Skip to content

Latest commit

 

History

History
723 lines (555 loc) · 33.8 KB

README.md

File metadata and controls

723 lines (555 loc) · 33.8 KB

Note

In the future the installation and configuration of the bot will be moved to the EESSI docs, likely under Build-test-deploy bot.

The bot helps automating tasks to build, to test and to deploy components of the EESSI layers (compatibility and software). In the future, the bot may be used with any repository that provides some scripts for building, testing and deployment.

Instructions to set up the EESSI bot components

The following sections describe and illustrate the steps necessary to set up the EESSI bot. The bot consists of two main components provided in this repository:

  • An event handler eessi_bot_event_handler.py which receives events from a GitHub repository and acts on them.
  • A job manager eessi_bot_job_manager.py which monitors the Slurm job queue and acts on state changes of jobs submitted by the event handler.

Prerequisites

  • GitHub account(s) (two needed for a development scenario), referring to them as YOU_1 and YOU_2 below
  • A fork, say YOU_1/software-layer, of EESSI/software-layer and a fork, say YOU_2/software-layer of your first fork if you want to emulate the bot's behaviour but not change EESSI's repository. The EESSI bot will act on events triggered for the target repository (in this context, either EESSI/software-layer or YOU_1/software-layer).
  • Access to a frontend/login node/service node of a Slurm cluster where the EESSI bot components will run. For the sake of brevity, we call this node simply bot machine.
  • singularity with version 3.6 or newer OR apptainer with version 1.0 or newer on the compute nodes of the Slurm cluster.
  • On the cluster frontend (or where the bot components run), different tools may be needed to run the Smee client. For x86_64, singularity or apptainer are sufficient. For aarch64, the package manager npm is needed.
  • The EESSI bot components and the (build) jobs will frequently access the Internet. Hence, worker nodes and the bot machine of the Slurm cluster need access to the Internet (either directly or via an HTTP proxy).

Step 1: Smee.io channel and smee client

We use smee.io as a service to relay events from GitHub to the EESSI bot. To do so, create a new channel via https://smee.io and note the URL, e.g., https://smee.io/CHANNEL-ID.

On the bot machine we need a tool which receives events relayed from https://smee.io/CHANNEL-ID and forwards it to the EESSI bot. We use the Smee client for this.

On machines with x86_64 architecture, the Smee client can be run via a container as follows

singularity pull docker://deltaprojects/smee-client
singularity run smee-client_latest.sif --url https://smee.io/CHANNEL-ID

or

singularity pull docker://deltaprojects/smee-client
singularity run smee-client_latest.sif --port 3030 --url https://smee.io/CHANNEL-ID

for specifying a different port than the default (3000).

On machines with aarch64 architecture, we can install the the smee client via the npm package manager as follows

npm install smee-client

and then running it with the default port (3000)

node_modules/smee-client/bin/smee.js --url https://smee.io/CHANNEL-ID

Another port can be used by adding the --port PORT argument, for example,

node_modules/smee-client/bin/smee.js --port 3030 --url https://smee.io/CHANNEL-ID

Step 2: Registering GitHub App

We need to:

  • register a GitHub App;
  • link it to the smee.io channel;
  • set a secret token to verify the webhook sender;
  • set some permissions for the GitHub app;
  • subscribe the GitHub app to selected events;
  • define that this GitHub app should only be installed in your GitHub account (or organisation).

At the app settings page click "New GitHub App" and fill in the page, in particular the following fields:

  • GitHub App name: give the app a name of you choice

  • Homepage URL: use the Smee.io channel (https://smee.io/CHANNEL-ID) created in Step 1

  • Webhook URL: use the Smee.io channel (https://smee.io/CHANNEL-ID) created in Step 1

  • Webhook secret: create a secret token which is used to verify the webhook sender, for example using:

    python3 -c 'import secrets; print(secrets.token_hex(64))'
  • Permissions: assign the required permissions to the app (e.g., read access to commits, issues, pull requests);

    • Make sure to assign read and write access to the Pull requests and Issues in "Repository permissions" section; these permisions can be changed later on;
    • Make sure to accept the new permissions from the "Install App" section that you can reach via the menu on the left hand side.
    • Then select the wheel right next to your installed app, or use the link https://github.com/settings/installations/INSTALLATION_ID
    • Once the page is open you will be able to accept the new permissions there.
    • Some permissions (e.g., metadata) will be selected automatically because of others you have chosen.
  • Events: subscribe the app to events it shall react on (e.g., related to pull requests and comments)

  • Select that the app can only be installed by this (your) GitHub account or organisation.

