forked from facebookresearch/LASER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
426 lines (370 loc) · 14.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#!/usr/bin/python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
import logging
import os
import re
import sys
import warnings
from collections import namedtuple
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
from fairseq.data.dictionary import Dictionary
from fairseq.models.transformer import Embedding, TransformerEncoder
from fairseq.modules import LayerNorm
from laser_encoders.download_models import LaserModelDownloader
from laser_encoders.language_list import LASER2_LANGUAGE, LASER3_LANGUAGE
from laser_encoders.laser_tokenizer import LaserTokenizer, initialize_tokenizer
SPACE_NORMALIZER = re.compile(r"\s+")
Batch = namedtuple("Batch", "srcs tokens lengths")
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
)
logger = logging.getLogger("embed")
class SentenceEncoder:
def __init__(
self,
model_path,
max_sentences=None,
max_tokens=None,
spm_vocab=None,
spm_model=None,
cpu=False,
fp16=False,
verbose=False,
sort_kind="quicksort",
):
if verbose:
logger.info(f"loading encoder: {model_path}")
self.spm_model = spm_model
if self.spm_model:
self.tokenizer = LaserTokenizer(spm_model=Path(self.spm_model))
self.use_cuda = torch.cuda.is_available() and not cpu
self.max_sentences = max_sentences
self.max_tokens = max_tokens
if self.max_tokens is None and self.max_sentences is None:
self.max_sentences = 1
state_dict = torch.load(model_path)
if "params" in state_dict:
self.encoder = LaserLstmEncoder(**state_dict["params"])
self.encoder.load_state_dict(state_dict["model"])
self.dictionary = state_dict["dictionary"]
self.prepend_bos = False
self.left_padding = False
else:
self.encoder = LaserTransformerEncoder(state_dict, spm_vocab)
self.dictionary = self.encoder.dictionary.indices
self.prepend_bos = state_dict["cfg"]["model"].prepend_bos
self.left_padding = state_dict["cfg"]["model"].left_pad_source
del state_dict
self.bos_index = self.dictionary["<s>"] = 0
self.pad_index = self.dictionary["<pad>"] = 1
self.eos_index = self.dictionary["</s>"] = 2
self.unk_index = self.dictionary["<unk>"] = 3
if fp16:
self.encoder.half()
if self.use_cuda:
if verbose:
logger.info("transfer encoder to GPU")
self.encoder.cuda()
self.encoder.eval()
self.sort_kind = sort_kind
def __call__(self, text_or_batch):
if self.spm_model:
text_or_batch = self.tokenizer(text_or_batch)
if isinstance(text_or_batch, str):
text_or_batch = [text_or_batch]
return self.encode_sentences(text_or_batch)
else:
raise ValueError(
"Either initialize the encoder with an spm_model or pre-tokenize and use the encode_sentences method."
)
def _process_batch(self, batch):
tokens = batch.tokens
lengths = batch.lengths
if self.use_cuda:
tokens = tokens.cuda()
lengths = lengths.cuda()
with torch.no_grad():
sentemb = self.encoder(tokens, lengths)["sentemb"]
embeddings = sentemb.detach().cpu().numpy()
return embeddings
def _tokenize(self, line):
tokens = SPACE_NORMALIZER.sub(" ", line).strip().split()
ntokens = len(tokens)
if self.prepend_bos:
ids = torch.LongTensor(ntokens + 2)
ids[0] = self.bos_index
for i, token in enumerate(tokens):
ids[i + 1] = self.dictionary.get(token, self.unk_index)
ids[ntokens + 1] = self.eos_index
else:
ids = torch.LongTensor(ntokens + 1)
for i, token in enumerate(tokens):
ids[i] = self.dictionary.get(token, self.unk_index)
ids[ntokens] = self.eos_index
return ids
def _make_batches(self, lines):
tokens = [self._tokenize(line) for line in lines]
lengths = np.array([t.numel() for t in tokens])
indices = np.argsort(-lengths, kind=self.sort_kind)
def batch(tokens, lengths, indices):
toks = tokens[0].new_full((len(tokens), tokens[0].shape[0]), self.pad_index)
if not self.left_padding:
for i in range(len(tokens)):
