forked from borglab/gtsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SFMExample_SmartFactorPCG.cpp
125 lines (99 loc) · 4.56 KB
/
SFMExample_SmartFactorPCG.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SFMExample_SmartFactorPCG.cpp
* @brief Version of SFMExample_SmartFactor that uses Preconditioned Conjugate Gradient
* @author Frank Dellaert
*/
// For an explanation of these headers, see SFMExample_SmartFactor.cpp
#include "SFMdata.h"
#include <gtsam/slam/SmartProjectionPoseFactor.h>
// These extra headers allow us a LM outer loop with PCG linear solver (inner loop)
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/linear/Preconditioner.h>
#include <gtsam/linear/PCGSolver.h>
using namespace std;
using namespace gtsam;
// Make the typename short so it looks much cleaner
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
// create a typedef to the camera type
typedef PinholePose<Cal3_S2> Camera;
/* ************************************************************************* */
int main(int argc, char* argv[]) {
// Define the camera calibration parameters
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
// Define the camera observation noise model
auto measurementNoise =
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
// Create the set of ground-truth landmarks and poses
vector<Point3> points = createPoints();
vector<Pose3> poses = createPoses();
// Create a factor graph
NonlinearFactorGraph graph;
// Simulated measurements from each camera pose, adding them to the factor graph
for (size_t j = 0; j < points.size(); ++j) {
// every landmark represent a single landmark, we use shared pointer to init
// the factor, and then insert measurements.
SmartFactor::shared_ptr smartfactor(new SmartFactor(measurementNoise, K));
for (size_t i = 0; i < poses.size(); ++i) {
// generate the 2D measurement
Camera camera(poses[i], K);
Point2 measurement = camera.project(points[j]);
// call add() function to add measurement into a single factor
smartfactor->add(measurement, i);
}
// insert the smart factor in the graph
graph.push_back(smartfactor);
}
// Add a prior on pose x0. This indirectly specifies where the origin is.
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
auto noise = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
graph.addPrior(0, poses[0], noise);
// Fix the scale ambiguity by adding a prior
graph.addPrior(1, poses[0], noise);
// Create the initial estimate to the solution
Values initialEstimate;
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
for (size_t i = 0; i < poses.size(); ++i)
initialEstimate.insert(i, poses[i].compose(delta));
// We will use LM in the outer optimization loop, but by specifying
// "Iterative" below We indicate that an iterative linear solver should be
// used. In addition, the *type* of the iterativeParams decides on the type of
// iterative solver, in this case the SPCG (subgraph PCG)
LevenbergMarquardtParams parameters;
parameters.linearSolverType = NonlinearOptimizerParams::Iterative;
parameters.absoluteErrorTol = 1e-10;
parameters.relativeErrorTol = 1e-10;
parameters.maxIterations = 500;
PCGSolverParameters::shared_ptr pcg =
std::make_shared<PCGSolverParameters>();
pcg->preconditioner = std::make_shared<BlockJacobiPreconditionerParameters>();
// Following is crucial:
pcg->epsilon_abs = 1e-10;
pcg->epsilon_rel = 1e-10;
parameters.iterativeParams = pcg;
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters);
Values result = optimizer.optimize();
// Display result as in SFMExample_SmartFactor.run
result.print("Final results:\n");
Values landmark_result;
for (size_t j = 0; j < points.size(); ++j) {
auto smart = std::dynamic_pointer_cast<SmartFactor>(graph[j]);
if (smart) {
std::optional<Point3> point = smart->point(result);
if (point) // ignore if std::optional return nullptr
landmark_result.insert(j, *point);
}
}
landmark_result.print("Landmark results:\n");
cout << "final error: " << graph.error(result) << endl;
cout << "number of iterations: " << optimizer.iterations() << endl;
return 0;
}
/* ************************************************************************* */