-
Notifications
You must be signed in to change notification settings - Fork 0
/
suppl_figure.qmd
253 lines (213 loc) · 11.8 KB
/
suppl_figure.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Supplementary Text Figures {#sec-suppl-figure}
This chapter demonstrates the `R` codes that make supplementary text figures shown in the paper.
Making the main figures are shown in @sec-main-figure.
## Supplementary Text Figure A {#sec-si-figure-a}
![](static/figure/cfRNA.SI.FigA.png)
```{r }
#| label: fig-si-a
#| eval: false
lazyLoad("downsample.chrY.TPM_cache/beamer/load_ds_salmon_4b8dd727729fd0ae5deb423d69e7c16d") # dl.chrY.TPM and dl.stat
dt.ds.chrY <- lapply(names(dl.stat), function(DS) dl.stat[[DS]][,DS:=DS]) %>% rbindlist
dt.ds.chrY$DS<-factor(dt.ds.chrY$DS, level=c("1M","5M","10M"))
dt.ds.chrY[,GA:=gsub(" weeks","wk",GA)]
setnames(dt.ds.chrY, "Type", "Method")
p1.chrY<-ggplot(dt.ds.chrY, aes(Method,SumCount)) +
geom_rect(data = dt.ds.chrY[DS=="5M"],fill="grey60",xmin = -Inf,xmax = Inf, ymin = -Inf,ymax = Inf,alpha = 0.2) +
geom_bar(aes(fill=Method), stat="identity",width=.5, alpha=.7) +
ggsci::scale_fill_jama() +
facet_grid(Sex~DS+GA,scales="free") +
labs(y="Sum of read count on chrY genes") +
theme_Publication() +
theme(legend.position="top",
panel.border=element_rect(colour="black"),
axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank())
#
pdf(file="Figures/Suppl/cfRNA.Suppl.Text.Fig1A.pdf", width=11, height=8, title="Abundance of chrY")
p1.chrY
dev.off()
```
## Supplementary Text Figure B {#sec-si-figure-b}
![](static/figure/cfRNA.SI.FigB.png)
```{r }
#| label: fig-si-b
#| eval: false
lazyLoad("downsample.chrY.TPM_cache/beamer/load_ds_salmon_4b8dd727729fd0ae5deb423d69e7c16d") # dl.chrY.TPM and dl.stat
lapply(dl.chrY.TPM, function(i) i[,.(sum(Counts),sum(TPM))])
dl.chrY.TPM<-lapply(dl.chrY.TPM, function(DT) {
#DT[Sex=="Male",Class:=ifelse(TPM>0,"TP","FN")]
#DT[Sex=="Female",Class:=ifelse(TPM==0,"TN","FP")]
DT[,`Predicted Sex`:=ifelse(TPM>0, "Male","Female"),Type]
DT$Sex<-factor(DT$Sex, level=c("Male","Female"))
DT$`Predicted Sex`<-factor(DT$`Predicted Sex`, level=c("Male","Female"))
DT
})
#####################################
# Predictive performance by DS & GA #
#####################################
dt.chrY.con.ga<-lapply(names(dl.chrY.TPM), function(DS){
lapply(split(dl.chrY.TPM[[DS]], dl.chrY.TPM[[DS]]$GA), function(DT){
my.GA<-DT[,.N,GA]$GA
cm1<-caret::confusionMatrix(DT[Type=="HiSat2+Salmon"][["Predicted Sex"]], reference=DT[Type=="HiSat2+Salmon"][["Sex"]])
cm2<-caret::confusionMatrix(DT[Type=="Salmon (SA mode)"][["Predicted Sex"]], reference=DT[Type=="Salmon (SA mode)"][["Sex"]])
rbind(
data.table(DS=DS, GA=my.GA,Type="HiSat2+Salmon", Measure=names(cm1$byClass), Value=cm1$byClass),
data.table(DS=DS, GA=my.GA,Type="Salmon (SA mode)", Measure=names(cm2$byClass), Value=cm2$byClass)
)[Measure %in% c("F1","Precision", "Recall")]
}) %>% rbindlist
}) %>% rbindlist
dt.chrY.con.ga$DS<-factor(dt.chrY.con.ga$DS, level=c("1M","5M","10M"))
dt.chrY.con.ga[,GA:=gsub(" weeks","wk",GA)]
setnames(dt.chrY.con.ga, "Type", "Method")
p1.chrY.con<-ggplot(dt.chrY.con.ga, aes(Method,Value)) +
geom_rect(data = dt.chrY.con.ga[DS=="5M"],fill="grey60",xmin = -Inf,xmax = Inf, ymin = -Inf,ymax = Inf,alpha = 0.2) +
geom_bar(aes(fill=Method), stat="identity",width=.5, alpha=.7) +
ggsci::scale_fill_jama() +
facet_grid(Measure~DS+GA,scales="free") +
labs(y="Score") +
theme_Publication() +
theme(legend.position="none",
panel.border=element_rect(colour="black"),
axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank())