toks[i, : tokens[i].shape[0]] = tokens[i]
else:
for i in range(len(tokens)):
toks[i, -tokens[i].shape[0] :] = tokens[i]
return (
Batch(srcs=None, tokens=toks, lengths=torch.LongTensor(lengths)),
indices,
)
batch_tokens, batch_lengths, batch_indices = [], [], []
ntokens = nsentences = 0
for i in indices:
if nsentences > 0 and (
(self.max_tokens is not None and ntokens + lengths[i] > self.max_tokens)
or (self.max_sentences is not None and nsentences == self.max_sentences)
):
yield batch(batch_tokens, batch_lengths, batch_indices)
ntokens = nsentences = 0
batch_tokens, batch_lengths, batch_indices = [], [], []
batch_tokens.append(tokens[i])
batch_lengths.append(lengths[i])
batch_indices.append(i)
ntokens += tokens[i].shape[0]
nsentences += 1
if nsentences > 0:
yield batch(batch_tokens, batch_lengths, batch_indices)
def encode_sentences(self, sentences, normalize_embeddings=False):
indices = []
results = []
for batch, batch_indices in self._make_batches(sentences):
indices.extend(batch_indices)
encoded_batch = self._process_batch(batch)
if normalize_embeddings:
# Perform L2 normalization on the embeddings
norms = np.linalg.norm(encoded_batch, axis=1, keepdims=True)
encoded_batch = encoded_batch / norms
results.append(encoded_batch)
return np.vstack(results)[np.argsort(indices, kind=self.sort_kind)]
class LaserTransformerEncoder(TransformerEncoder):
def __init__(self, state_dict, vocab_path):
self.dictionary = Dictionary.load(vocab_path)
if any(
k in state_dict["model"]
for k in ["encoder.layer_norm.weight", "layer_norm.weight"]
):
self.dictionary.add_symbol("<mask>")
cfg = state_dict["cfg"]["model"]
self.sentemb_criterion = cfg.sentemb_criterion
self.pad_idx = self.dictionary.pad_index
self.bos_idx = self.dictionary.bos_index
embed_tokens = Embedding(
len(self.dictionary),
cfg.encoder_embed_dim,
self.pad_idx,
)
super().__init__(cfg, self.dictionary, embed_tokens)
if "decoder.version" in state_dict["model"]:
self._remove_decoder_layers(state_dict)
if "layer_norm.weight" in state_dict["model"]:
self.layer_norm = LayerNorm(cfg.encoder_embed_dim)
self.load_state_dict(state_dict["model"])
def _remove_decoder_layers(self, state_dict):
for key in list(state_dict["model"].keys()):
if not key.startswith(
(
"encoder.layer_norm",
"encoder.layers",
"encoder.embed",
"encoder.version",
)
):
del state_dict["model"][key]
else:
renamed_key = key.replace("encoder.", "")
state_dict["model"][renamed_key] = state_dict["model"].pop(key)
def forward(self, src_tokens, src_lengths):
encoder_out = super().forward(src_tokens, src_lengths)
if isinstance(encoder_out, dict):
x = encoder_out["encoder_out"][0] # T x B x C
else:
x = encoder_out[0]
if self.sentemb_criterion == "cls":
cls_indices = src_tokens.eq(self.bos_idx).t()
sentemb = x[cls_indices, :]
else:
padding_mask = src_tokens.eq(self.pad_idx).t().unsqueeze(-1)
if padding_mask.any():
x = x.float().masked_fill_(padding_mask, float("-inf")).type_as(x)
sentemb = x.max(dim=0)[0]
return {"sentemb": sentemb}
class LaserLstmEncoder(nn.Module):
def __init__(
self,
num_embeddings,
padding_idx,
embed_dim=320,
hidden_size=512,
num_layers=1,
bidirectional=False,
left_pad=True,
padding_value=0.0,
):
super().__init__()
self.num_layers = num_layers
self.bidirectional = bidirectional
self.hidden_size = hidden_size
self.padding_idx = padding_idx
self.embed_tokens = nn.Embedding(
num_embeddings, embed_dim, padding_idx=self.padding_idx
)
self.lstm = nn.LSTM(
input_size=embed_dim,
hidden_size=hidden_size,
num_layers=num_layers,
bidirectional=bidirectional,
)
self.left_pad = left_pad
self.padding_value = padding_value
self.output_units = hidden_size
if bidirectional:
self.output_units *= 2
def forward(self, src_tokens, src_lengths):
bsz, seqlen = src_tokens.size()
