-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
110 lines (79 loc) · 2.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from urllib import response
from fastapi import FastAPI
import uvicorn
import os
from pydantic import BaseModel
import cv2
import numpy as np
from utils.util_fun import base64_to_image, image_to_base64
from process.detect import detect
from process.list_obj import object_lists
from process.draw_gt_box import draw
from typing import List
app = FastAPI()
class Image_INFO(BaseModel):
img_base64: str
class Image_INFO_PROC(BaseModel):
img_base64: str
x1: int
y1: int
x2: int
y2: int
class CordBase(BaseModel):
name: str
x1: int
y1: int
x2: int
y2: int
# score: float
class CordList(BaseModel):
obj_cords: List[CordBase]
class ReposponseBody(BaseModel):
is_success: bool
output_img: str
obj_cords: List[CordList]
@app.get("/")
def read_root():
return {"Hello": "World"}
@app.post('/object-detection')
def object_detection(image_info: Image_INFO, response_model=ReposponseBody):
img_base64 = image_info.img_base64
img = base64_to_image(img_base64)
# img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# encoded_str = "" + str(encoded_str)
# print(img.shape)
boxes, scores = detect(img)
# print(boxes.shape)
# print(scores.shape)
result, score = object_lists(boxes, scores, img.shape)
print("result: ", result)
mask = draw(img, result, score)
# cv2.imwrite("make.jpg", mask)
encoded_str = image_to_base64(mask)
if result:
response_body = {
'is_success': True,
"output_img": encoded_str,
"obj_cords": result
}
return response_body
@app.post('/post_proc')
def post_proc(image_info: Image_INFO_PROC):
img_base64 = image_info.img_base64
x1 = image_info.x1
y1 = image_info.y1
x2 = image_info.x2
y2 = image_info.y2
img = base64_to_image(img_base64)
blurred_img = cv2.GaussianBlur(img, (21, 21), 0)
# print(img.shape)
mask = np.zeros(img.shape, dtype=np.uint8)
mask = cv2.rectangle(mask, (x1, y1), (x2, y2), (255, 255, 255), -1)
# cv2.imwrite("make.jpg", mask)
out = np.where(mask==np.array([255, 255, 255]), img, blurred_img)
# cv2.imwrite("./out.png", out)
encoded_str = image_to_base64(out)
# encoded_str = "" + str(encoded_str)
return {"output_base64": encoded_str}
if __name__ == "__main__":
uvicorn.run(app, host='0.0.0.0', port=8000)