# merge SI.Fig1A + SI.Fig1B
pdf(file="Figures/Suppl/cfRNA.Suppl.Text.Fig1AB.pdf", width=11, height=14, title="Abundance of chrY")
cowplot::plot_grid(p1.chrY, p1.chrY.con, labels="AUTO", ncol=1, label_size=27, align="v", axis="l")
dev.off()
```
## Supplementary Text Figure C {#sec-si-figure-c}
![](static/figure/cfRNA.SI.FigC.png)
```{r }
#| label: fig-si-c
#| eval: false
# load the transcript definition used in Salmon (SA)
load("RData/gr.ensg.Homo_sapiens.GRCh38.88.cdna.all.ncrna.fa.gz.RData") %>% system.time # isa GRanges
gr.ensg[seqnames(gr.ensg)=="Y" & gr.ensg$gene_biotype=="protein_coding",] # chrY protein-coding; n=42
this.gene<-(gr.ensg[seqnames(gr.ensg)=="Y" & gr.ensg$gene_biotype=="protein_coding",] %>% names) # chrY protein-coding; n=42 (without the training version e.g. ENSG00000176679)
# load the TPM based om 10M-ds dataset
load("RData/li.TPM.10M.RData")
li.TPM[["Salmon_aln"]][["TPM"]] %>% dim # 62803 genes x 100 samples
## Heatamp of TPM using `HiSat2+Salmon` (based on 10M)
li.TPM[["Salmon_aln"]][["counts"]][this.gene,] %>% rowSums %>% sort %>% rev # count of 42 chrY genes
filter.g2<-li.TPM[["Salmon_aln"]][["counts"]][this.gene,] %>% rowSums %>% sort %>% rev >0 # filter for 42 chrY genes with TPM >0
this.gene2<-(li.TPM[["Salmon_aln"]][["counts"]][this.gene,] %>% rowSums %>% sort %>% rev)[filter.g2] %>% names # n=24 genes
this.sample2<-li.TPM[["Salmon_aln"]][["counts"]][this.gene,] %>% colSums %>% sort %>% rev %>% names # n=100 samples sorted
filter.s2<-li.TPM[["Salmon_aln"]][["counts"]][this.gene2,] %>% colSums %>% sort %>% rev >0 # filter for samples with TPM >0
predicted.male2<-(li.TPM[["Salmon_aln"]][["counts"]][this.gene,] %>% colSums %>% sort %>% rev)[filter.s2] %>% names # n=60 samples
my.mat2<-log2(li.TPM[["Salmon_aln"]][["counts"]][this.gene2,this.sample2]+1)
rownames(my.mat2)<-gr.ensg[this.gene2]$gene_name
col.anno<-mat.samples[this.sample2,c("GA","Sex"),drop=F] # isa `data.frame`
col.anno$"Predicted Sex"<-ifelse(this.sample2 %in% predicted.male2,"Male","Female")
col.anno<-col.anno[,c("Predicted Sex","Sex","GA")]
GA.color<-ggsci::pal_jama("default",alpha=.9)(4)
names(GA.color)<-c("12wk","20wk","28wk","36wk")
my.color=list(
`Sex`=c(Female="hotpink",Male='skyblue'),
`Predicted Sex`=c(Female="hotpink3",Male='skyblue3'),
#`GA`=c("12wk"=cbPalette2[1],"20wk"=cbPalette2[2],"28wk"=cbPalette2[3],"36wk"=cbPalette2[4])
`GA`=GA.color
)
cph1<-ComplexHeatmap::pheatmap(my.mat2,
annotation_col=col.anno,
annotation_colors=my.color,
cluster_cols=F,
cluster_rows=F,
show_colnames=F,
border_color=NA,
fontsize=12,
name="log2(count)",
row_title="\nHiSat2+Salmon",
row_title_gp = gpar(fontsize = 20),
)
filter.g3<-li.TPM[["Salmon"]][["counts"]][this.gene,] %>% rowSums %>% sort %>% rev >0 # filter for 42 chrY genes with count >0
this.gene3<-(li.TPM[["Salmon"]][["counts"]][this.gene,] %>% rowSums %>% sort %>% rev)[filter.g3] %>% names # n=16 genes (out of 42) >0 count
this.sample3<-li.TPM[["Salmon"]][["counts"]][this.gene,] %>% colSums %>% sort %>% rev %>% names # 100 sample names
filter.s3<-li.TPM[["Salmon"]][["counts"]][this.gene3,] %>% colSums %>% sort %>% rev >0 # samples with count>0
#(li.TPM[["Salmon"]][["counts"]][this.gene,] %>% colSums %>% sort %>% rev)[filter.s3] # n=38 samples with count>0 (predicted as Male)
predicted.male3<-(li.TPM[["Salmon"]][["counts"]][this.gene,] %>% colSums %>% sort %>% rev)[filter.s3] %>% names # n=38 samples with count>0 (predicted as Male)
my.mat3<-log2(li.TPM[["Salmon"]][["counts"]][this.gene3,this.sample3]+1)
rownames(my.mat3)<-gr.ensg[this.gene3]$gene_name
col.anno3<-mat.samples[this.sample3,c("GA","Sex"),drop=F]
col.anno3$"Predicted Sex"<-ifelse(this.sample3 %in% predicted.male3,"Male","Female")
col.anno3<-col.anno3[,c("Predicted Sex","Sex","GA")]
# via ComplexHeatmap
cph3<-ComplexHeatmap::pheatmap(my.mat3,
annotation_col=col.anno3,
annotation_colors=my.color,
cluster_cols=F,
cluster_rows=F,
show_colnames=F,
border_color=NA,
fontsize=12,
name="log2(count)",
row_title="\nSalmon (SA mode)",
row_title_gp = gpar(fontsize = 20),
heatmap_legend_param = list(
title_gp=gpar(fontsize=13,fontface="bold"),
labels_gp=gpar(fontsize=11),
annotation_legend_param = list(title_gp=gpar(fontsize=13,fontface="bold"),labels_gp = gpar(fontsize = 11))
)
)
pdf(file="Figures/Suppl/cfRNA.Suppl.Text.Fig1C.pdf", width=11, height=14, title="Abundance of chrY")
draw(cph1 %v% cph3, main_heatmap="log2(count)", ht_gap=unit(.7,"cm"), auto_adjust=F)
grid.text(label="C",gp=gpar(fontsize=27,fontface="bold"),x=0.02,y=.99,just="top")
dev.off()
```
## Supplementary Text Figure D {#sec-si-figure-d}
![](static/figure/cfRNA.SI.FigD.png)
```{r }
#| label: fig-si-d
#| eval: false
dl.chrY.TPM %>% names
# load the TPM based om 10M-ds dataset
load("RData/li.TPM.10M.trim.RData")
li.TPM[["Salmon"]][["TPM"]] %>% dim # 59354 genes x 100 samples
dt.trim.10M<-data.table(
`Type`="Salmon (SA mode)",
`SampleID`=li.TPM[["Salmon"]][["counts"]][this.gene,] %>% colSums %>% names,
`Counts`=li.TPM[["Salmon"]][["counts"]][this.gene,] %>% colSums,
`TPM`=li.TPM[["Salmon"]][["TPM"]][this.gene,] %>% colSums
)
# add Sex and GA
dt.trim.10M<-merge(dt.trim.10M, dt.samples[,.(SampleID,GA,Sex,pn_female)])
dt.trim.10M[,`Predicted Sex`:=ifelse(TPM>0, "Male","Female"),Type]
dt.trim.10M$Sex<-factor(dt.trim.10M$Sex, level=c("Male","Female"))
dt.trim.10M$`Predicted Sex`<-factor(dt.trim.10M$`Predicted Sex`, level=c("Male","Female"))
dt.chrY.trim<-rbind(
dl.chrY.TPM[["10M"]][Type=="Salmon (SA mode)"][,Trim:="No"],
dt.trim.10M[,Trim:="Yes"]
)
## Number of false positives: chrY signal detected from females
dt.chrY.trim[,.(Trim,Sex,`Predicted Sex`)] %>% ftable
##
## Read counts by trim or not
dt.bar<-merge(
dl.chrY.TPM[["10M"]][Type=="Salmon (SA mode)",.(SampleID,GA=gsub(" weeks","wk",GA),Sex,Counts,TPM)], # no-trim
dt.trim.10M[Type=="Salmon (SA mode)",.(SampleID,GA,Sex,Counts,TPM)], # trim
by=c("SampleID","Sex","GA")
)
cor.test(~Counts.x + Counts.y, dt.bar)
dt.bar[Counts.x>Counts.y] # no-trim > trim
dt.bar[Counts.x<Counts.y] # no-trim < trim
dt.bar[Sex=="Female" & Counts.x<Counts.y] # more counts for Trimmed Salmon
my.limit<-dt.bar[,max(Counts.x,Counts.y)] %>% ceiling
p1.chrY.trim<-ggplot(dt.bar, aes(Counts.x+1,Counts.y+1)) +
geom_point(data=dt.bar, size=5, position=position_jitter(width=0.2,height=0.2),shape=21) +
scale_x_continuous(trans = scales::log2_trans(),
breaks = scales::trans_breaks("log2",function(x) 2^x),
labels = scales::trans_format("log2", math_format(2^.x)),
limits=c(.5,my.limit*2)) +
scale_y_continuous(trans = scales::log2_trans(),
breaks = scales::trans_breaks("log2",function(x) 2^x),
labels = scales::trans_format("log2", math_format(2^.x)),
limits=c(.5,my.limit*2)) +
#coord_fixed() +
facet_grid(Sex~GA,scales="free_x") +
labs(x="Sum of read count (No trimmed reads)", y="Sum of read count (trimmed reads)") +
theme_Publication() + theme(panel.border = element_rect(colour = "black"))
pdf(file="Figures/Suppl/cfRNA.Suppl.Text.Fig1D.v2.pdf", width=11, height=7, title="Trim vs No trim")
cowplot::plot_grid(p1.chrY.trim, labels=c("D"),label_size=27)
dev.off()
```