Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sequence length: How to limit that to 30, it is increasing automatically as the no. of epochs is increasing #160

Open
pranavraikote opened this issue Sep 24, 2020 · 0 comments

Comments

@pranavraikote
Copy link

I'm custom training vid2vid for Pose-to-body generations, and given below is an extract of the logs used for my custom training.
It says this despite specifying n_frame_total 30 in my parameters used for training ->> --------- Updating training sequence length to 120 ---------

Any way to limit this to 30, or this is the way it has to train for getting good results? Can anyone clarify this?

----------------Parameters used----------------
TTUR: False
add_face_disc: False
basic_point_only: False
batchSize: 8
beta1: 0.5
checkpoints_dir: ./checkpoints
continue_train: True
dataroot: /mnt/FS/datasets
dataset_mode: pose
debug: False
densepose_only: False
display_freq: 100
display_id: 0
display_winsize: 512
feat_num: 3
fg: False
fg_labels: [26]
fineSize: 256
fp16: False
gan_mode: ls
gpu_ids: [0, 1, 2, 3, 4, 5, 6, 7]
input_nc: 6
isTrain: True
label_feat: False
label_nc: 0
lambda_F: 10.0
lambda_T: 10.0
lambda_feat: 10.0
loadSize: 384
load_features: False
load_pretrain:
local_rank: 0
lr: 0.0002
max_dataset_size: inf
max_frames_backpropagate: 1
max_frames_per_gpu: 5
max_t_step: 1
model: vid2vid
nThreads: 2
n_blocks: 9
n_blocks_local: 3
n_downsample_E: 3
n_downsample_G: 3
n_frames_D: 3
n_frames_G: 3
n_frames_total: 30
n_gpus_gen: 8
n_layers_D: 3
n_local_enhancers: 1
n_scales_spatial: 1
n_scales_temporal: 2
name: /mnt/FS/datasets/vid2vid/test
ndf: 64
nef: 32
netE: simple
netG: composite
ngf: 64
niter: 10
niter_decay: 10
niter_fix_global: 0
niter_step: 5
no_canny_edge: False
no_dist_map: False
no_first_img: False
no_flip: False
no_flow: False
no_ganFeat: False
no_html: False
no_vgg: False
norm: batch
num_D: 2
openpose_only: False
output_nc: 3
phase: train
pool_size: 1
print_freq: 100
random_drop_prob: 0.05
random_scale_points: False
remove_face_labels: False
resize_or_crop: Scaleheight_and_scaledCrop
save_epoch_freq: 1
save_latest_freq: 1000
serial_batches: False
sparse_D: False
tf_log: False
use_instance: False
use_single_G: False
which_epoch: latest
-------------- End ----------------
CustomDatasetDataLoader
dataset [PoseDataset] was created
#training videos = 5070
vid2vid
---------- Networks initialized -------------

---------- Networks initialized -------------

Resuming from epoch 14 at iteration 144
update learning rate: 0.000200 -> 0.000140
update learning rate: 0.000200 -> 0.000140
--------- Updating training sequence length to 120 ---------
-------- Updating number of backpropagated frames to 1 ----------

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant