forked from huseinzol05/Stock-Prediction-Models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
395 lines (338 loc) · 12.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
from flask import Flask, request, jsonify
import numpy as np
import pickle
import json
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
from datetime import datetime
app = Flask(__name__)
window_size = 20
skip = 1
layer_size = 500
output_size = 3
def softmax(z):
assert len(z.shape) == 2
s = np.max(z, axis=1)
s = s[:, np.newaxis]
e_x = np.exp(z - s)
div = np.sum(e_x, axis=1)
div = div[:, np.newaxis]
return e_x / div
def get_state(parameters, t, window_size = 20):
outside = []
d = t - window_size + 1
for parameter in parameters:
block = (
parameter[d : t + 1]
if d >= 0
else -d * [parameter[0]] + parameter[0 : t + 1]
)
res = []
for i in range(window_size - 1):
res.append(block[i + 1] - block[i])
for i in range(1, window_size, 1):
res.append(block[i] - block[0])
outside.append(res)
return np.array(outside).reshape((1, -1))
class Deep_Evolution_Strategy:
inputs = None
def __init__(
self, weights, reward_function, population_size, sigma, learning_rate
):
self.weights = weights
self.reward_function = reward_function
self.population_size = population_size
self.sigma = sigma
self.learning_rate = learning_rate
def _get_weight_from_population(self, weights, population):
weights_population = []
for index, i in enumerate(population):
jittered = self.sigma * i
weights_population.append(weights[index] + jittered)
return weights_population
def get_weights(self):
return self.weights
def train(self, epoch = 100, print_every = 1):
lasttime = time.time()
for i in range(epoch):
population = []
rewards = np.zeros(self.population_size)
for k in range(self.population_size):
x = []
for w in self.weights:
x.append(np.random.randn(*w.shape))
population.append(x)
for k in range(self.population_size):
weights_population = self._get_weight_from_population(
self.weights, population[k]
)
rewards[k] = self.reward_function(weights_population)
rewards = (rewards - np.mean(rewards)) / (np.std(rewards) + 1e-7)
for index, w in enumerate(self.weights):
A = np.array([p[index] for p in population])
self.weights[index] = (
w
+ self.learning_rate
/ (self.population_size * self.sigma)
* np.dot(A.T, rewards).T
)
if (i + 1) % print_every == 0:
print(
'iter %d. reward: %f'
% (i + 1, self.reward_function(self.weights))
)
print('time taken to train:', time.time() - lasttime, 'seconds')
class Model:
DROPOUT = 0.9
def __init__(self, input_size, layer_size, output_size):
self.weights = [
np.random.normal(scale = 0.05, size = (input_size, layer_size)),
np.random.normal(scale = 0.05, size = (layer_size, layer_size)),
np.random.normal(scale = 0.05, size = (layer_size, output_size)),
np.zeros((1, layer_size)),
np.zeros((1, layer_size)),
]
def predict(self, inputs):
feed = np.dot(inputs, self.weights[0]) + self.weights[-2]
feed = np.dot(feed, self.weights[1]) + self.weights[-1]
decision = np.dot(feed, self.weights[2])
return decision
def get_weights(self):
return self.weights
def set_weights(self, weights):
self.weights = weights
class Agent:
POPULATION_SIZE = 15
SIGMA = 0.1
LEARNING_RATE = 0.03
def __init__(self, model, timeseries, skip, initial_money, real_trend, minmax):
self.model = model
self.timeseries = timeseries
self.skip = skip
self.real_trend = real_trend
self.initial_money = initial_money
self.es = Deep_Evolution_Strategy(
self.model.get_weights(),
self.get_reward,
self.POPULATION_SIZE,
self.SIGMA,
self.LEARNING_RATE,
)
self.minmax = minmax
self._initiate()
def _initiate(self):
# i assume first index is the close value
self.trend = self.timeseries[0]
self._mean = np.mean(self.trend)
self._std = np.std(self.trend)
self._inventory = []
self._capital = self.initial_money
self._queue = []
self._scaled_capital = self.minmax.transform([[self._capital, 2]])[0, 0]
def reset_capital(self, capital):
if capital:
self._capital = capital
self._scaled_capital = self.minmax.transform([[self._capital, 2]])[0, 0]
self._queue = []
self._inventory = []
def trade(self, data):
"""
you need to make sure the data is [close, volume]
"""
scaled_data = self.minmax.transform([data])[0]
real_close = data[0]
close = scaled_data[0]
if len(self._queue) >= window_size:
self._queue.pop(0)
self._queue.append(scaled_data)
if len(self._queue) < window_size:
return {
'status': 'data not enough to trade',
'action': 'fail',
'balance': self._capital,
'timestamp': str(datetime.now()),
}
state = self.get_state(
window_size - 1,
self._inventory,
self._scaled_capital,
timeseries = np.array(self._queue).T.tolist(),
)
action, prob = self.act_softmax(state)
print(prob)
if action == 1 and self._scaled_capital >= close:
self._inventory.append(close)
self._scaled_capital -= close
self._capital -= real_close
return {
'status': 'buy 1 unit, cost %f' % (real_close),
'action': 'buy',
'balance': self._capital,
'timestamp': str(datetime.now()),
}
elif action == 2 and len(self._inventory):
bought_price = self._inventory.pop(0)
self._scaled_capital += close
self._capital += real_close
