-
Notifications
You must be signed in to change notification settings - Fork 8
/
README.Rmd
108 lines (89 loc) · 3.73 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
output: github_document
---
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
# IRIS <img src="www/logo.svg" align="right" height="120"/>
https://bmbls.bmi.osumc.edu/IRIS/
## Citation
### APA
Monier, B., McDermaid, A., Wang, C., Zhao, J., Miller, A., Fennell, A., & Ma, Q. (2019). [IRIS-EDA: an integrated RNA-Seq interpretation system for gene expression data analysis.](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006792) *PLoS computational biology*, 15(2), e1006792.
### BibTeX
```
@article{monier2019iris,
title={IRIS-EDA: an integrated RNA-Seq interpretation system for gene expression data analysis},
author={Monier, Brandon and McDermaid, Adam and Wang, Cankun and Zhao, Jing and Miller, Allison and Fennell, Anne and Ma, Qin},
journal={PLoS computational biology},
volume={15},
number={2},
pages={e1006792},
year={2019},
publisher={Public Library of Science}
}
```
## Overview
IRIS-EDA (**I**nteractive **R**NA-seq analysis and **I**nterpretation using
**S**hiny-**E**xpression **D**ata **A**nalysis), is a web-based tool for
the analysis of RNA-seq count data. This tool's purpose is to provide users
with a comprehensive and user-friendly method for performing differential gene
expression (DGE) analysis regardless of their computational experience.
IRIS-EDA also has integrated experimental design options to cater to users
with non-traditional DGE requirements, such as interaction terms or paired
data. This tool is designed in a way for usable results to be generated in
around one minute or for users to invest more time into detailed
investigations of their data. IRIS is a **user-friendly** and **interactive**
Shiny app for gene expression analysis. This app takes advantage of several
popular DGE tools (*DESeq2*, *edgeR*, and *limma*) available through
Bioconductor in conjunction with the Plotly and DataTable API libraries for R.
## Installation
To get a **local version** of IRIS-EDA, simply copy and paste the following
code chunks into an R terminal:
### Install CRAN packages
IRIS-EDA requires several packages to operate. Run this code to get the
necessary packages from the CRAN repository:
```{r, eval=FALSE}
# CRAN
packages <- c(
"crosstalk", "dplyr", "DT", "gtools", "plotly", "shiny", "plyr",
"shinyBS", "shinycssloaders", "shinythemes", "tibble", "tidyr",
"Rcpp", "Hmisc", "ggplot2", "locfit", "GGally", "pheatmap",
"reshape2", "backports", "digest", "fields", "psych", "stringr",
"tools", "openxlsx", "Rtsne", "WGCNA", "flashClust", "parallel",
"MCL", "kmed", "ape"
)
np <- packages[!(packages %in% installed.packages()[, "Package"])]
if(length(np)) install.packages(np)
```
### Install Bioconductor packages
You will also need several Bioconductor packages. Run this code to get the
necessary packages from the Bioconductor repository:
```{r, eval=FALSE, message=FALSE}
# Bioconductor
bioc_packages <- c(
"DESeq2", "edgeR", "limma", "QUBIC", "geneplotter", "GO.db", "impute",
"preprocessCore", "AnnotationDbi"
)
np <- bioc_packages[!(bioc_packages %in% installed.packages()[,"Package"])]
if (!require("BiocManager")) install.packages("BiocManager")
BiocManager::install(np)
```
### Install Developmental packages
To run BRIC analysis, you also need to download the source code for this
clustering algorithm. Run this code to get the GitHub package:
```{r, eval=FALSE, message=FALSE}
# GitHub
if (!require("devtools")) install.packages("devtools")
devtools::install_github("OSU-BMBL/BRIC", force = T)
```
### Run the Shiny application
Once you have installed all of the necessary packages, you can run this code
to launch the Shiny application:
```{r, eval=FALSE}
shiny::runGitHub("iris", "OSU-BMBL")
```
- - -
*Last updated:* `r format(Sys.Date())`