Click on "Create GitHub App" to complete this step.

Step 3: Installing GitHub App

Note, this will trigger the first event (installation). While the EESSI bot is not running yet, you can inspect this via the webpage for your Smee channel. Just open https://smee.io/CHANNEL-ID in a browser, and browse through the information included in the event. Naturally, some of the information will be different for other types of events.

You also need to install the GitHub App -- essentially telling GitHub to link the app to an account and one, several, or all repositories on whose events the app then should act upon.

Go to https://github.com/settings/apps and select the app you want to install by clicking on the icon left to the app's name or on the "Edit" button right next to the name of the app.

On the next page you should see the menu item "Install App" on the left-hand side. When you click on this you should see a page with a list of accounts and organisations you can install the app on. Choose one and click on the "Install" button next to it.

This leads to a page where you can select the repositories on whose the app should react to. Here, for the sake of simplicity, choose just YOU_1/software-layer as described in the prerequisites. Select one, multiple, or all and click on the "Install" button.

Step 4: Installing the EESSI bot on a bot machine

The EESSI bot for the software layer is available from EESSI/eessi-bot-software-layer. This repository (or your fork of it) provides scripts and an example configuration file.

Get the EESSI bot installed onto the bot machine by running something like

git clone https://github.com/EESSI/eessi-bot-software-layer.git

Determine the full path to bot directory:

cd eessi-bot-software-layer
pwd

Note the output of pwd. This will be used to replace PATH_TO_EESSI_BOT in the configuration file app.cfg (see Step 5.4). In the remainder of this page we will refer to this directory as PATH_TO_EESSI_BOT.

If you want to develop the EESSI bot, it is recommended that you fork the EESSI/eessi-bot-software-layer repository and use the fork on the bot machine.

If you want to work with a specific pull request for the bot, say number 42, you can obtain the corresponding code with the following commands:

git clone https://github.com/EESSI/eessi-bot-software-layer.git
cd eessi-bot-software-layer
pwd
git fetch origin pull/42/head:PR42
git checkout PR42

The EESSI bot requires some Python packages to be installed, which are specified in the requirements.txt file. It is recommended to install these in a virtual environment based on Python 3.7 or newer. See the commands below for an example on how to set up the virtual environment, activate it, and install the requirements for the EESSI bot. These commands assume that you are in the eessi-bot-software-layer directory:

# assumption here is that you start from *within* the eessi-bot-software-layer directory
cd ..
python3.7 -m venv venv_eessi_bot_p37
source venv_eessi_bot_p37/bin/activate
python --version                     # output should match 'Python 3.7.*'
which python                         # output should match '*/venv_eessi_bot_p37/bin/python'
python -m pip install --upgrade pip
cd eessi-bot-software-layer
pip install -r requirements.txt

Note, before you can start the bot components (see below), you have to activate the virtual environment with source venv_eessi_bot_p37/bin/activate.

You can exit the virtual environment simply by running deactivate.

Step 4.1: Installing tools to access S3 bucket

The scripts/eessi-upload-to-staging script uploads a tarball and an associated metadata file to an S3 bucket.

It needs two tools for this:

  • the aws command to actually upload the files;
  • the jq command to create the metadata file.

This section describes how these tools are installed and configured on the bot machine.

Create a home for the aws and jq commands

Create a new directory, say PATH_TO_EESSI_BOT/tools and change into it.

mkdir PATH_TO_EESSI_BOT/tools
cd PATH_TO_EESSI_BOT/tools

Install aws command

For installing the AWS Command Line Interface, which provides the aws command, follow the instructions at the AWS Command Line Interface guide.