# embed tokens
x = self.embed_tokens(src_tokens)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# pack embedded source tokens into a PackedSequence
packed_x = nn.utils.rnn.pack_padded_sequence(x, src_lengths.data.tolist())
# apply LSTM
if self.bidirectional:
state_size = 2 * self.num_layers, bsz, self.hidden_size
else:
state_size = self.num_layers, bsz, self.hidden_size
h0 = x.data.new(*state_size).zero_()
c0 = x.data.new(*state_size).zero_()
packed_outs, (final_hiddens, final_cells) = self.lstm(packed_x, (h0, c0))
# unpack outputs and apply dropout
x, _ = nn.utils.rnn.pad_packed_sequence(
packed_outs, padding_value=self.padding_value
)
assert list(x.size()) == [seqlen, bsz, self.output_units]
if self.bidirectional:
def combine_bidir(outs):
return torch.cat(
[
torch.cat([outs[2 * i], outs[2 * i + 1]], dim=0).view(
1, bsz, self.output_units
)
for i in range(self.num_layers)
],
dim=0,
)
final_hiddens = combine_bidir(final_hiddens)
final_cells = combine_bidir(final_cells)
encoder_padding_mask = src_tokens.eq(self.padding_idx).t()
# Set padded outputs to -inf so they are not selected by max-pooling
padding_mask = src_tokens.eq(self.padding_idx).t().unsqueeze(-1)
if padding_mask.any():
x = x.float().masked_fill_(padding_mask, float("-inf")).type_as(x)
# Build the sentence embedding by max-pooling over the encoder outputs
sentemb = x.max(dim=0)[0]
return {
"sentemb": sentemb,
"encoder_out": (x, final_hiddens, final_cells),
"encoder_padding_mask": encoder_padding_mask
if encoder_padding_mask.any()
else None,
}
def initialize_encoder(
lang: str = None,
model_dir: str = None,
spm: bool = True,
laser: str = None,
):
downloader = LaserModelDownloader(model_dir)
if laser is not None:
if laser == "laser3":
lang = downloader.get_language_code(LASER3_LANGUAGE, lang)
downloader.download_laser3(lang=lang, spm=spm)
file_path = f"laser3-{lang}.v1"
elif laser == "laser2":
downloader.download_laser2()
file_path = "laser2"
else:
raise ValueError(
f"Unsupported laser model: {laser}. Choose either laser2 or laser3."
)
else:
if lang in LASER3_LANGUAGE:
lang = downloader.get_language_code(LASER3_LANGUAGE, lang)
downloader.download_laser3(lang=lang, spm=spm)
file_path = f"laser3-{lang}.v1"
elif lang in LASER2_LANGUAGE:
downloader.download_laser2()
file_path = "laser2"
else:
raise ValueError(
f"Unsupported language name: {lang}. Please specify a supported language name."
)
model_dir = downloader.model_dir
model_path = os.path.join(model_dir, f"{file_path}.pt")
spm_vocab = os.path.join(model_dir, f"{file_path}.cvocab")
if not os.path.exists(spm_vocab):
# if there is no cvocab for the laser3 lang use laser2 cvocab
spm_vocab = os.path.join(model_dir, "laser2.cvocab")
return SentenceEncoder(model_path=model_path, spm_vocab=spm_vocab, spm_model=None)
class LaserEncoderPipeline:
def __init__(
self,
lang: str = None,
model_dir: str = None,
spm: bool = True,
laser: str = None,
):
if laser == "laser2" and lang is not None:
warnings.warn(
"Warning: The 'lang' parameter is optional when using 'laser2'. It will be ignored."
)
if laser == "laser3" and lang is None:
raise ValueError("For 'laser3', the 'lang' parameter is required.")
if laser is None and lang is None:
raise ValueError("Either 'laser' or 'lang' should be provided.")
self.tokenizer = initialize_tokenizer(
lang=lang, model_dir=model_dir, laser=laser
)
self.encoder = initialize_encoder(
lang=lang, model_dir=model_dir, spm=spm, laser=laser
)
def encode_sentences(
self, sentences: list, normalize_embeddings: bool = False
) -> list:
"""
Tokenizes and encodes a list of sentences.
Args:
- sentences (list of str): List of sentences to tokenize and encode.
Returns:
- List of embeddings for each sentence.
"""
tokenized_sentences = [
self.tokenizer.tokenize(sentence) for sentence in sentences
]
return self.encoder.encode_sentences(tokenized_sentences, normalize_embeddings)