- Colab Pro
- HW
- CPU: Intel(R) Xeon(R) CPU @ 2.30GHz 4 cores
- GPU: NVIDIA Tesla P100
- MEM: 25GB
Source
Notebook
- Input batch size: 1
- TF-TRT
- Model
- Native FP32
- TF-TRT FP32
- TF-TRT FP16
- Converter Params
- max_batch_size: 1
- max_workspace_size_bytes: 2147483648
- maximum_cached_engines: 1
- minimum_segment_size: 3, 20, 50
- Model
- All results: Colab_TF2.4.1_P100.csv
- Note: CenterNet MobileNetV2 (detection and keypoints) will result in an error inference by the saved model.
Model | Input | mAP | latency(ms) |
---|---|---|---|
CenterNet HourGlass104 | 512x512 | 38.47 | 100.49 |
CenterNet HourGlass104 Keypoints | 512x512 | 36.73 | 108.91 |
CenterNet HourGlass104 | 1024x1024 | 39.76 | 277.89 |
CenterNet HourGlass104 Keypoints | 1024x1024 | 38.48 | 299.93 |
CenterNet Resnet50 V1 FPN | 512x512 | 27.59 | 37.05 |
CenterNet Resnet50 V1 FPN Keypoints | 512x512 | 25.76 | 42.54 |
CenterNet Resnet101 V1 FPN | 512x512 | 31.28 | 47.16 |
CenterNet Resnet50 V2 | 512x512 | 26.23 | 36.8 |
CenterNet Resnet50 V2 Keypoints | 512x512 | 24.49 | 42.36 |
CenterNet MobileNetV2 FPN | 512x512 | 0 | 0 |
CenterNet MobileNetV2 FPN Keypoints | 512x512 | 0 | 0 |
EfficientDet D0 | 512x512 | 32.82 | 146.18 |
EfficientDet D1 | 640x640 | 36.63 | 210.53 |
EfficientDet D2 | 768x768 | 39.84 | 273.42 |
EfficientDet D3 | 896x896 | 42.48 | 356.11 |
EfficientDet D4 | 1024x1024 | 45.65 | 507.74 |
EfficientDet D5 | 1280x1280 | 46.14 | 825.46 |
EfficientDet D6 | 1280x1280 | 46.6 | 982.43 |
EfficientDet D7 | 1536x1536 | 47.75 | 1187.02 |
SSD MobileNet v2 | 320x320 | 20.02 | 47.42 |
SSD MobileNet V1 FPN | 640x640 | 28.67 | 147.5 |
SSD MobileNet V2 FPNLite | 320x320 | 22.1 | 71.34 |
SSD MobileNet V2 FPNLite | 640x640 | 27.69 | 133.55 |
SSD ResNet50 V1 FPN RetinaNet50 | 640x640 | 33.7 | 154.92 |
SSD ResNet50 V1 FPN RetinaNet50 | 1024x1024 | 37.58 | 310.2 |
SSD ResNet101 V1 FPN RetinaNet101 | 640x640 | 35.03 | 162.86 |
SSD ResNet101 V1 FPN RetinaNet101 | 1024x1024 | 38.76 | 325.68 |
SSD ResNet152 V1 FPN RetinaNet152 | 640x640 | 34.85 | 177.29 |
SSD ResNet152 V1 FPN RetinaNet152 | 1024x1024 | 38.9 | 357.52 |
Faster R-CNN ResNet50 V1 | 640x640 | 27.94 | 94.27 |
Faster R-CNN ResNet50 V1 | 1024x1024 | 30.66 | 112.47 |
Faster R-CNN ResNet50 V1 | 800x1333 | 26.66 | 118.31 |
Faster R-CNN ResNet101 V1 | 640x640 | 30.2 | 103.87 |
Faster R-CNN ResNet101 V1 | 1024x1024 | 36.56 | 131.79 |
Faster R-CNN ResNet101 V1 | 800x1333 | 31.45 | 153.31 |
Faster R-CNN ResNet152 V1 | 640x640 | 31.16 | 115.56 |
Faster R-CNN ResNet152 V1 | 1024x1024 | 36.86 | 154.98 |
Faster R-CNN ResNet152 V1 | 800x1333 | 32.75 | 189.54 |
Faster R-CNN Inception ResNet V2 | 640x640 | 36.89 | 369.53 |
Faster R-CNN Inception ResNet V2 | 1024x1024 | 36.02 | 425.06 |
Mask R-CNN Inception ResNet V2 | 1024x1024 | 37.94 | 413.84 |