/usr/local/lib/python3.8/dist-packages/torch2trt-0.4.0-py3.8.egg/torch2trt/torch2trt.py", line 779, in torch2trt
outputs = module(*inputs)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/user/.cache/torch/hub/datvuthanh_hybridnets_main/backbone.py", line 109, in forward
p2, p3, p4, p5 = self.encoder(inputs)[-4:] # self.backbone_net(inputs)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/user/.cache/torch/hub/datvuthanh_hybridnets_main/encoders/efficientnet.py", line 73, in forward
x = module(x, drop_connect)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/user/.local/lib/python3.8/site-packages/efficientnet_pytorch/model.py", line 109, in forward
x = self._depthwise_conv(x)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/user/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/user/.local/lib/python3.8/site-packages/efficientnet_pytorch/utils.py", line 275, in forward
x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
File "/usr/local/lib/python3.8/dist-packages/torch2trt-0.4.0-py3.8.egg/torch2trt/torch2trt.py", line 310, in wrapper
converter"converter"
File "/usr/local/lib/python3.8/dist-packages/torch2trt-0.4.0-py3.8.egg/torch2trt/converters/conv_functional.py", line 46, in convert_Conv_trt7_functional
layer.stride_nd = stride
TypeError: (): incompatible function arguments. The following argument types are supported:
1. (arg0: tensorrt_bindings.tensorrt.IConvolutionLayer, arg1: tensorrt_bindings.tensorrt.Dims) -> None
Invoked with: <tensorrt_bindings.tensorrt.IConvolutionLayer object at 0x7fee9d995030>, ([1, 1], [1, 1])
Thank you for your assistance in resolving this issue.
The text was updated successfully, but these errors were encountered: