forked from nullquant/ComfyUI-BrushNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
brushnet_nodes.py
505 lines (411 loc) · 20.4 KB
/
brushnet_nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import torch
import torchvision.transforms as T
import os
import folder_paths
import sys
# Get the parent directory of 'comfy' and add it to the Python path
comfy_parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../../'))
sys.path.append(comfy_parent_dir)
import comfy
import nodes
import latent_preview
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
#import numpy as np
#import cv2
#from PIL import Image
#import yaml
#import importlib
#from contextlib import nullcontext
#from diffusers.loaders.single_file_utils import create_diffusers_vae_model_from_ldm
#from diffusers.image_processor import VaeImageProcessor
from .brushnet.brushnet import BrushNetModel
from typing import Tuple
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="torch")
warnings.filterwarnings("ignore", category=UserWarning, module="safetensors")
current_directory = os.path.dirname(os.path.abspath(__file__))
#original_config_file = os.path.join(current_directory, 'brushnet', 'v1-inference.yaml')
brushnet_config_file = os.path.join(current_directory, 'brushnet', 'brushnet.json')
brushnet_xl_config_file = os.path.join(current_directory, 'brushnet', 'brushnet_xl.json')
torch_dtype = torch.float16
sd15_scaling_factor = 0.18215
sdxl_scaling_factor = 0.13025
class BrushNetLoader:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"brushnet": (inpaint_safetensors(), ),
},
}
CATEGORY = "inpaint"
RETURN_TYPES = ("BRMODEL",)
RETURN_NAMES = ("brushnet",)
FUNCTION = "brushnet_loading"
def brushnet_loading(self, brushnet):
brushnet_file = os.path.join(folder_paths.models_dir, "inpaint", brushnet)
is_SDXL = False
sd = comfy.utils.load_torch_file(brushnet_file)
brushnet_down_block, brushnet_mid_block, brushnet_up_block = brushnet_blocks(sd)
del sd
if brushnet_down_block == 24 and brushnet_mid_block == 2 and brushnet_up_block == 30:
print('Loading SD1.5 BrushNet model')
is_SDXL = False
elif brushnet_down_block == 18 and brushnet_mid_block == 2 and brushnet_up_block == 22:
print('Loading SDXL BrushNet model')
is_SDXL = True
else:
raise Exception("Unknown BrushNet model")
with init_empty_weights():
if is_SDXL:
brushnet_config = BrushNetModel.load_config(brushnet_xl_config_file)
else:
brushnet_config = BrushNetModel.load_config(brushnet_config_file)
brushnet_model = BrushNetModel.from_config(brushnet_config)
print("BrushNet file", brushnet_file)
brushnet_model = load_checkpoint_and_dispatch(
brushnet_model,
brushnet_file,
device_map="auto",
max_memory=None,
offload_folder=None,
offload_state_dict=False,
dtype=torch_dtype,
force_hooks=False,
)
print("BrushNet model is loaded, SDXL:", is_SDXL)
return ({"brushnet": brushnet_model, "SDXL": is_SDXL},)
def inpaint_safetensors():
inpaint_path = os.path.join(folder_paths.models_dir, 'inpaint')
brushnet_path = os.path.join(inpaint_path, 'brushnet')
abs_list = []
for x in os.walk(inpaint_path):
for name in x[2]:
if 'safetensors' in name:
abs_list.append(os.path.join(x[0], name))
names = []
for x in abs_list:
remain = x
y = ''
while remain != inpaint_path:
remain, folder = os.path.split(remain)
if len(y) > 0:
y = os.path.join(folder, y)
else:
y = folder
names.append(y)
return names
def brushnet_blocks(sd):
brushnet_down_block = 0
brushnet_mid_block = 0
brushnet_up_block = 0
for key in sd:
if 'brushnet_down_block' in key:
brushnet_down_block += 1
if 'brushnet_mid_block' in key:
brushnet_mid_block += 1
if 'brushnet_up_block' in key:
brushnet_up_block += 1
return (brushnet_down_block, brushnet_mid_block, brushnet_up_block, )
class BrushNet:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"model": ("MODEL",),
"vae": ("VAE", ),
"image": ("IMAGE",),
"mask": ("MASK",),
"brushnet": ("BRMODEL", ),
"scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0}),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0}),
},
}
CATEGORY = "inpaint"
RETURN_TYPES = ("MODEL","LATENT",)
RETURN_NAMES = ("model","latent",)
FUNCTION = "model_update"
def model_update(self, model, vae, image, mask, brushnet, scale, start_at, end_at):
is_SDXL = False
if isinstance(model.model.model_config, comfy.supported_models.SD15):
print('Base model type: SD1.5')
is_SDXL = False
if brushnet["SDXL"]:
raise Exception("Base model is SD15, but BrushNet is SDXL type")
elif isinstance(model.model.model_config, comfy.supported_models.SDXL):
print('Base model type: SDXL')
is_SDXL = True
if not brushnet["SDXL"]:
raise Exception("Base model is SDXL, but BrushNet is SD15 type")
raise Exception("SDXL is not implemented yet")
else:
print('Base model type: ', type(model.model.model_config))
raise Exception("Unsupported model type: " + str(type(model.model.model_config)))
# prepare image and mask
# no batches for original image and mask
if image.shape[0] > 1:
image = image[0][None,:,:,:]
if mask.shape[0] > 1:
mask = mask[0][None,:,:]
width = image.shape[2]
height = image.shape[1]
print("BrushNet image,", image.shape)
if mask.shape[2] != width or mask.shape[1] != height:
raise Exception("Image and mask should be the same size")
masked_image = image * (1.0 - mask[:,:,:,None])
if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'):
scaling_factor = model.model.model_config.latent_format.scale_factor
elif is_SDXL:
scaling_factor = sdxl_scaling_factor
else:
scaling_factor = sd15_scaling_factor
processed_image = torch.cat([masked_image] * 2).to(vae.device)
image_latents = vae.encode(processed_image[:,:,:,:3]) * scaling_factor
processed_mask = torch.cat([1. - mask[None,:,:,:]] * 2)
interpolated_mask = torch.nn.functional.interpolate(
processed_mask,
size=(
image_latents.shape[-2],
image_latents.shape[-1]
)
)
interpolated_mask = interpolated_mask.to(image_latents.device)
print('BrushNet: image latents shape =', image_latents.shape, 'interpolated mask shape =', interpolated_mask.shape)
conditioning_latents = torch.concat([image_latents, interpolated_mask], 1).to(dtype=torch_dtype).to(brushnet['brushnet'].device)
# apply patches to code
if nodes.common_ksampler.__doc__ is None or 'BrushNet' not in nodes.common_ksampler.__doc__:
nodes.original_common_ksampler = nodes.common_ksampler
nodes.common_ksampler = modified_common_ksampler
if comfy.ldm.modules.diffusionmodules.openaimodel.forward_timestep_embed.__doc__ is None or \
'BrushNet' not in comfy.ldm.modules.diffusionmodules.openaimodel.forward_timestep_embed.__doc__:
comfy.ldm.modules.diffusionmodules.openaimodel.original_forward_timestep_embed = \
comfy.ldm.modules.diffusionmodules.openaimodel.forward_timestep_embed
comfy.ldm.modules.diffusionmodules.openaimodel.forward_timestep_embed = modified_forward_timestep_embed
# apply patch to model
brushnet_conditioning_scale = scale
control_guidance_start = start_at
control_guidance_end = end_at
add_brushnet_patch(model, brushnet["brushnet"], conditioning_latents,
[brushnet_conditioning_scale, control_guidance_start, control_guidance_end])
if is_SDXL:
add_model_patch(model, brushnet_inference, ('input', 0), (0, 'before'))
input_blocks = [[0,0],[1,0],[2,0],[3,0],[4,1],[5,1],[6,0],[7,1],[8,1]]
for i, j in input_blocks:
add_model_patch(model, apply_brushnet, ('input', i), (j, 'after'))
add_model_patch(model, apply_brushnet, ('middle', 0), (2, 'after'))
output_blocks = [[0,1],[1,1],[2,1],[2,2],[3,1],[4,1],[5,1],[5,2],[6,0],[7,0],[8,0]]
for i, j in output_blocks:
add_model_patch(model, apply_brushnet, ('output', i), (j, 'after'))
else:
add_model_patch(model, brushnet_inference, ('input', 0), (0, 'before'))
input_blocks = [[0,0],[1,1],[2,1],[3,0],[4,1],[5,1],[6,0],[7,1],[8,1],[9,0],[10,0],[11,0]]
for i, j in input_blocks:
add_model_patch(model, apply_brushnet, ('input', i), (j, 'after'))
add_model_patch(model, apply_brushnet, ('middle', 0), (2, 'after'))
output_blocks = [[0,0],[1,0],[2,0],[2,1],[3,1],[4,1],[5,1],[5,2],[6,1],[7,1],[8,1],[8,2],[9,1],[10,1],[11,1]]
for i, j in output_blocks:
add_model_patch(model, apply_brushnet, ('output', i), (j, 'after'))
latent = torch.zeros([1, 4, conditioning_latents.shape[2], conditioning_latents.shape[3]], device=brushnet['brushnet'].device)
return (model, {"samples":latent},)
class BlendInpaint:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"inpaint": ("IMAGE",),
"original": ("IMAGE",),
"mask": ("MASK",),
"kernel": ("INT", {"default": 10, "min": 1, "max": 1000}),
"sigma": ("FLOAT", {"default": 10.0, "min": 0.01, "max": 1000}),
},
}
CATEGORY = "inpaint"
RETURN_TYPES = ("IMAGE","MASK",)
RETURN_NAMES = ("image","MASK",)
FUNCTION = "blend_inpaint"
def blend_inpaint(self, inpaint: torch.Tensor, original: torch.Tensor, mask: torch.Tensor, kernel: int, sigma:int) -> Tuple[torch.Tensor]:
# no batches over mask and original image
if len(mask.shape) > 2:
mask = mask[0]
if len(original.shape) > 3:
original = original[0]
if kernel % 2 == 0:
kernel += 1
transform = T.GaussianBlur(kernel_size=(kernel, kernel), sigma=(sigma, sigma))
blurred_mask = transform(mask[None,None,:,:]).to(original.device).to(original.dtype)
ret = []
for result in inpaint:
ret.append(original * (1.0 - blurred_mask[0][0][:,:,None]) + result.to(original.device) * blurred_mask[0][0][:,:,None])
return (torch.stack(ret), blurred_mask[0],)
'''
import pip
class TestNode:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"image": ("IMAGE",),
},
}
CATEGORY = "inpaint"
RETURN_TYPES = ()
RETURN_NAMES = ()
FUNCTION = "test_node"
def test_node(self):
print('Installed packages')
print(pip.utils.get_installed_distributions())
'''
# Unfortunately, ModelPatcher does not have necessary hooks to patch, so we have to patch the code instead
def modified_forward_timestep_embed(block, x, emb, context=None, transformer_options={},
output_shape=None, time_context=None,
num_video_frames=None, image_only_indicator=None):
'''
Modified by BrushNet nodes
'''
if 'model_patch' not in transformer_options or transformer_options['block'] not in transformer_options['model_patch']:
return comfy.ldm.modules.diffusionmodules.openaimodel.original_forward_timestep_embed(block, x, emb, context,
transformer_options,
output_shape, time_context,
num_video_frames, image_only_indicator)
block_patch = transformer_options['model_patch'][transformer_options['block']]
for i, layer in enumerate(block):
if (i, 'before') in block_patch:
x = block_patch[(i, 'before')](x, emb, context, (transformer_options['block'], i, 'before'), transformer_options)
if isinstance(layer, comfy.ldm.modules.diffusionmodules.openaimodel.VideoResBlock):
x = layer(x, emb, num_video_frames, image_only_indicator)
elif isinstance(layer, comfy.ldm.modules.diffusionmodules.openaimodel.TimestepBlock):
x = layer(x, emb)
elif isinstance(layer, comfy.ldm.modules.attention.SpatialVideoTransformer):
x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options)
if "transformer_index" in transformer_options:
transformer_options["transformer_index"] += 1
elif isinstance(layer, comfy.ldm.modules.attention.SpatialTransformer):
x = layer(x, context, transformer_options)
if "transformer_index" in transformer_options:
transformer_options["transformer_index"] += 1
elif isinstance(layer, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample):
x = layer(x, output_shape=output_shape)
else:
x = layer(x)
if (i, 'after') in block_patch:
x = block_patch[(i, 'after')](x, emb, context, (transformer_options['block'], i, 'after'), transformer_options)
return x
# Model needs current step number at inference stepю. It is possible to write a custom KSampler but we'd like to use ComfyUI's one.
def modified_common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0,
disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
'''
Modified by BrushNet nodes
'''
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
#######################################################################################
#
latent_preview_callback = latent_preview.prepare_callback(model, steps)
to = add_model_patch_option(model)
to['model_patch']['step'] = 0
to['model_patch']['total_steps'] = steps
def callback(step, x0, x, total_steps):
to['model_patch']['step'] = step + 1
latent_preview_callback(steps, x0, x, total_steps)
#
#######################################################################################
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback,
disable_pbar=disable_pbar, seed=seed)
out = latent.copy()
out["samples"] = samples
return (out, )
def add_model_patch_option(model):
if 'transformer_options' not in model.model_options:
model.model_options['transformer_options'] = {}
to = model.model_options['transformer_options']
if "model_patch" not in to:
to["model_patch"] = {}
return to
def add_model_patch(model, patch, block, key, replace=True):
to = add_model_patch_option(model)
if block not in to["model_patch"]:
to["model_patch"][block] = {}
if key not in to["model_patch"][block]:
to["model_patch"][block][key] = []
if replace:
to["model_patch"][block][key] = patch
else:
to["model_patch"][block][key].append(patch)
def add_brushnet_patch(model, brushnet, conditioning_latents, controls):
to = add_model_patch_option(model)
to['model_patch']['brushnet_model'] = brushnet
to['model_patch']['brushnet_latents'] = conditioning_latents
to['model_patch']['brushnet_controls'] = controls
to['model_patch']['input_samples'] = []
to['model_patch']['middle_sample'] = 0
to['model_patch']['output_samples'] = []
def brushnet_inference(x, emb, context, loc, transformer_options):
# x : sample
# emb : time embedding
# context[0] == neg_cond[0][0][0]
# context[1] == pos_cond[0][0][0]
# loc = (('input'|'middle'|'output', i), j, 'before'|'after')
if 'model_patch' not in transformer_options:
raise Exception('BrushNet inference: there is no model_patch in transformer_options')
mp = transformer_options['model_patch']
brushnet = mp['brushnet_model']
if isinstance(brushnet, BrushNetModel):
conditioning_latents = mp['brushnet_latents']
step = mp['step']
total_steps = mp['total_steps']
brushnet_conditioning_scale, control_guidance_start, control_guidance_end = mp['brushnet_controls']
brushnet_keep = []
for i in range(total_steps):
keeps = [
1.0 - float(i / total_steps < s or (i + 1) / total_steps > e)
for s, e in zip([control_guidance_start], [control_guidance_end])
]
brushnet_keep.append(keeps[0])
cond_scale = brushnet_conditioning_scale * brushnet_keep[step]
down_samples, mid_sample, up_samples = brushnet(x,
encoder_hidden_states=context[1],
brushnet_cond=conditioning_latents,
time_emb=emb,
conditioning_scale=cond_scale,
guess_mode=False,
return_dict=False,)
transformer_options['model_patch']['input_samples'] = down_samples
transformer_options['model_patch']['middle_sample'] = mid_sample
transformer_options['model_patch']['output_samples'] = up_samples
else:
raise Exception('BrushNet model is not a BrushNetModel class')
return x
def apply_brushnet(x, emb, context, loc, transformer_options):
if loc[0][0] == 'input':
if len(transformer_options['model_patch']['input_samples']) > 0:
return x + transformer_options['model_patch']['input_samples'].pop(0)
else:
raise Exception('BrushNet: something is not right, input samples are empty, ' + str(loc))
elif loc[0][0] == 'middle':
return x + transformer_options['model_patch']['middle_sample']
else:
if len(transformer_options['model_patch']['output_samples']) > 0:
return x + transformer_options['model_patch']['output_samples'].pop(0)
else:
raise Exception('BrushNet: something is not right, output samples are empty, ' + str(loc))
#def image_from_tensor(t: torch.Tensor) -> np.ndarray:
# image_np = t.numpy()
# # Convert the numpy array back to the original range (0-255) and data type (uint8)
# image_np = (image_np * 255).astype(np.uint8)
# return image_np
#
#def numpy_to_tensor(array: np.ndarray) -> torch.Tensor:
# """Convert a numpy array to a tensor and scale its values from 0-255 to 0-1."""
# array = array.astype(np.float32) / 255.0
# return torch.from_numpy(array)[None,]