Add the directory that contains aws to the $PATH environment variable. Make sure that $PATH is set correctly for newly spawned shells, e.g., it should be exported in a startup file such as $HOME/.bash_profile.

Verify that aws executes by running aws --version. Then, run aws configure to set credentials for accessing the S3 bucket. See New configuration quick setup for detailed setup instructions. If you are using a non AWS S3 bucket you will likely only have to provide the Access Key ID and the Secret Access Key.

Install jq command

Next, install the tool jq into the same directory into which aws was installed in (for example PATH_TO_EESSI_BOT/tools). Download jq from https://github.com/stedolan/jq/releases into that directory by running, for example,

cd PATH_TO_EESSI_BOT/tools
curl https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 -o jq-linux64

You may check if there are newer releases and choose a different package depending on your operating system. Update the permissions of the downloaded tool (jq-linux64 for the above curl example) with

chmod +x jq-linux64

Finally, create a symbolic link for jq by running

ln -s jq-linux64 jq

Check that the jq command works by running jq --version.

Step 5: Configuring the EESSI bot on the bot machine

For the event handler, you need to set up two environment variables:

For both the event handler and the job manager you need a private key (see Step 5.3).

Step 5.1: GitHub Personal Access Token (PAT)

Create a Personal Access Token (PAT) for your GitHub account via the page https://github.com/settings/tokens where you find a button "Generate new token".

Give it meaningful name (field titled "Note"), and set the expiration date. Then select the scopes this PAT will be used for. Then click "Generate token".

On the result page, take note/copy the resulting token string -- it will only be shown once.

On the bot machine set the environment variable $GITHUB_TOKEN:

export GITHUB_TOKEN='THE_TOKEN_STRING'

in which you replace THE_TOKEN_STRING with the actual token.

Step 5.2: GitHub App Secret Token

The GitHub App Secret Token is used to verify the webhook sender. You should have created one already when registering a new GitHub App in Step 2.

On the bot machine set the environment variable $GITHUB_APP_SECTRET_TOKEN:

export GITHUB_APP_SECRET_TOKEN='THE_SECRET_TOKEN_STRING'

in which you replace THE_SECRET_TOKEN_STRING with the actual token.

Note that depending on the characters used in the string you will likely have to use single quotes ('...') when setting the value of the environment variable.

Step 5.3: Create a private key and store it on the bot machine

The private key is needed to let the app authenticate when updating information at the repository such as commenting on PRs, adding labels, etc. You can create the key at the page of the GitHub App you have registered in Step 2.

Open the page https://github.com/settings/apps and then click on the icon left to the name of the GitHub App for the EESSI bot or the "Edit" button for the app.

Near the end of the page you will find a section "Private keys" where you can create a private key by clicking on the button "Generate a private key".

The private key should be automatically downloaded to your system. Copy it to the bot machine and note the full path to it (PATH_TO_PRIVATE_KEY).

For example: the private key is on your LOCAL computer. To transfer it to the bot machine use the scp command for example:

scp PATH_TO_PRIVATE_KEY_FILE_LOCAL_COMPUTER REMOTE_USERNAME@TARGET_HOST:TARGET/PATH

The location to where the private key is copied on the bot machine (TARGET/PATH) should be noted for PATH_TO_PRIVATE_KEY.

Step 5.4: Create the configuration file app.cfg

If there is no app.cfg in the directory PATH_TO_EESSI_BOT yet, create an initial version from app.cfg.example.

cp -i app.cfg.example app.cfg

The example file (app.cfg.example) includes notes on what you have to adjust to run the bot in your environment.

[github] section

The section [github] contains information for connecting to GitHub:

app_id = 123456

Replace '123456' with the id of your GitHub App. You can find the id of your GitHub App via the page GitHub Apps. On this page, select the app you have registered in Step 2. On the opened page you will find the app_id in the section headed "About" listed as "App ID".

app_name = 'MY-bot'

The app_name specifies a short name for your bot. It will appear in comments to a pull request. For example, it could include the name of the cluster where the bot runs and a label representing the user that runs the bot, like hal9000-bot.

