Skip to content

Latest commit

 

History

History
84 lines (74 loc) · 4.36 KB

File metadata and controls

84 lines (74 loc) · 4.36 KB

TensorFlow 2 Detection Model Zoo Benchmarks (Colab Tesla P100)

Environment

  • Colab Pro
  • HW
    • CPU: Intel(R) Xeon(R) CPU @ 2.30GHz 4 cores
    • GPU: NVIDIA Tesla P100
    • MEM: 25GB

Dataset

How to benchmarks

Source

Notebook

Parameters

  • Input batch size: 1
  • TF-TRT
    • Model
      • Native FP32
      • TF-TRT FP32
      • TF-TRT FP16
    • Converter Params
      • max_batch_size: 1
      • max_workspace_size_bytes: 2147483648
      • maximum_cached_engines: 1
      • minimum_segment_size: 3, 20, 50

Results

  • All results: Colab_TF2.4.1_P100.csv
  • Note: CenterNet MobileNetV2 (detection and keypoints) will result in an error inference by the saved model.
Model Input mAP latency(ms)
CenterNet HourGlass104 512x512 38.47 100.49
CenterNet HourGlass104 Keypoints 512x512 36.73 108.91
CenterNet HourGlass104 1024x1024 39.76 277.89
CenterNet HourGlass104 Keypoints 1024x1024 38.48 299.93
CenterNet Resnet50 V1 FPN 512x512 27.59 37.05
CenterNet Resnet50 V1 FPN Keypoints 512x512 25.76 42.54
CenterNet Resnet101 V1 FPN 512x512 31.28 47.16
CenterNet Resnet50 V2 512x512 26.23 36.8
CenterNet Resnet50 V2 Keypoints 512x512 24.49 42.36
CenterNet MobileNetV2 FPN 512x512 0 0
CenterNet MobileNetV2 FPN Keypoints 512x512 0 0
EfficientDet D0 512x512 32.82 146.18
EfficientDet D1 640x640 36.63 210.53
EfficientDet D2 768x768 39.84 273.42
EfficientDet D3 896x896 42.48 356.11
EfficientDet D4 1024x1024 45.65 507.74
EfficientDet D5 1280x1280 46.14 825.46
EfficientDet D6 1280x1280 46.6 982.43
EfficientDet D7 1536x1536 47.75 1187.02
SSD MobileNet v2 320x320 20.02 47.42
SSD MobileNet V1 FPN 640x640 28.67 147.5
SSD MobileNet V2 FPNLite 320x320 22.1 71.34
SSD MobileNet V2 FPNLite 640x640 27.69 133.55
SSD ResNet50 V1 FPN RetinaNet50 640x640 33.7 154.92
SSD ResNet50 V1 FPN RetinaNet50 1024x1024 37.58 310.2
SSD ResNet101 V1 FPN RetinaNet101 640x640 35.03 162.86
SSD ResNet101 V1 FPN RetinaNet101 1024x1024 38.76 325.68
SSD ResNet152 V1 FPN RetinaNet152 640x640 34.85 177.29
SSD ResNet152 V1 FPN RetinaNet152 1024x1024 38.9 357.52
Faster R-CNN ResNet50 V1 640x640 27.94 94.27
Faster R-CNN ResNet50 V1 1024x1024 30.66 112.47
Faster R-CNN ResNet50 V1 800x1333 26.66 118.31
Faster R-CNN ResNet101 V1 640x640 30.2 103.87
Faster R-CNN ResNet101 V1 1024x1024 36.56 131.79
Faster R-CNN ResNet101 V1 800x1333 31.45 153.31
Faster R-CNN ResNet152 V1 640x640 31.16 115.56
Faster R-CNN ResNet152 V1 1024x1024 36.86 154.98
Faster R-CNN ResNet152 V1 800x1333 32.75 189.54
Faster R-CNN Inception ResNet V2 640x640 36.89 369.53
Faster R-CNN Inception ResNet V2 1024x1024 36.02 425.06
Mask R-CNN Inception ResNet V2 1024x1024 37.94 413.84

Latency mean (ms)

Latency mean (ms)