diff --git a/dist/pixpipe.js b/dist/pixpipe.js index 7cdce1a..7a809de 100644 --- a/dist/pixpipe.js +++ b/dist/pixpipe.js @@ -65,7 +65,7 @@ class PixpipeObject { /** * Return a copy of the uuid */ - get uuid(){ + getUuid(){ return this._uuid.slice(); } @@ -110,6 +110,33 @@ class PixpipeObject { } + /** + * @return {Array} of Strings where each is a key of an existing metadata record + */ + getMetadataKeys(){ + return Object.keys( this._metadata ); + } + + + /** + * Copy all the metadata from the object in argument to this. + * A deep copy by serialization is perform. + * The metadata that exist only in _this_ are kept. + * @param {PixpipeObject} otherObject - the object to copy metadata from + */ + copyMetadataFrom( otherObject ){ + var that = this; + + otherObject.getMetadataKeys().forEach( function(key){ + try{ + var metadataObjectCopy = JSON.parse( JSON.stringify( otherObject.getMetadata(key) ) ); + that.setMetadata(key, metadataObjectCopy); + }catch(e){ + console.error(e); + } + }); + } + } /* @@ -252,6 +279,9 @@ class Pipeline extends PixpipeObject { * Every filter has a addInput(), a getOutput() and a update() methods. * Every input and output can be arranged by category, so that internaly, a filter * can use and output diferent kind of data. +* +* usage: examples/fileToArrayBuffer.html +* */ class Filter extends PipelineElement { @@ -326,6 +356,24 @@ class Filter extends PipelineElement { } + /** + * Perform an action for each output. + * @param {function} cb - callback function called for evey single output + * with 2 args: the output category and the outpub object. + */ + forEachOutput( cb ){ + if(!cb){ + console.warn("forEachOutput requires a callback."); + return; + } + var outputCategories = this.getOutputCategories(); + + for(var o=0; o 0 && options.height > 0){ - this._width = options.width; - this._height = options.height; + this.setMetadata("width", options.width); + this.setMetadata("height", options.height); if("color" in options){ - this._componentsPerPixel = options.color.length; + this.setMetadata("ncpp", options.color.length ); } - this._data = new Float32Array( this._width * this._height * this._componentsPerPixel ); + this._data = new Float32Array( options.width * options.height * this.getMetadata("ncpp") ); + var ncpp = this.getMetadata("ncpp"); // init with the given color if("color" in options){ var color = options.color; for(var i=0; i=0 && position.x < this._width && - "y" in position && position.y >=0 && position.y < this._height && - color.length == this._componentsPerPixel) + var ncpp = this.getMetadata("ncpp"); + + if("x" in position && position.x >=0 && position.x < this.getMetadata("width") && + "y" in position && position.y >=0 && position.y < this.getMetadata("height") && + color.length == ncpp) { - var pos1D = this.get1dIndexFrom2dPosition( position ); + var pos1D = this.get1dIndexFrom2dPosition( position ) * ncpp; - for(var i=0; i=0 && position.x < this._width && - "y" in position && position.y >=0 && position.y < this._height) + if("x" in position && position.x >=0 && position.x < this.getMetadata("width") && + "y" in position && position.y >=0 && position.y < this.getMetadata("height")) { - var pos1D = this.get1dIndexFrom2dPosition( position ); - var color = this._data.slice(pos1D, pos1D + this._componentsPerPixel); + var pos1D = this.get1dIndexFrom2dPosition( position ) * this.getMetadata("ncpp"); + var color = this._data.slice(pos1D, pos1D + this.getMetadata("ncpp")); return color; }else{ @@ -720,7 +772,7 @@ class Image2D extends PipelineElement{ * @return {Number} the width of the Image2D */ getWidth(){ - return this._width; + return this.getMetadata("width"); } @@ -728,7 +780,7 @@ class Image2D extends PipelineElement{ * @return {Number} the height of the Image2D */ getHeight(){ - return this._height; + return this.getMetadata("height"); } @@ -736,7 +788,7 @@ class Image2D extends PipelineElement{ * @return {Number} the number of components per pixel */ getComponentsPerPixel(){ - return this._componentsPerPixel; + return this.getMetadata("ncpp"); } @@ -766,8 +818,8 @@ class Image2D extends PipelineElement{ */ get2dPositionFrom1dIndex( i ){ return { - x: i % this._width, - y: Math.floor(i / this._width) + x: i % this.getMetadata("width"), + y: Math.floor(i / this.getMetadata("width")) } } @@ -779,7 +831,7 @@ class Image2D extends PipelineElement{ * @return {Number} the 1D position within the buffer */ get1dIndexFrom2dPosition( position ){ - return (position.x + position.y*this._width); + return (position.x + position.y*this.getMetadata("width")); } @@ -799,6 +851,450 @@ class Image2D extends PipelineElement{ * Lab MCIN - Montreal Neurological Institute */ +/** +* Image3D class is one of the few base element of Pixpipejs. +* It is always considered to be 4 channels (RGBA) and stored as a Float32Array +* typed array. +*/ +class Image3D extends PipelineElement{ + + + /** + * Constructor of an Image3D instance. If no options, no array is allocated. + * @param {Object} options - may contain the following: + * - options.xSize {Number} space length along x axis + * - options.ySize {Number} space length along y axis + * - option.zSize {Number} space length along z axis + * - options.ncpp {Number} number of components per pixel. Default = 1 + * - options.order {Array} dimensionality order. default = ["zspace", "yspace", "xspace"] + */ + constructor( options=null ){ + super(); + this._type = Image3D.TYPE(); + + // a rgba stored in a Float32Array (typed array) + this._data = null; + + // number of component per pixel, for color OR time series + this.setMetadata("ncpp", 1); + + // dimensionality order + if(options && "order" in options){ + this.setMetadata("order", options.order); + }else{ + this.setMetadata("order", ["zspace", "yspace", "xspace"]); + } + + var xspace = { + offset: 1, + step: 1 + }; + + var yspace = { + step: 1 + }; + + var zspace = { + step: 1 + }; + + this.setMetadata("xspace", xspace); + this.setMetadata("yspace", yspace); + this.setMetadata("zspace", zspace); + + // replacing default value for ncpp + if(options && "ncpp" in options){ + this.setMetadata("ncpp", options.ncpp); + } + + // allocate the array if size is specified + if(options && "xSize" in options && "ySize" in options && "zSize" in options){ + + if( options.xSize > 0 && options.ySize > 0 && options.zSize > 0 ){ + xspace.space_length = options.xSize; + yspace.space_length = options.ySize; + zspace.space_length = options.zSize; + + yspace.offset = xspace.space_length; + zspace.offset = xspace.space_length * yspace.space_length; + + this._data = new Float32Array( options.xSize * options.ySize * options.zSize * this.getMetadata("ncpp") ); + this._data.fill(0); + + this._scanDataRange(); + this._finishHeader(); + } + } + } + + + /** + * Hardcode the datatype + */ + static TYPE(){ + return "Image3D"; + } + + + /** + * @return {Image3D} a deep copy instance of this Image3D + */ + clone(){ + var cpImg = new Image3D(); + + cpImg.setData( + this._data, + this.getMetadata("xspace").space_length, + this.getMetadata("yspace").space_length, + this.getMetadata("zspace").space_length, + { + ncpp: this.getMetadata("ncpp"), + order: this.getMetadata("order").slice(), + deepCopy: true, + } + ); + + cpImg.copyMetadataFrom( this ); + + return cpImg; + } + + + /** + * Set the data to this Image3D. + * @param {Float32Array} array - 1D array of raw data stored as RGBARGBA... + * @param {Number} xSize - length along x dimension of the Image3D + * @param {Number} ySize - length along y dimension of the Image3D + * @param {Number} zSize - length along z dimension of the Image3D + * @param {Number} ncpp - number of components per pixel (default: 4) + * @param {Boolean} deepCopy - if true, a copy of the data is given, if false we jsut give the pointer + * @param {Object} options, among them: + * - ncpp {Number} number of components per pixel. Default = 1 + * - order {Array} dimensionality order. Default = ["zspace", "yspace", "xspace"] + * - deepCopy {Boolean} copy the whole array if true, or just the pointer if false. Default = false + * + */ + setData( array, xSize, ySize, zSize, options){ + var ncpp = 1; + + // number of components per pixel + if(options && "ncpp" in options){ + ncpp = options.ncpp; + } + + if( array.length != xSize*ySize*zSize*ncpp){ + console.warn("The array size does not match the width and height. Cannot init the Image3D."); + return; + } + + // number of components per pixel + if(options && "ncpp" in options){ + this.setMetadata("ncpp", options.ncpp); + } + + // dimensionality order + if(options && "order" in options){ + this.setMetadata("order", options.order); + } + + // deep of shallow copy + if(options && "deepCopy" in options && options.deepCopy){ + this._data = array.slice(); + }else{ + this._data = array; + } + + var xspace = this.getMetadata("xspace"); + var yspace = this.getMetadata("yspace"); + var zspace = this.getMetadata("zspace"); + + xspace.space_length = xSize; + yspace.space_length = ySize; + zspace.space_length = zSize; + + yspace.offset = xspace.space_length; + zspace.offset = xspace.space_length * yspace.space_length; + + this._scanDataRange(); + this._finishHeader(); + } + + + /** + * [PRIVATE] + * Creates common fields all headers must contain. + */ + _finishHeader() { + var xspace = this.getMetadata("xspace"); + var yspace = this.getMetadata("yspace"); + var zspace = this.getMetadata("zspace"); + + xspace.name = "xspace"; + yspace.name = "yspace"; + zspace.name = "zspace"; + + xspace.width_space = JSON.parse( JSON.stringify( yspace ) );//yspace; + xspace.width = yspace.space_length; + xspace.height_space = JSON.parse( JSON.stringify( zspace ) );//zspace; + xspace.height = zspace.space_length; + + yspace.width_space = JSON.parse( JSON.stringify( xspace ) );//xspace; + yspace.width = xspace.space_length; + yspace.height_space = JSON.parse( JSON.stringify( zspace ) );//zspace; + yspace.height = zspace.space_length; + + zspace.width_space = JSON.parse( JSON.stringify( xspace ) );//xspace; + zspace.width = xspace.space_length; + zspace.height_space = JSON.parse( JSON.stringify( yspace ) );//yspace; + zspace.height = yspace.space_length; + } + + + /** + * [PRIVATE] + * Look for min and max on the dataset and add them to the header metadata + */ + _scanDataRange(){ + var min = +Infinity; + var max = -Infinity; + + this._data.forEach( function(value){ + min = Math.min(min, value); + max = Math.max(max, value); + }); + + this.setMetadata("voxel_min", min); + this.setMetadata("voxel_max", max); + } + + + /** + * Modify the color of a given pixel. + * @param {Object} position - 3D position in the form {x, y, z} + * @param {Array} color - color, must have the same number of components per pixel than the image + */ + setPixel( position, color ){ + // TODO: to implement using order offset + } + + + /** + * @param {Object} position - 3D position like {x, y, z} + * @return {Array} the color of the given pixel. + */ + getPixel( position ){ + // TODO: to implement using order offset + } + + + /** + * @param {String} space - "xspace", "yspace" or "zspace" + * @return {Number} the size of the Image3D along the given space + */ + getSize( space ){ + if( this.hasMetadata( space )){ + return this.getMetadata( space ).space_length; + }else{ + console.warn("The space must be \"xspace\", \"yspace\" or \"zspace\"."); + return null; + } + } + + + /** + * @return {Float32Array} the original data, dont mess up with this one. + * in case of doubt, use getDataCopy() + */ + getData(){ + //return this._data.slice(); // return a copy + return this._data; // return the actual array, editable! + } + + + /** + * @return {Float32Array} a deep copy of the data + */ + getDataCopy(){ + return this._data.slice(); + } + + + /** + * Compute the 1D index within the data buffer from a 3D position {x, y, z}. + * This has nothing to do with the number of components per pixel. + * @param {Object} position - 3D coord like {x, y, z} + * @return {Number} the 1D position within the buffer + */ + get1dIndexFrom3dPosition( position ){ + //return (position.x + position.y*this._width); + //return this._xSize * this._ySize * position.z + this._xSize * position.y + position.x; + // TODO: to implement using order offset + } + + + /** + * [PRIVATE] + * Return a slice from the minc cube as a 1D typed array, + * along with some relative data (slice size, step, etc.) + * args: + * @param {String} axis - "xspace", "yspace" or zspace (mandatory) + * @param {Number} slice_num - index of the slice [0; length-1] (optional, default: length-1) + * @param {Number} time - index of time (optional, default: 0) + * TODO: add some method to a slice (get value) because it's a 1D array... and compare with Python + */ + getSlice(axis, slice_num = 0, time = 0) { + if( !this.hasMetadata(axis) ){ + console.warn("The axis " + axis + " does not exist."); + return null; + } + + var time_offset = this.hasMetadata("time") ? time * this.getMetadata("time").offset : 0; + + var axis_space = this.getMetadata(axis); + var width_space = axis_space.width_space; + var height_space = axis_space.height_space; + + var width = axis_space.width; + var height = axis_space.height; + + var axis_space_offset = axis_space.offset; + var width_space_offset = width_space.offset; + var height_space_offset = height_space.offset; + + // Calling the volume data's constructor guarantees that the + // slice data buffer has the same type as the volume. + // + //var slice_data = new this._data.constructor(width * height); + var slice_data = new this._data.constructor(width * height); + + // Rows and colums of the result slice. + var row, col; + + // Indexes into the volume, relative to the slice. + // NOT xspace, yspace, zspace coordinates!!! + var x, y, z; + + // Linear offsets into volume considering an + // increasing number of axes: (t) time, + // (z) z-axis, (y) y-axis, (x) x-axis. + var tz_offset, tzy_offset, tzyx_offset; + + // Whether the dimension steps positively or negatively. + var x_positive = width_space.step > 0; + var y_positive = height_space.step > 0; + var z_positive = axis_space.step > 0; + + // iterator for the result slice. + var i = 0; + var intensity = 0; + var intensitySum = 0; + var min = Infinity; + var max = -Infinity; + + var maxOfVolume = this.getMetadata("voxel_max"); + + z = z_positive ? slice_num : axis_space.space_length - slice_num - 1; + if (z >= 0 && z < axis_space.space_length) { + tz_offset = time_offset + z * axis_space_offset; + + for (row = height - 1; row >= 0; row--) { + y = y_positive ? row : height - row - 1; + tzy_offset = tz_offset + y * height_space_offset; + + for (col = 0; col < width; col++) { + x = x_positive ? col : width - col - 1; + tzyx_offset = tzy_offset + x * width_space_offset; + + intensity = this._data[tzyx_offset]; + + min = Math.min(min, intensity); + max = Math.max(max, intensity); + intensitySum += intensity; + + slice_data[i++] = intensity; + } + } + } + + var outputImage = new Image2D(); + outputImage.setData( slice_data, width, height, 1); + outputImage.setMetadata("min", min); + outputImage.setMetadata("max", max); + outputImage.setMetadata("avg", intensitySum / (i-1) ); + return outputImage; + + } + + + /** + * Get the intensity of a given voxel, addressed by dimensionality order. + * In case of doubt, use getIntensity_xyz instead. + * @param {Number} i - Position within the biggest dimensionality order + * @param {Number} j - Position within the in-the-middle dimensionality order + * @param {Number} k - Position within the smallest dimensionality order + */ + getIntensity_ijk(i, j, k, time = 0) { + var order = this.getMetadata("order"); + + if (i < 0 || i >= this.getMetadata( order[0] ).space_length || + j < 0 || j >= this.getMetadata( order[1] ).space_length || + k < 0 || k >= this.getMetadata( order[2] ).space_length) + { + console.warn("getIntensity_ijk position is out of range."); + return 0; + } + + var time_offset = this.hasMetadata( "time" ) ? time * this.getMetadata( "time" ).offset : 0; + + var xyzt_offset = ( + i * this.getMetadata( order[0] ).offset + + j * this.getMetadata( order[1] ).offset + + k * this.getMetadata( order[2] ).offset + + time_offset); + + return this._data[xyzt_offset]; + } + + + /** + * Get the intensity of a given voxel, addressed by dimension names. + * @param {Number} x - position within xspace + * @param {Number} y - position within yspace + * @param {Number} z - position within zspace + * @param {Number} time - position in time (optional) + */ + getIntensity_xyz(x, y, z, time = 0) { + var order = this.getMetadata("order"); + + if (x < 0 || x >= this.getMetadata( "xspace" ).space_length || + y < 0 || y >= this.getMetadata( "yspace" ).space_length || + z < 0 || z >= this.getMetadata( "zspace" ).space_length) + { + console.warn("getIntensity_xyz position is out of range."); + return 0; + } + + var time_offset = this.hasMetadata( "time" ) ? time * this.getMetadata( "time" ).offset : 0; + + var xyzt_offset = ( + x * this.getMetadata( "xspace" ).offset + + y * this.getMetadata( "yspace" ).offset + + z * this.getMetadata( "zspace" ).offset + + time_offset); + + return this._data[xyzt_offset]; + } + + +} /* END of class Image3D */ + +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ + /** * ImageToImageFilter is not to be used as-is but rather as a base class for any * filter that input a single Image2D and output a single Image2D. @@ -941,20 +1437,241 @@ class PixelWiseImageFilter extends ImageToImageFilter{ */ /** -* CanvasImageWriter is a filter to output an instance of Image into a -* HTML5 canvas element. -* The metadata "parentDivID" has to be set using `setMetadata("parentDivID", "whatever")` -* The metadata "alpha", if true, enable transparency. Default: false. -* usage: examples/imageToCanvasFilter.html -* -* @example -// create an image -* var myImage = new pixpipe.Image2D({width: 100, height: 250, color: [255, 128, 64, 255]}) -* -* // create a filter to write the image into a canvas -* var imageToCanvasFilter = new pixpipe.CanvasImageWriter( "myDiv" ); -* imageToCanvasFilter.addInput( myImage ); -* imageToCanvasFilter.update(); +* MniVolume instance are like Image3D but include some brain things +*/ +class MniVolume extends Image3D{ + + + /** + * Constructor of an Image3D instance. If no options, no array is allocated. + * @param {Object} options - if present, must have options.xSize, options.ySize, option.zSize. + * Also options.ncpp to set the number of components per pixel. (possibly for using time series) + */ + constructor( options=null ){ + super(); + } + + + /** + * [STATIC] + * mainly used by the ouside world (like from Nifti) + */ + static transformToMinc(transform, header) { + var x_dir_cosines = []; + var y_dir_cosines = []; + var z_dir_cosines = []; + + // A tiny helper function to calculate the magnitude of the rotational + // part of the transform. + // + function magnitude(v) { + var dotprod = v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; + if (dotprod <= 0) { + dotprod = 1.0; + } + return Math.sqrt(dotprod); + } + + // Calculate the determinant of a 3x3 matrix, from: + // http://www.mathworks.com/help/aeroblks/determinantof3x3matrix.html + // + // det(A) = A_{11} (A_{22}A_{33} - A_{23}A_{32}) - + // A_{12} (A_{21}A_{33} - A_{23}A_{31}) + + // A_{13} (A_{21}A_{32} - A_{22}A_{31}) + // + // Of course, I had to change the indices from 1-based to 0-based. + // + function determinant(c0, c1, c2) { + return (c0[0] * (c1[1] * c2[2] - c1[2] * c2[1]) - + c0[1] * (c1[0] * c2[2] - c1[2] * c2[0]) + + c0[2] * (c1[0] * c2[1] - c1[1] * c2[0])); + } + + // Now that we have the transform, need to convert it to MINC-like + // steps and direction_cosines. + + var xmag = magnitude(transform[0]); + var ymag = magnitude(transform[1]); + var zmag = magnitude(transform[2]); + + var xstep = (transform[0][0] < 0) ? -xmag : xmag; + var ystep = (transform[1][1] < 0) ? -ymag : ymag; + var zstep = (transform[2][2] < 0) ? -zmag : zmag; + + for (var i = 0; i < 3; i++) { + x_dir_cosines[i] = transform[i][0] / xstep; + y_dir_cosines[i] = transform[i][1] / ystep; + z_dir_cosines[i] = transform[i][2] / zstep; + } + + header.xspace.step = xstep; + header.yspace.step = ystep; + header.zspace.step = zstep; + + // Calculate the corrected start values. + var starts = [transform[0][3], + transform[1][3], + transform[2][3] + ]; + + // (bert): I believe that the determinant of the direction + // cosines should always work out to 1, so the calculation of + // this value should not be needed. But I have no idea if NIfTI + // enforces this when sform transforms are written. + var denom = determinant(x_dir_cosines, y_dir_cosines, z_dir_cosines); + var xstart = determinant(starts, y_dir_cosines, z_dir_cosines); + var ystart = determinant(x_dir_cosines, starts, z_dir_cosines); + var zstart = determinant(x_dir_cosines, y_dir_cosines, starts); + + header.xspace.start = xstart / denom; + header.yspace.start = ystart / denom; + header.zspace.start = zstart / denom; + + header.xspace.direction_cosines = x_dir_cosines; + header.yspace.direction_cosines = y_dir_cosines; + header.zspace.direction_cosines = z_dir_cosines; + }; + + + /** + * [STATIC] + * swap the data to be used from the outside (ie. nifti) + */ + static swapn(byte_data, n_per_item) { + for (var d = 0; d < byte_data.length; d += n_per_item) { + var hi_offset = n_per_item - 1; + var lo_offset = 0; + while (hi_offset > lo_offset) { + var tmp = byte_data[d + hi_offset]; + byte_data[d + hi_offset] = byte_data[d + lo_offset]; + byte_data[d + lo_offset] = tmp; + hi_offset--; + lo_offset++; + } + } + } + + + /** + * Initialize a MniVolume with the data and the header. + * @param {Array} data - TypedArray containing the data + */ + setData( data, header ){ + var that = this; + this._data = data; + + this.setMetadata( "position", {} ); + this.setMetadata( "current_time", 0 ); + + // copying header into metadata + var headerKeys = Object.keys(header); + headerKeys.forEach( function(key){ + that.setMetadata( key, header[key] ); + }); + + // find min/max + this._scanDataRange(); + + // set W2v matrix + this._saveOriginAndTransform(); + + // adding some fields to metadata header + this._finishHeader(); + + console.log(this._metadata); + } + + + + + + /** + * [PRIVATE} + * Calculate the world to voxel transform and save it, so we + * can access it efficiently. The transform is: + * cxx / stepx | cxy / stepx | cxz / stepx | (-o.x * cxx - o.y * cxy - o.z * cxz) / stepx + * cyx / stepy | cyy / stepy | cyz / stepy | (-o.x * cyx - o.y * cyy - o.z * cyz) / stepy + * czx / stepz | czy / stepz | czz / stepz | (-o.x * czx - o.y * czy - o.z * czz) / stepz + * 0 | 0 | 0 | 1 + * + * Origin equation taken from (http://www.bic.mni.mcgill.ca/software/minc/minc2_format/node4.html) + */ + _saveOriginAndTransform() { + + var xspace = this.getMetadata("xspace"); + var yspace = this.getMetadata("yspace"); + var zspace = this.getMetadata("zspace"); + + var startx = xspace.start; + var starty = yspace.start; + var startz = zspace.start; + var cx = xspace.direction_cosines; + var cy = yspace.direction_cosines; + var cz = zspace.direction_cosines; + var stepx = xspace.step; + var stepy = yspace.step; + var stepz = zspace.step; + + // voxel_origin + var o = { + x: startx * cx[0] + starty * cy[0] + startz * cz[0], + y: startx * cx[1] + starty * cy[1] + startz * cz[1], + z: startx * cx[2] + starty * cy[2] + startz * cz[2] + }; + + this.setMetadata("voxel_origin", o); + + var tx = (-o.x * cx[0] - o.y * cx[1] - o.z * cx[2]) / stepx; + var ty = (-o.x * cy[0] - o.y * cy[1] - o.z * cy[2]) / stepy; + var tz = (-o.x * cz[0] - o.y * cz[1] - o.z * cz[2]) / stepz; + + var w2v = [ + [cx[0] / stepx, cx[1] / stepx, cx[2] / stepx, tx], + [cy[0] / stepy, cy[1] / stepy, cy[2] / stepy, ty], + [cz[0] / stepz, cz[1] / stepz, cz[2] / stepz, tz] + ]; + + this.setMetadata("w2v", w2v); + } + + + + + + + + + + + +} /* END of class Image3D */ + +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ + +/** +* CanvasImageWriter is a filter to output an instance of Image into a +* HTML5 canvas element. +* The metadata "parentDivID" has to be set using `setMetadata("parentDivID", "whatever")` +* The metadata "alpha", if true, enable transparency. Default: false. +* If the input Image2D has values not in [0, 255], you can remap/stretch using +* setMetadata("min", xxx ) default: 0 +* setMetadata("max", xxx ) default: 255 +* +* usage: examples/imageToCanvasFilter.html +* +* @example +// create an image +* var myImage = new pixpipe.Image2D({width: 100, height: 250, color: [255, 128, 64, 255]}) +* +* // create a filter to write the image into a canvas +* var imageToCanvasFilter = new pixpipe.CanvasImageWriter( "myDiv" ); +* imageToCanvasFilter.addInput( myImage ); +* imageToCanvasFilter.update(); */ class CanvasImageWriter extends Filter{ @@ -968,6 +1685,10 @@ class CanvasImageWriter extends Filter{ this._inputValidator[ 0 ] = Image2D.TYPE(); this.setMetadata("alpha", false); + this.setMetadata("min", 0); + this.setMetadata("max", 255); + this.setMetadata("reset", true); + // so that we can flush the content this._canvas = null; @@ -982,8 +1703,16 @@ class CanvasImageWriter extends Filter{ _init(){ var parentElem = document.getElementById( this.getMetadata("parentDivID") ); - while (parentElem.firstChild) { - parentElem.removeChild(parentElem.firstChild); + + if(! parentElem ){ + return false; + } + + // reset content + if(this.getMetadata("reset")){ + while (parentElem.firstChild) { + parentElem.removeChild(parentElem.firstChild); + } } // creating a canvas element @@ -999,6 +1728,8 @@ class CanvasImageWriter extends Filter{ this._ctx.ctxmsImageSmoothingEnabled = false; document.getElementById(this.getMetadata("parentDivID")).appendChild(this._canvas); + + return true; } @@ -1006,6 +1737,7 @@ class CanvasImageWriter extends Filter{ * Overwrite the generic (empty) method. */ _run(){ + var that = this; // abort if invalid input if(!this.hasValidInput() ) @@ -1026,7 +1758,10 @@ class CanvasImageWriter extends Filter{ } // build a new canvas - this._init(); + if( !this._init() ){ + console.warn("The parent div was not specified or does not exist."); + return; + } var useAlphaBand = this.getMetadata("alpha"); // resizing the canvas @@ -1036,222 +1771,10074 @@ class CanvasImageWriter extends Filter{ var canvasImageData = this._ctx.getImageData(0, 0, this._canvas.width, this._canvas.height); var canvasImageDataArray = canvasImageData.data; - // getting Image object data - var originalImageDataArray = image.getData(); + // getting Image object data + var originalImageDataArray = image.getData(); + + // input image is RGBA + if(ncppSrc == 4){ + // copying the data into the canvas array (clamped uint8) + originalImageDataArray.forEach( function(value, index){ + if(!useAlphaBand && index%4 == 3){ + canvasImageDataArray[index] = 255; + }else{ + canvasImageDataArray[index] = that._stretchMinMax(value); + } + }); + + // input image is mono chanel + }else if(ncppSrc == 1){ + originalImageDataArray.forEach( function(value, index){ + var index1D = index*4; + var stretchedValue = that._stretchMinMax(value); + canvasImageDataArray[index1D] = stretchedValue; + canvasImageDataArray[index1D + 1] = stretchedValue; + canvasImageDataArray[index1D + 2] = stretchedValue; + canvasImageDataArray[index1D + 3] = 255; + }); + + // input image is RGB + }else if(ncppSrc == 3){ + console.warn("From RGB Image2D to RGBA canvas, not sure of this implementation."); + var destCounter = 0; + originalImageDataArray.forEach( function(value, index){ + // adding the Alpha chanel + if( index%4 == 3){ + canvasImageDataArray[destCounter] = 255; + destCounter++; + } + + // regular RGB + canvasImageDataArray[destCounter] = that._stretchMinMax(value); + destCounter ++; + }); + } + + this._ctx.putImageData(canvasImageData, 0, 0); + + } + + + /** + * [PRIVATE] + * remap the intensity between getMetadata("min") and getMetadata("max") + * @param {Number} intensity - input pixel value + * @return {Number} the adjusted number + */ + _stretchMinMax( intensity ){ + var min = this.getMetadata("min"); + var max = this.getMetadata("max"); + + if(min == 0 && max == 255){ + return intensity; + } + + return ( (intensity - min) / (max - min) ) * 255; + } + +} + +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ + +/** +* An instance of UrlImageReader takes an image URL as input and +* returns an Image2D as output. Use the regular `addInput()` and `getOuput()` +* with no argument for that. +* Reading a file from URL takes an AJAX request, which is asynchronous. For this +* reason, what happens next, once the Image2D is created must take place in the +* callback defined by the event .on("ready", function(){ ... }). +* Usage: examples/urlToImage2D.html +* +* UrlImageReader can also load multiple images and call the "ready" event +* only when all of them are loaded. +* Usage: examples/urlToImage2D_multiple.html +* +* +* @example +* var url2ImgFilter = new pixpipe.UrlImageReader( ... ); +* url2ImgFilter.addInput( "images/sd.jpg" ); +* url2ImgFilter.update(); +*/ +class UrlImageReader extends Filter { + + /** + * @param {function} callback - function to call when the image is loaded. + * The _this_ object will be in argument of this callback. + */ + constructor( callback ){ + super(); + this._loadedCounter = 0; + this._addOutput( Image2D, 0 ); + } + + + /** + * Overload the function + */ + _run(){ + var that = this; + var inputCategories = this.getInputCategories(); + + inputCategories.forEach( function(category){ + that._addOutput( Image2D, category ); + that._loadImage( category ); + }); + } + + + /** + * [PRIVATE] + * Loading task for a single category (aka file, in this case) + */ + _loadImage( inputCategory ){ + var that = this; + + var img = new Image(); + img.src = this._getInput(inputCategory); + + img.onload = function() { + var tmpCanvas = document.createElement("canvas"); + tmpCanvas.width = img.width; + tmpCanvas.height = img.height; + var canvasContext = tmpCanvas.getContext('2d'); + canvasContext.drawImage(img, 0, 0); + + try{ + var imageData = canvasContext.getImageData(0, 0, tmpCanvas.width, tmpCanvas.height); + var dataArray = imageData.data; + var img2D = that.getOutput( inputCategory ); + img2D.setData( dataArray, img.width, img.height); + + that._loadedCounter ++; + + // call the loaded callback only when all images are loaded + if(that._loadedCounter == that.getNumberOfInputs() && "ready" in that._events){ + that._events.ready( that ); + } + + }catch(e){ + console.error(e); + } + + }; + + } + + +} /* END of class UrlImageReader */ + +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ + +/** +* An instance of FileImageReader takes a HTML5 File object as input and +* returns an Image2D as output. The point is mainly to use it with a file dialog. +* Use the regular `addInput()` and `getOuput()` with no argument for that. +* Reading a local file is an asynchronous process. For this +* reason, what happens next, once the Image2D is created must take place in the +* callback defined by the event .on("ready", function(){ ... }). +* +* +* +* Usage: examples/fileToImage2D.html +* +* @example +* var file2ImgFilter = new pixpipe.file2ImgFilter( ... ); +* file2ImgFilter.addInput( fileInput.files[0] ); +* file2ImgFilter.update(); +*/ +class FileImageReader extends Filter { + + constructor(){ + super(); + + this._allowedTypes = /image.*/; + this._addOutput( Image2D, 0 ); + } + + + /** + * Overload the default method because HTML5 File is not a Pixpipe type + */ + hasValidInput(){ + var valid = false; + var file = this._getInput(); + + if (file && file.type.match( this._allowedTypes )) { + this._isInputValid = true; + }else{ + console.error("The file must be an image (jpg/png). The type " + file.type + " is not compatible with FileImageReader."); + } + + return valid; + } + + + /** + * Run the reading + */ + _run(){ + + if(! this.hasValidInput) + return + + var that = this; + var file = this._getInput(); + var reader = new FileReader(); + + reader.onload = function(e) { + + var img = new Image(); + img.src = reader.result; + var tmpCanvas = document.createElement("canvas"); + tmpCanvas.width = img.width; + tmpCanvas.height = img.height; + var canvasContext = tmpCanvas.getContext('2d'); + canvasContext.drawImage(img, 0, 0); + var imageData = canvasContext.getImageData(0, 0, tmpCanvas.width, tmpCanvas.height); + var dataArray = imageData.data; + + var img2D = that.getOutput(); + img2D.setData( dataArray, img.width, img.height); + + if("ready" in that._events){ + that._events.ready( that ); + } + }; + + reader.readAsDataURL( file ); + } + + + +} /* END of class UrlImageReader */ + +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ + +/** +* Takes the File inputs from a HTML input of type "file" (aka. a file dialog), and reads it as a ArrayBuffer. +* Every File given in input should be added separately using `addInput( file[i], 'uniqueID' )`. +* The event "ready" must be set up ( using .on("ready", function(){}) ) and will +* be triggered when all the files given in input are translated into ArrayBuffers. +* Once ready, all the outputs are accecible using the same uniqueID with the +* method `getOutput("uniqueID")` +* +* usage: examples/fileToArrayBuffer.html +*/ +class FileToArrayBufferReader extends Filter { + + constructor(){ + super(); + this._outputCounter = 0; + } + + + _run(){ + var that = this; + this._outputCounter = 0; + var inputCategories = this.getInputCategories(); + + inputCategories.forEach( function(category){ + that._loadFile( category ); + }); + } + + + /** + * [PRIVATE] + * Perform the loading for the input of the given category + * @param {String} category - input category + */ + _loadFile( category ){ + var that = this; + var reader = new FileReader(); + + reader.onloadend = function(event) { + var result = event.target.result; + that._output[ category ] = result; + that._fileLoadCount(); + }; + + reader.onerror = function() { + this._output[ category ] = null; + that._fileLoadCount(); + console.warn( "error reading file from category " + category ); + //throw new Error(error_message); + }; + + reader.readAsArrayBuffer( this._getInput(category) ); + } + + + /** + * [PRIVATE] + * Launch the "ready" event if all files are loaded + */ + _fileLoadCount(){ + var that = this; + this._outputCounter ++; + + if( this._outputCounter == this.getNumberOfInputs() ){ + that._events.ready( this ); + } + } + +} /* END of class FileToArrayBufferReader */ + +var commonjsGlobal = typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {}; + + + + + +function createCommonjsModule(fn, module) { + return module = { exports: {} }, fn(module, module.exports), module.exports; +} + +var common = createCommonjsModule(function (module, exports) { +'use strict'; + + +var TYPED_OK = (typeof Uint8Array !