Note: avoid putting an actual username here as it will be visible on potentially publicly accessible GitHub pages.

installation_id = 12345678

Replace '12345678' with the id of the installation of your GitHub App (see Step 3).

You find the installation id of your GitHub App via the page GitHub Apps. On this page, select the app you have registered in Step 2. For determining the installation_id select "Install App" in the menu on the left-hand side. Then click on the gearwheel button of the installation (to the right of the "Installed" label). The URL of the resulting page contains the installation_id -- the number after the last "/".

The installation_id is also provided in the payload of every event within the top-level record named "installation". You can see the events and their payload on the webpage of your Smee.io channel (https://smee.io/CHANNEL-ID). Alternatively, you can see the events in the "Advanced" section of your GitHub App: open the GitHub Apps page, select the app you have registered in Step 2, and choose "Advanced" in the menu on the left-hand side.

private_key = PATH_TO_PRIVATE_KEY

Replace PATH_TO_PRIVATE_KEY with the path you have noted in Step 5.3.

[buildenv] section

The [buildenv] section contains information about the build environment.

build_job_script = PATH_TO_EESSI_BOT/scripts/bot-build.slurm

build_job_script points to the job script which will be submitted by the bot event handler.

shared_fs_path = PATH_TO_SHARED_DIRECTORY

Via shared_fs_path the path to a directory on a shared filesystem (NFS, etc.) can be provided, which can be leveraged by the bot/build.sh script to store files that should be available across build jobs (software source tarballs, for example).

build_logs_dir = PATH_TO_BUILD_LOGS_DIR

If build logs should be copied to a particular (shared) directory under certain conditions, for example when a build failed, the build_logs_dir can be set to the path to which logs should be copied by the bot/build.sh script.

container_cachedir = PATH_TO_SHARED_DIRECTORY

container_cachedir may be used to reuse downloaded container image files across jobs, so jobs can launch containers more quickly.

cvmfs_customizations = { "/etc/cvmfs/default.local": "CVMFS_HTTP_PROXY=\"http://PROXY_DNS_NAME:3128|http://PROXY_IP_ADDRESS:3128\"" }

It may happen that we need to customize the CernVM-FS configuration for the build job. The value of cvmfs_customizations is a dictionary which maps a file name to an entry that needs to be appended to that file. In the example line above, the configuration of CVMFS_HTTP_PROXY is appended to the file /etc/cvmfs/default.local. The CernVM-FS configuration can be commented out, unless there is a need to customize the CernVM-FS configuration.

http_proxy = http://PROXY_DNS:3128/
https_proxy = http://PROXY_DNS:3128/

If compute nodes have no direct internet connection, we need to set http(s)_proxy or commands such as pip3 and eb (EasyBuild) cannot download software from package repositories. Typically these settings are set in the prologue of a Slurm job. However, when entering the EESSI compatibility layer, most environment settings are cleared. Hence, they need to be set again at a later stage.

jobs_base_dir = PATH_TO_JOBS_BASE_DIR

Replace PATH_TO_JOBS_BASE_DIR with an absolute filepath like /home/YOUR_USER_NAME/jobs (or another path of your choice). Per job the directory structure under jobs_base_dir is YYYY.MM/pr_PR_NUMBER/event_EVENT_ID/run_RUN_NUMBER/OS+SUBDIR. The base directory will contain symlinks using the job ids pointing to the job's working directory YYYY.MM/....

load_modules = MODULE1/VERSION1,MODULE2/VERSION2,...

load_modules provides a means to load modules in the build_job_script. None to several modules can be provided in a comma-separated list. It is read by the bot and handed over to build_job_script via the --load-modules option.

local_tmp = /tmp/$USER/EESSI

local_tmp specifies the path to a temporary directory on the node building the software, i.e., on a compute/worker node. You may have to change this if temporary storage under /tmp does not exist or is too small. This setting will be used for the environment variable $EESSI_TMPDIR. The value is expanded only inside a running job. Thus, typical job environment variables (like $USER or $SLURM_JOB_ID) may be used to isolate jobs running simultaneously on the same compute node.

slurm_params = "--hold"

slurm_params defines additional parameters for submitting batch jobs. "--hold" should be kept or the bot might not work as intended (the release step done by the job manager component of the bot would be circumvented). Additional parameters, for example, to specify an account, a partition, or any other parameters supported by the sbatch command, may be added to customize the job submission.

submit_command = /usr/bin/sbatch

submit_command is the full path to the Slurm job submission command used for submitting batch jobs. You may want to verify if sbatch is provided at that path or determine its actual location (using which sbatch).

[bot_control] section

The [bot_control] section contains settings for configuring the feature to send commands to the bot.

command_permission = GH_ACCOUNT_1 GH_ACCOUNT_2 ...

The command_permission setting defines which GitHub accounts can send commands to the bot (via new PR comments). If the value is empty no GitHub account can send commands.

command_response_fmt = FORMAT_MARKDOWN_AND_HTML

command_response_fmt allows to customize the format of the comments about the handling of bot commands. The format needs to include {app_name}, {comment_response} and {comment_result}. {app_name} is replaced with the name of the bot instance. {comment_response} is replaced with information about parsing the comment for commands before any command is run. {comment_result} is replaced with information about the result of the command that was run (can be empty).

[deploycfg] section

The [deploycfg] section defines settings for uploading built artefacts (tarballs).

tarball_upload_script = PATH_TO_EESSI_BOT/scripts/eessi-upload-to-staging

tarball_upload_script provides the location for the script used for uploading built software packages to an S3 bucket.

endpoint_url = URL_TO_S3_SERVER

endpoint_url provides an endpoint (URL) to a server hosting an S3 bucket. The server could be hosted by a commercial cloud provider like AWS or Azure, or running in a private environment, for example, using Minio. The bot uploads tarballs to the bucket which will be periodically scanned by the ingestion procedure at the Stratum 0 server.

# example: same bucket for all target repos
bucket_name = "eessi-staging"
# example: bucket to use depends on target repo
bucket_name = {
    "eessi-pilot-2023.06": "eessi-staging-2023.06",
    "eessi.io-2023.06": "software.eessi.io-2023.06",
}

bucket_name is the name of the bucket used for uploading of tarballs. The bucket must be available on the default server (https://${bucket_name}.s3.amazonaws.com), or the one provided via endpoint_url.

bucket_name can be specified as a string value to use the same bucket for all target repos, or it can be mapping from target repo id to bucket name.

upload_policy = once

The upload_policy defines what policy is used for uploading built artefacts to an S3 bucket.

upload_policy value Policy
all Upload all artefacts (mulitple uploads of the same artefact possible).
latest For each build target (prefix in tarball name eessi-VERSION-{software,init,compat}-OS-ARCH) only upload the latest built artefact.
once Only once upload any built artefact for the build target.
none Do not upload any built artefacts.
deploy_permission = GH_ACCOUNT_1 GH_ACCOUNT_2 ...

The deploy_permission setting defines which GitHub accounts can trigger the deployment procedure. The value can be empty (no GitHub account can trigger the deployment), or a space delimited list of GitHub accounts.

no_deploy_permission_comment = Label `bot:deploy` has been set by user `{deploy_labeler}`, but this person does not have permission to trigger deployments

This defines a message that is added to the status table in a PR comment corresponding to a job whose tarball should have been uploaded (e.g., after setting the bot:deploy label).

[architecturetargets] section

The section [architecturetargets] defines for which targets (OS/SUBDIR), (for example linux/x86_64/amd/zen2) the EESSI bot should submit jobs, and which additional sbatch parameters will be used for requesting a compute node with the CPU microarchitecture needed to build the software stack.

arch_target_map = { "linux/x86_64/generic" : "--constraint shape=c4.2xlarge", "linux/x86_64/amd/zen2" : "--constraint shape=c5a.2xlarge" }

The map has one-to-many entries of the format OS/SUBDIR : ADDITIONAL_SBATCH_PARAMETERS. For your cluster, you will have to figure out which microarchitectures (SUBDIR) are available (as OS only linux is currently supported) and how to instruct Slurm to allocate nodes with that architecture to a job (ADDITIONAL_SBATCH_PARAMETERS).

Note, if you do not have to specify additional parameters to sbatch to request a compute node with a specific microarchitecture, you can just write something like:

arch_target_map = { "linux/x86_64/generic" : "" }

[repo_targets] section

The [repo_targets] section defines for which repositories and architectures the bot can run a job. Repositories are referenced by IDs (or repo_id). Architectures are identified by OS/SUBDIR which correspond to settings in the arch_target_map.

repo_target_map = {
    "OS_SUBDIR_1" : ["REPO_ID_1_1","REPO_ID_1_2"],
    "OS_SUBDIR_2" : ["REPO_ID_2_1","REPO_ID_2_2"] }

For each OS/SUBDIR combination a list of available repository IDs can be provided.

The repository IDs are defined in a separate file, say repos.cfg which is stored in the directory defined via repos_cfg_dir:

repos_cfg_dir = PATH_TO_SHARED_DIRECTORY/cfg_bundles

The repos.cfg file also uses the ini format as follows

[eessi-2023.06]
repo_name = software.eessi.io
repo_version = 2023.06
config_bundle = eessi.io-cfg_files.tgz
config_map = {"eessi.io/eessi.io.pub":"/etc/cvmfs/keys/eessi.io/eessi.io.pub", "default.local":"/etc/cvmfs/default.local", "eessi.io.conf":"/etc/cvmfs/domain.d/eessi.io.conf"}
container = docker://ghcr.io/eessi/build-node:debian11

The repository id is given in brackets ([eessi-2023.06]). Then the name of the repository (repo_name) and the version (repo_version) are defined. Next, a tarball containing configuration files for CernVM-FS is specified (config_bundle). The config_map setting maps entries of that tarball to locations inside the file system of the container which is used when running the job. Finally, the container to be used is given (container).

The repos.cfg file may contain multiple definitions of repositories.

[event_handler] section

The [event_handler] section contains information required by the bot event handler component.

log_path = /path/to/eessi_bot_event_handler.log

log_path specifies the path to the event handler log.

[job_manager] section

The [job_manager] section contains information needed by the job manager.


log_path = /path/to/eessi_bot_job_manager.log

log_path specifies the path to the job manager log.

job_ids_dir = /home/USER/jobs/ids

job_ids_dir specifies where the job manager should store information about jobs being tracked. Under this directory it will store information about submitted/running jobs under a subdirectory named 'submitted', and about finished jobs under a subdirectory named 'finished'.

poll_command = /usr/bin/squeue

poll_command is the full path to the Slurm command that can be used for checking which jobs exist. You may want to verify if squeue is provided at that path or determine its actual location (via which squeue).

poll_interval = 60

poll_interval defines how often the job manager checks the status of the jobs. The unit of the value is seconds.

scontrol_command = /usr/bin/scontrol

scontrol_command is the full path to the Slurm command used for manipulating existing jobs. You may want to verify if scontrol is provided at that path or determine its actual location (via which scontrol).

[submitted_job_comments] section

The [submitted_job_comments] section specifies templates for messages about newly submitted jobs.

initial_comment = New job on instance `{app_name}` for architecture `{arch_name}` for repository `{repo_id}` in job dir `{symlink}`

initial_comment is used to create a comment to a PR when a new job has been created.

awaits_release = job id `{job_id}` awaits release by job manager

awaits_release is used to provide a status update of a job (shown as a row in the job's status table).

[new_job_comments] section

The [new_job_comments] section sets templates for messages about jobs whose hold flag was released.

awaits_launch = job awaits launch by Slurm scheduler

awaits_launch specifies the status update that is used when the hold flag of a job has been removed.

[running_job_comments] section

The [running_job_comments] section sets templates for messages about jobs that are running.

running_job = job `{job_id}` is running

running_job specifies the status update for a job that started running.

[finished_job_comments] section

The [finished_job_comments] section sets templates for messages about finished jobs.

success = :grin: SUCCESS tarball `{tarball_name}` ({tarball_size} GiB) in job dir

success specifies the message for a successful job that produced a tarball.

failure = :cry: FAILURE

failure specifies the message for a failed job.

no_slurm_out = No slurm output `{slurm_out}` in job dir

no_slurm_out specifies the message for missing Slurm output file.

slurm_out = Found slurm output `{slurm_out}` in job dir

slurm_out specifies the message for found Slurm output file.

missing_modules = Slurm output lacks message "No missing modules!".

missing_modules is used to signal the lack of a message that all modules were built.

no_tarball_message = Slurm output lacks message about created tarball.

no_tarball_message is used to signal the lack of a message about a created tarball.

no_matching_tarball = No tarball matching `{tarball_pattern}` found in job dir.

no_matching_tarball is used to signal a missing tarball.

multiple_tarballs = Found {num_tarballs} tarballs in job dir - only 1 matching `{tarball_pattern}` expected.

multiple_tarballs is used to report that multiple tarballs have been found.

job_result_unknown_fmt = <details><summary>:shrug: UNKNOWN _(click triangle for details)_</summary><ul><li>Job results file `{filename}` does not exist in job directory, or parsing it failed.</li><li>No artefacts were found/reported.</li></ul></details>

job_result_unknown_fmt is used in case no result file (produced by bot/check-build.sh provided by target repository) was found.

job_test_unknown_fmt = <details><summary>:shrug: UNKNOWN _(click triangle for details)_</summary><ul><li>Job test file `{filename}` does not exist in job directory, or parsing it failed.</li></ul></details>

job_test_unknown_fmt is used in case no test file (produced by bot/check-test.sh provided by target repository) was found.

Instructions to run the bot components

The bot consists of three components:

  • the Smee client;
  • the event handler;
  • the job manager.

Running the Smee client was explained in Step 1.

Step 6.1: Running the event handler

As the event handler may run for a long time, it is advised to run it in a screen or tmux session.

The event handler is provided by the eessi_bot_event_handler.py Python script.

Change directory to eessi-bot-software-layer (which was created by cloning the repository in Step 4 - either the original one from EESSI, or your fork).

Then, simply run the event handler script:

./event_handler.sh

If multiple instances on the bot machine are being executed, you may need to run the event handler and the Smee client with a different port (default is 3000). The event handler can receive events on a different port by adding the parameter --port PORTNUMBER, for example,

./event_handler.sh --port 3030

See Step 1 for telling the Smee client on which port the event handler receives events.

The event handler writes log information to the files pyghee.log and eessi_bot_event_handler.log.

Note, if you run the bot on a frontend of a cluster with multiple frontends make sure that both the Smee client and the event handler run on the same system!

Step 6.2: Running the job manager

As the job manager may run for a long time, it is advised to run it in a screen or tmux session.

The job manager is provided by the eessi_bot_job_manager_layer.py Python script. You can run the job manager from the directory eessi-bot-software-layer simply by:

./job_manager.sh

It will run in an infinite loop monitoring jobs and acting on their state changes.

If you want to limit the execution of the job manager, you can use thes options:

Option Argument
-i / --max-manager-iterations Any number z: z < 0 - run the main loop indefinitely, z == 0 - don't run the main loop, z > 0 - run the main loop z times
-j / --jobs Comma-separated list of job ids the job manager shall process. All other jobs will be ignored.

An example command would be

./job_manager.sh -i 1 -j 1234

to run the main loop exactly once for the job with ID 1234.

The job manager writes log information to the file eessi_bot_job_manager.log.

The job manager can run on a different machine than the event handler, as long as both have access to the same shared filesystem.

Example pull request on software-layer

For information on how to make pull requests and let the bot build software, see the bot section of the EESSI documentation.