forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
123 lines (118 loc) · 4.1 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
Collections:
- Name: Deformable Convolutional Networks v2
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- Deformable Convolution
Paper:
URL: https://arxiv.org/abs/1811.11168
Title: "Deformable ConvNets v2: More Deformable, Better Results"
README: configs/dcnv2/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/ops/dcn/deform_conv.py#L15
Version: v2.0.0
Models:
- Name: faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco
In Collection: Deformable Convolutional Networks v2
Config: configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
Metadata:
Training Memory (GB): 4.1
inference time (ms/im):
- value: 56.82
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco_20200130-d099253b.pth
- Name: faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco
In Collection: Deformable Convolutional Networks v2
Config: configs/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco.py
Metadata:
Training Memory (GB): 4.2
inference time (ms/im):
- value: 57.47
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco_20200130-01262257.pth
- Name: faster_rcnn_r50_fpn_mdpool_1x_coco
In Collection: Deformable Convolutional Networks v2
Config: configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py
Metadata:
Training Memory (GB): 5.8
inference time (ms/im):
- value: 60.24
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco/faster_rcnn_r50_fpn_mdpool_1x_coco_20200307-c0df27ff.pth
- Name: mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco
In Collection: Deformable Convolutional Networks v2
Config: configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
Metadata:
Training Memory (GB): 4.5
inference time (ms/im):
- value: 66.23
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.5
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco_20200203-ad97591f.pth
- Name: mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco
In Collection: Deformable Convolutional Networks v2
Config: configs/dcn/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco.py
Metadata:
Training Memory (GB): 3.1
Training Techniques:
- SGD with Momentum
- Weight Decay
- Mixed Precision Training
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco_20210520_180434-cf8fefa5.pth