scaled_bought_price = self.minmax.inverse_transform(
[[bought_price, 2]]
)[0, 0]
try:
invest = (
(real_close - scaled_bought_price) / scaled_bought_price
) * 100
except:
invest = 0
return {
'status': 'sell 1 unit, price %f' % (real_close),
'investment': invest,
'gain': real_close - scaled_bought_price,
'balance': self._capital,
'action': 'sell',
'timestamp': str(datetime.now()),
}
else:
return {
'status': 'do nothing',
'action': 'nothing',
'balance': self._capital,
'timestamp': str(datetime.now()),
}
def change_data(self, timeseries, skip, initial_money, real_trend, minmax):
self.timeseries = timeseries
self.skip = skip
self.initial_money = initial_money
self.real_trend = real_trend
self.minmax = minmax
self._initiate()
def act(self, sequence):
decision = self.model.predict(np.array(sequence))
return np.argmax(decision[0])
def act_softmax(self, sequence):
decision = self.model.predict(np.array(sequence))
return np.argmax(decision[0]), softmax(decision)[0]
def get_state(self, t, inventory, capital, timeseries):
state = get_state(timeseries, t)
len_inventory = len(inventory)
if len_inventory:
mean_inventory = np.mean(inventory)
else:
mean_inventory = 0
z_inventory = (mean_inventory - self._mean) / self._std
z_capital = (capital - self._mean) / self._std
concat_parameters = np.concatenate(
[state, [[len_inventory, z_inventory, z_capital]]], axis = 1
)
return concat_parameters
def get_reward(self, weights):
initial_money = self._scaled_capital
starting_money = initial_money
invests = []
self.model.weights = weights
inventory = []
state = self.get_state(0, inventory, starting_money, self.timeseries)
for t in range(0, len(self.trend) - 1, self.skip):
action = self.act(state)
if action == 1 and starting_money >= self.trend[t]:
inventory.append(self.trend[t])
starting_money -= self.trend[t]
elif action == 2 and len(inventory):
bought_price = inventory.pop(0)
starting_money += self.trend[t]
invest = ((self.trend[t] - bought_price) / bought_price) * 100
invests.append(invest)
state = self.get_state(
t + 1, inventory, starting_money, self.timeseries
)
invests = np.mean(invests)
if np.isnan(invests):
invests = 0
score = (starting_money - initial_money) / initial_money * 100
return invests * 0.7 + score * 0.3
def fit(self, iterations, checkpoint):
self.es.train(iterations, print_every = checkpoint)
def buy(self):
initial_money = self._scaled_capital
starting_money = initial_money
real_initial_money = self.initial_money
real_starting_money = self.initial_money
inventory = []
real_inventory = []
state = self.get_state(0, inventory, starting_money, self.timeseries)
states_sell = []
states_buy = []
for t in range(0, len(self.trend) - 1, self.skip):
action, prob = self.act_softmax(state)
print(t, prob)
if action == 1 and starting_money >= self.trend[t] and t < (len(self.trend) - 1 - window_size):
inventory.append(self.trend[t])
real_inventory.append(self.real_trend[t])
real_starting_money -= self.real_trend[t]
starting_money -= self.trend[t]
states_buy.append(t)
print(
'day %d: buy 1 unit at price %f, total balance %f'
% (t, self.real_trend[t], real_starting_money)
)
elif action == 2 and len(inventory):
bought_price = inventory.pop(0)
real_bought_price = real_inventory.pop(0)
starting_money += self.trend[t]
real_starting_money += self.real_trend[t]
states_sell.append(t)
try:
invest = (
(self.real_trend[t] - real_bought_price)
/ real_bought_price
) * 100
except:
invest = 0
print(
'day %d, sell 1 unit at price %f, investment %f %%, total balance %f,'
% (t, self.real_trend[t], invest, real_starting_money)
)
state = self.get_state(
t + 1, inventory, starting_money, self.timeseries
)
invest = (
(real_starting_money - real_initial_money) / real_initial_money
) * 100
total_gains = real_starting_money - real_initial_money
return states_buy, states_sell, total_gains, invest
with open('model.pkl', 'rb') as fopen:
model = pickle.load(fopen)
df = pd.read_csv('TWTR.csv')
real_trend = df['Close'].tolist()
parameters = [df['Close'].tolist(), df['Volume'].tolist()]
minmax = MinMaxScaler(feature_range = (100, 200)).fit(np.array(parameters).T)
scaled_parameters = minmax.transform(np.array(parameters).T).T.tolist()
initial_money = np.max(parameters[0]) * 2
agent = Agent(model = model,
timeseries = scaled_parameters,
skip = skip,
initial_money = initial_money,
real_trend = real_trend,
minmax = minmax)
@app.route('/', methods = ['GET'])
def hello():
return jsonify({'status': 'OK'})
@app.route('/inventory', methods = ['GET'])
def inventory():
return jsonify(agent._inventory)
@app.route('/queue', methods = ['GET'])
def queue():
return jsonify(agent._queue)
@app.route('/balance', methods = ['GET'])
def balance():
return jsonify(agent._capital)
@app.route('/trade', methods = ['GET'])
def trade():
data = json.loads(request.args.get('data'))
return jsonify(agent.trade(data))
@app.route('/reset', methods = ['GET'])
def reset():
money = json.loads(request.args.get('money'))
agent.reset_capital(money)
return jsonify(True)
if __name__ == '__main__':
app.run(host = '0.0.0.0', port = 8005)