== 'undefined') && + (typeof Uint16Array !== 'undefined') && + (typeof Int32Array !== 'undefined'); + + +exports.assign = function (obj /*from1, from2, from3, ...*/) { + var sources = Array.prototype.slice.call(arguments, 1); + while (sources.length) { + var source = sources.shift(); + if (!source) { continue; } + + if (typeof source !== 'object') { + throw new TypeError(source + 'must be non-object'); + } + + for (var p in source) { + if (source.hasOwnProperty(p)) { + obj[p] = source[p]; + } + } + } + + return obj; +}; + + +// reduce buffer size, avoiding mem copy +exports.shrinkBuf = function (buf, size) { + if (buf.length === size) { return buf; } + if (buf.subarray) { return buf.subarray(0, size); } + buf.length = size; + return buf; +}; + + +var fnTyped = { + arraySet: function (dest, src, src_offs, len, dest_offs) { + if (src.subarray && dest.subarray) { + dest.set(src.subarray(src_offs, src_offs + len), dest_offs); + return; + } + // Fallback to ordinary array + for (var i = 0; i < len; i++) { + dest[dest_offs + i] = src[src_offs + i]; + } + }, + // Join array of chunks to single array. + flattenChunks: function (chunks) { + var i, l, len, pos, chunk, result; + + // calculate data length + len = 0; + for (i = 0, l = chunks.length; i < l; i++) { + len += chunks[i].length; + } + + // join chunks + result = new Uint8Array(len); + pos = 0; + for (i = 0, l = chunks.length; i < l; i++) { + chunk = chunks[i]; + result.set(chunk, pos); + pos += chunk.length; + } + + return result; + } +}; + +var fnUntyped = { + arraySet: function (dest, src, src_offs, len, dest_offs) { + for (var i = 0; i < len; i++) { + dest[dest_offs + i] = src[src_offs + i]; + } + }, + // Join array of chunks to single array. + flattenChunks: function (chunks) { + return [].concat.apply([], chunks); + } +}; + + +// Enable/Disable typed arrays use, for testing +// +exports.setTyped = function (on) { + if (on) { + exports.Buf8 = Uint8Array; + exports.Buf16 = Uint16Array; + exports.Buf32 = Int32Array; + exports.assign(exports, fnTyped); + } else { + exports.Buf8 = Array; + exports.Buf16 = Array; + exports.Buf32 = Array; + exports.assign(exports, fnUntyped); + } +}; + +exports.setTyped(TYPED_OK); +}); + +/* Public constants ==========================================================*/ +/* ===========================================================================*/ + + +//var Z_FILTERED = 1; +//var Z_HUFFMAN_ONLY = 2; +//var Z_RLE = 3; +var Z_FIXED$1 = 4; +//var Z_DEFAULT_STRATEGY = 0; + +/* Possible values of the data_type field (though see inflate()) */ +var Z_BINARY = 0; +var Z_TEXT = 1; +//var Z_ASCII = 1; // = Z_TEXT +var Z_UNKNOWN$1 = 2; + +/*============================================================================*/ + + +function zero$1(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } + +// From zutil.h + +var STORED_BLOCK = 0; +var STATIC_TREES = 1; +var DYN_TREES = 2; +/* The three kinds of block type */ + +var MIN_MATCH$1 = 3; +var MAX_MATCH$1 = 258; +/* The minimum and maximum match lengths */ + +// From deflate.h +/* =========================================================================== + * Internal compression state. + */ + +var LENGTH_CODES$1 = 29; +/* number of length codes, not counting the special END_BLOCK code */ + +var LITERALS$1 = 256; +/* number of literal bytes 0..255 */ + +var L_CODES$1 = LITERALS$1 + 1 + LENGTH_CODES$1; +/* number of Literal or Length codes, including the END_BLOCK code */ + +var D_CODES$1 = 30; +/* number of distance codes */ + +var BL_CODES$1 = 19; +/* number of codes used to transfer the bit lengths */ + +var HEAP_SIZE$1 = 2 * L_CODES$1 + 1; +/* maximum heap size */ + +var MAX_BITS$1 = 15; +/* All codes must not exceed MAX_BITS bits */ + +var Buf_size = 16; +/* size of bit buffer in bi_buf */ + + +/* =========================================================================== + * Constants + */ + +var MAX_BL_BITS = 7; +/* Bit length codes must not exceed MAX_BL_BITS bits */ + +var END_BLOCK = 256; +/* end of block literal code */ + +var REP_3_6 = 16; +/* repeat previous bit length 3-6 times (2 bits of repeat count) */ + +var REPZ_3_10 = 17; +/* repeat a zero length 3-10 times (3 bits of repeat count) */ + +var REPZ_11_138 = 18; +/* repeat a zero length 11-138 times (7 bits of repeat count) */ + +/* eslint-disable comma-spacing,array-bracket-spacing */ +var extra_lbits = /* extra bits for each length code */ + [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]; + +var extra_dbits = /* extra bits for each distance code */ + [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]; + +var extra_blbits = /* extra bits for each bit length code */ + [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]; + +var bl_order = + [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]; +/* eslint-enable comma-spacing,array-bracket-spacing */ + +/* The lengths of the bit length codes are sent in order of decreasing + * probability, to avoid transmitting the lengths for unused bit length codes. + */ + +/* =========================================================================== + * Local data. These are initialized only once. + */ + +// We pre-fill arrays with 0 to avoid uninitialized gaps + +var DIST_CODE_LEN = 512; /* see definition of array dist_code below */ + +// !!!! Use flat array insdead of structure, Freq = i*2, Len = i*2+1 +var static_ltree = new Array((L_CODES$1 + 2) * 2); +zero$1(static_ltree); +/* The static literal tree. Since the bit lengths are imposed, there is no + * need for the L_CODES extra codes used during heap construction. However + * The codes 286 and 287 are needed to build a canonical tree (see _tr_init + * below). + */ + +var static_dtree = new Array(D_CODES$1 * 2); +zero$1(static_dtree); +/* The static distance tree. (Actually a trivial tree since all codes use + * 5 bits.) + */ + +var _dist_code = new Array(DIST_CODE_LEN); +zero$1(_dist_code); +/* Distance codes. The first 256 values correspond to the distances + * 3 .. 258, the last 256 values correspond to the top 8 bits of + * the 15 bit distances. + */ + +var _length_code = new Array(MAX_MATCH$1 - MIN_MATCH$1 + 1); +zero$1(_length_code); +/* length code for each normalized match length (0 == MIN_MATCH) */ + +var base_length = new Array(LENGTH_CODES$1); +zero$1(base_length); +/* First normalized length for each code (0 = MIN_MATCH) */ + +var base_dist = new Array(D_CODES$1); +zero$1(base_dist); +/* First normalized distance for each code (0 = distance of 1) */ + + +function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) { + + this.static_tree = static_tree; /* static tree or NULL */ + this.extra_bits = extra_bits; /* extra bits for each code or NULL */ + this.extra_base = extra_base; /* base index for extra_bits */ + this.elems = elems; /* max number of elements in the tree */ + this.max_length = max_length; /* max bit length for the codes */ + + // show if `static_tree` has data or dummy - needed for monomorphic objects + this.has_stree = static_tree && static_tree.length; +} + + +var static_l_desc; +var static_d_desc; +var static_bl_desc; + + +function TreeDesc(dyn_tree, stat_desc) { + this.dyn_tree = dyn_tree; /* the dynamic tree */ + this.max_code = 0; /* largest code with non zero frequency */ + this.stat_desc = stat_desc; /* the corresponding static tree */ +} + + + +function d_code(dist) { + return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)]; +} + + +/* =========================================================================== + * Output a short LSB first on the stream. + * IN assertion: there is enough room in pendingBuf. + */ +function put_short(s, w) { +// put_byte(s, (uch)((w) & 0xff)); +// put_byte(s, (uch)((ush)(w) >> 8)); + s.pending_buf[s.pending++] = (w) & 0xff; + s.pending_buf[s.pending++] = (w >>> 8) & 0xff; +} + + +/* =========================================================================== + * Send a value on a given number of bits. + * IN assertion: length <= 16 and value fits in length bits. + */ +function send_bits(s, value, length) { + if (s.bi_valid > (Buf_size - length)) { + s.bi_buf |= (value << s.bi_valid) & 0xffff; + put_short(s, s.bi_buf); + s.bi_buf = value >> (Buf_size - s.bi_valid); + s.bi_valid += length - Buf_size; + } else { + s.bi_buf |= (value << s.bi_valid) & 0xffff; + s.bi_valid += length; + } +} + + +function send_code(s, c, tree) { + send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/); +} + + +/* =========================================================================== + * Reverse the first len bits of a code, using straightforward code (a faster + * method would use a table) + * IN assertion: 1 <= len <= 15 + */ +function bi_reverse(code, len) { + var res = 0; + do { + res |= code & 1; + code >>>= 1; + res <<= 1; + } while (--len > 0); + return res >>> 1; +} + + +/* =========================================================================== + * Flush the bit buffer, keeping at most 7 bits in it. + */ +function bi_flush(s) { + if (s.bi_valid === 16) { + put_short(s, s.bi_buf); + s.bi_buf = 0; + s.bi_valid = 0; + + } else if (s.bi_valid >= 8) { + s.pending_buf[s.pending++] = s.bi_buf & 0xff; + s.bi_buf >>= 8; + s.bi_valid -= 8; + } +} + + +/* =========================================================================== + * Compute the optimal bit lengths for a tree and update the total bit length + * for the current block. + * IN assertion: the fields freq and dad are set, heap[heap_max] and + * above are the tree nodes sorted by increasing frequency. + * OUT assertions: the field len is set to the optimal bit length, the + * array bl_count contains the frequencies for each bit length. + * The length opt_len is updated; static_len is also updated if stree is + * not null. + */ +function gen_bitlen(s, desc) +// deflate_state *s; +// tree_desc *desc; /* the tree descriptor */ +{ + var tree = desc.dyn_tree; + var max_code = desc.max_code; + var stree = desc.stat_desc.static_tree; + var has_stree = desc.stat_desc.has_stree; + var extra = desc.stat_desc.extra_bits; + var base = desc.stat_desc.extra_base; + var max_length = desc.stat_desc.max_length; + var h; /* heap index */ + var n, m; /* iterate over the tree elements */ + var bits; /* bit length */ + var xbits; /* extra bits */ + var f; /* frequency */ + var overflow = 0; /* number of elements with bit length too large */ + + for (bits = 0; bits <= MAX_BITS$1; bits++) { + s.bl_count[bits] = 0; + } + + /* In a first pass, compute the optimal bit lengths (which may + * overflow in the case of the bit length tree). + */ + tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */ + + for (h = s.heap_max + 1; h < HEAP_SIZE$1; h++) { + n = s.heap[h]; + bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1; + if (bits > max_length) { + bits = max_length; + overflow++; + } + tree[n * 2 + 1]/*.Len*/ = bits; + /* We overwrite tree[n].Dad which is no longer needed */ + + if (n > max_code) { continue; } /* not a leaf node */ + + s.bl_count[bits]++; + xbits = 0; + if (n >= base) { + xbits = extra[n - base]; + } + f = tree[n * 2]/*.Freq*/; + s.opt_len += f * (bits + xbits); + if (has_stree) { + s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits); + } + } + if (overflow === 0) { return; } + + // Trace((stderr,"\nbit length overflow\n")); + /* This happens for example on obj2 and pic of the Calgary corpus */ + + /* Find the first bit length which could increase: */ + do { + bits = max_length - 1; + while (s.bl_count[bits] === 0) { bits--; } + s.bl_count[bits]--; /* move one leaf down the tree */ + s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */ + s.bl_count[max_length]--; + /* The brother of the overflow item also moves one step up, + * but this does not affect bl_count[max_length] + */ + overflow -= 2; + } while (overflow > 0); + + /* Now recompute all bit lengths, scanning in increasing frequency. + * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all + * lengths instead of fixing only the wrong ones. This idea is taken + * from 'ar' written by Haruhiko Okumura.) + */ + for (bits = max_length; bits !== 0; bits--) { + n = s.bl_count[bits]; + while (n !== 0) { + m = s.heap[--h]; + if (m > max_code) { continue; } + if (tree[m * 2 + 1]/*.Len*/ !== bits) { + // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); + s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/; + tree[m * 2 + 1]/*.Len*/ = bits; + } + n--; + } + } +} + + +/* =========================================================================== + * Generate the codes for a given tree and bit counts (which need not be + * optimal). + * IN assertion: the array bl_count contains the bit length statistics for + * the given tree and the field len is set for all tree elements. + * OUT assertion: the field code is set for all tree elements of non + * zero code length. + */ +function gen_codes(tree, max_code, bl_count) +// ct_data *tree; /* the tree to decorate */ +// int max_code; /* largest code with non zero frequency */ +// ushf *bl_count; /* number of codes at each bit length */ +{ + var next_code = new Array(MAX_BITS$1 + 1); /* next code value for each bit length */ + var code = 0; /* running code value */ + var bits; /* bit index */ + var n; /* code index */ + + /* The distribution counts are first used to generate the code values + * without bit reversal. + */ + for (bits = 1; bits <= MAX_BITS$1; bits++) { + next_code[bits] = code = (code + bl_count[bits - 1]) << 1; + } + /* Check that the bit counts in bl_count are consistent. The last code + * must be all ones. + */ + //Assert (code + bl_count[MAX_BITS]-1 == (1< length code (0..28) */ + length = 0; + for (code = 0; code < LENGTH_CODES$1 - 1; code++) { + base_length[code] = length; + for (n = 0; n < (1 << extra_lbits[code]); n++) { + _length_code[length++] = code; + } + } + //Assert (length == 256, "tr_static_init: length != 256"); + /* Note that the length 255 (match length 258) can be represented + * in two different ways: code 284 + 5 bits or code 285, so we + * overwrite length_code[255] to use the best encoding: + */ + _length_code[length - 1] = code; + + /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ + dist = 0; + for (code = 0; code < 16; code++) { + base_dist[code] = dist; + for (n = 0; n < (1 << extra_dbits[code]); n++) { + _dist_code[dist++] = code; + } + } + //Assert (dist == 256, "tr_static_init: dist != 256"); + dist >>= 7; /* from now on, all distances are divided by 128 */ + for (; code < D_CODES$1; code++) { + base_dist[code] = dist << 7; + for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { + _dist_code[256 + dist++] = code; + } + } + //Assert (dist == 256, "tr_static_init: 256+dist != 512"); + + /* Construct the codes of the static literal tree */ + for (bits = 0; bits <= MAX_BITS$1; bits++) { + bl_count[bits] = 0; + } + + n = 0; + while (n <= 143) { + static_ltree[n * 2 + 1]/*.Len*/ = 8; + n++; + bl_count[8]++; + } + while (n <= 255) { + static_ltree[n * 2 + 1]/*.Len*/ = 9; + n++; + bl_count[9]++; + } + while (n <= 279) { + static_ltree[n * 2 + 1]/*.Len*/ = 7; + n++; + bl_count[7]++; + } + while (n <= 287) { + static_ltree[n * 2 + 1]/*.Len*/ = 8; + n++; + bl_count[8]++; + } + /* Codes 286 and 287 do not exist, but we must include them in the + * tree construction to get a canonical Huffman tree (longest code + * all ones) + */ + gen_codes(static_ltree, L_CODES$1 + 1, bl_count); + + /* The static distance tree is trivial: */ + for (n = 0; n < D_CODES$1; n++) { + static_dtree[n * 2 + 1]/*.Len*/ = 5; + static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5); + } + + // Now data ready and we can init static trees + static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS$1 + 1, L_CODES$1, MAX_BITS$1); + static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES$1, MAX_BITS$1); + static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES$1, MAX_BL_BITS); + + //static_init_done = true; +} + + +/* =========================================================================== + * Initialize a new block. + */ +function init_block(s) { + var n; /* iterates over tree elements */ + + /* Initialize the trees. */ + for (n = 0; n < L_CODES$1; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; } + for (n = 0; n < D_CODES$1; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; } + for (n = 0; n < BL_CODES$1; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; } + + s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1; + s.opt_len = s.static_len = 0; + s.last_lit = s.matches = 0; +} + + +/* =========================================================================== + * Flush the bit buffer and align the output on a byte boundary + */ +function bi_windup(s) +{ + if (s.bi_valid > 8) { + put_short(s, s.bi_buf); + } else if (s.bi_valid > 0) { + //put_byte(s, (Byte)s->bi_buf); + s.pending_buf[s.pending++] = s.bi_buf; + } + s.bi_buf = 0; + s.bi_valid = 0; +} + +/* =========================================================================== + * Copy a stored block, storing first the length and its + * one's complement if requested. + */ +function copy_block(s, buf, len, header) +//DeflateState *s; +//charf *buf; /* the input data */ +//unsigned len; /* its length */ +//int header; /* true if block header must be written */ +{ + bi_windup(s); /* align on byte boundary */ + + if (header) { + put_short(s, len); + put_short(s, ~len); + } +// while (len--) { +// put_byte(s, *buf++); +// } + common.arraySet(s.pending_buf, s.window, buf, len, s.pending); + s.pending += len; +} + +/* =========================================================================== + * Compares to subtrees, using the tree depth as tie breaker when + * the subtrees have equal frequency. This minimizes the worst case length. + */ +function smaller(tree, n, m, depth) { + var _n2 = n * 2; + var _m2 = m * 2; + return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ || + (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m])); +} + +/* =========================================================================== + * Restore the heap property by moving down the tree starting at node k, + * exchanging a node with the smallest of its two sons if necessary, stopping + * when the heap property is re-established (each father smaller than its + * two sons). + */ +function pqdownheap(s, tree, k) +// deflate_state *s; +// ct_data *tree; /* the tree to restore */ +// int k; /* node to move down */ +{ + var v = s.heap[k]; + var j = k << 1; /* left son of k */ + while (j <= s.heap_len) { + /* Set j to the smallest of the two sons: */ + if (j < s.heap_len && + smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) { + j++; + } + /* Exit if v is smaller than both sons */ + if (smaller(tree, v, s.heap[j], s.depth)) { break; } + + /* Exchange v with the smallest son */ + s.heap[k] = s.heap[j]; + k = j; + + /* And continue down the tree, setting j to the left son of k */ + j <<= 1; + } + s.heap[k] = v; +} + + +// inlined manually +// var SMALLEST = 1; + +/* =========================================================================== + * Send the block data compressed using the given Huffman trees + */ +function compress_block(s, ltree, dtree) +// deflate_state *s; +// const ct_data *ltree; /* literal tree */ +// const ct_data *dtree; /* distance tree */ +{ + var dist; /* distance of matched string */ + var lc; /* match length or unmatched char (if dist == 0) */ + var lx = 0; /* running index in l_buf */ + var code; /* the code to send */ + var extra; /* number of extra bits to send */ + + if (s.last_lit !== 0) { + do { + dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]); + lc = s.pending_buf[s.l_buf + lx]; + lx++; + + if (dist === 0) { + send_code(s, lc, ltree); /* send a literal byte */ + //Tracecv(isgraph(lc), (stderr," '%c' ", lc)); + } else { + /* Here, lc is the match length - MIN_MATCH */ + code = _length_code[lc]; + send_code(s, code + LITERALS$1 + 1, ltree); /* send the length code */ + extra = extra_lbits[code]; + if (extra !== 0) { + lc -= base_length[code]; + send_bits(s, lc, extra); /* send the extra length bits */ + } + dist--; /* dist is now the match distance - 1 */ + code = d_code(dist); + //Assert (code < D_CODES, "bad d_code"); + + send_code(s, code, dtree); /* send the distance code */ + extra = extra_dbits[code]; + if (extra !== 0) { + dist -= base_dist[code]; + send_bits(s, dist, extra); /* send the extra distance bits */ + } + } /* literal or match pair ? */ + + /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ + //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, + // "pendingBuf overflow"); + + } while (lx < s.last_lit); + } + + send_code(s, END_BLOCK, ltree); +} + + +/* =========================================================================== + * