-
Notifications
You must be signed in to change notification settings - Fork 1
/
membrane_transport_fv1.h
225 lines (192 loc) · 7.19 KB
/
membrane_transport_fv1.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*
* Copyright (c) 2009-2019: G-CSC, Goethe University Frankfurt
*
* Author: Markus Breit
* Creation date: 2011-12-20
*
* This file is part of NeuroBox, which is based on UG4.
*
* NeuroBox and UG4 are free software: You can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License version 3
* (as published by the Free Software Foundation) with the following additional
* attribution requirements (according to LGPL/GPL v3 §7):
*
* (1) The following notice must be displayed in the appropriate legal notices
* of covered and combined works: "Based on UG4 (www.ug4.org/license)".
*
* (2) The following notice must be displayed at a prominent place in the
* terminal output of covered works: "Based on UG4 (www.ug4.org/license)".
*
* (3) The following bibliography is recommended for citation and must be
* preserved in all covered files:
* "Reiter, S., Vogel, A., Heppner, I., Rupp, M., and Wittum, G. A massively
* parallel geometric multigrid solver on hierarchically distributed grids.
* Computing and visualization in science 16, 4 (2013), 151-164"
* "Vogel, A., Reiter, S., Rupp, M., Nägel, A., and Wittum, G. UG4 -- a novel
* flexible software system for simulating PDE based models on high performance
* computers. Computing and visualization in science 16, 4 (2013), 165-179"
* "Stepniewski, M., Breit, M., Hoffer, M. and Queisser, G.
* NeuroBox: computational mathematics in multiscale neuroscience.
* Computing and visualization in science (2019).
* "Breit, M. et al. Anatomically detailed and large-scale simulations studying
* synapse loss and synchrony using NeuroBox. Front. Neuroanat. 10 (2016), 8"
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*/
#ifndef UG__PLUGINS__NEURO_COLLECTION__MEMBRANE_TRANSPORT_FV1_H
#define UG__PLUGINS__NEURO_COLLECTION__MEMBRANE_TRANSPORT_FV1_H
#include "lib_disc/spatial_disc/elem_disc/inner_boundary/inner_boundary.h"
#include "common/util/smart_pointer.h"
#include "membrane_transporters/membrane_transporter_interface.h"
namespace ug {
namespace neuro_collection {
// forward declaration of IMembraneTransporter
class IMembraneTransporter;
///@addtogroup plugin_neuro_collection
///@{
/// Finite Volume element discretization for the inner BndCond on a two-sided membrane
/**
* This class implements the InnerBoundary interface to provide element local
* assemblings for the unknown-dependent Neumann flux over a membrane, where the flowing
* unknowns are present on both sides of the membrane.
*
* It can be used for the discretization of all kinds of trans-membrane transport mechanisms
* (channels or pumps), the dynamics of which are defined by objects of the interface class
* IMembraneTransporter.
* Such an object can be assigned to an object of this class using the method
* set_membrane_transporter(). The density of the corresponding channels or pumps needs
* to be set using set_density_function().
*/
template <typename TDomain>
class MembraneTransportFV1
: public FV1InnerBoundaryElemDisc<MembraneTransportFV1<TDomain>, TDomain>
{
protected:
const number R; // universal gas constant
const number T; // temperature
const number F; // Faraday constant
typedef MembraneTransportFV1<TDomain> this_type;
typedef FV1InnerBoundaryElemDisc<this_type, TDomain> base_type;
typedef typename base_type::FluxCond FluxCond;
typedef typename base_type::FluxDerivCond FluxDerivCond;
public:
typedef TDomain domain_type;
/// world dimension
static const int dim = TDomain::dim;
public:
/// constructor with c-string
MembraneTransportFV1(const char* subsets, SmartPtr<IMembraneTransporter> mt);
/// constructor with vector
MembraneTransportFV1(const std::vector<std::string>& subsets, SmartPtr<IMembraneTransporter> mt);
/// destructor
virtual ~MembraneTransportFV1();
public:
/// adding density information for pumps/channels in membrane
void set_density_function(SmartPtr<CplUserData<number,dim> > densityFct);
/// adding density information for pumps/channels in membrane
void set_density_function(const number dens);
/// adding density information for pumps/channels in membrane
void set_density_function(const char* name);
/// set transport mechanism
void set_membrane_transporter(SmartPtr<IMembraneTransporter> mt);
// functions needed by FV1InnerBoundaryElemDisc
/** This is the actual flux function defining the flux density over the boundary
* depending on the unknowns on the boundary;
*/
bool fluxDensityFct
(
const std::vector<LocalVector::value_type>& u,
GridObject* e,
const MathVector<dim>& coords,
int si,
FluxCond& fc
);
bool fluxDensityFct
(
const std::vector<LocalVector::value_type>& u,
const std::vector<LocalVector::value_type>& uOld,
GridObject* e,
const MathVector<dim>& coords,
int si,
FluxCond& fc
);
template <typename CallToMemTransporter>
bool fluxDensityFctImpl
(
const CallToMemTransporter& call,
GridObject* e,
const MathVector<dim>& coords,
int si,
FluxCond& fc
);
/** This is the flux derivative function defining the flux density derivatives over the boundary
* depending on the unknowns on the boundary;
*/
bool fluxDensityDerivFct
(
const std::vector<LocalVector::value_type>& u,
GridObject* e,
const MathVector<dim>& coords,
int si,
FluxDerivCond& fdc
);
bool fluxDensityDerivFct
(
const std::vector<LocalVector::value_type>& u,
const std::vector<LocalVector::value_type>& uOld,
GridObject* e,
const MathVector<dim>& coords,
int si,
FluxDerivCond& fdc
);
template <typename CallToMemTransporter>
bool fluxDensityDerivFctImpl
(
const CallToMemTransporter& call,
GridObject* e,
const MathVector<dim>& coords,
int si,
FluxDerivCond& fdc
);
/// @copydoc IElemDisc<TDomain>::prepare_setting()
void prepare_setting(const std::vector<LFEID>& vLfeID, bool bNonRegularGrid) override;
/// @copydoc IElemDisc<TDomain>::prep_timestep()
template <typename TAlgebra>
void prep_timestep(number future_time, number time, VectorProxyBase* upb);
protected:
SmartPtr<CplUserData<number,dim> > m_spDensityFct;
SmartPtr<IMembraneTransporter> m_spMembraneTransporter;
private:
template <typename List>
struct RegisterPrepTimestep
{
RegisterPrepTimestep(this_type* p)
{
static const bool isEmpty = boost::mpl::empty<List>::value;
(typename boost::mpl::if_c<isEmpty, RegEnd, RegNext>::type(p));
}
struct RegEnd
{
RegEnd(this_type*) {}
};
struct RegNext
{
RegNext(this_type* p)
{
typedef typename boost::mpl::front<List>::type AlgebraType;
typedef typename boost::mpl::pop_front<List>::type NextList;
size_t aid = bridge::AlgebraTypeIDProvider::instance().id<AlgebraType>();
p->set_prep_timestep_fct(aid, &this_type::template prep_timestep<AlgebraType>);
(RegisterPrepTimestep<NextList>(p));
}
};
};
void register_all_fv1_funcs();
};
///@}
} // end namespace neuro_collection
} // end namespace ug
#endif // UG__PLUGINS__NEURO_COLLECTION__MEMBRANE_TRANSPORT_FV1_H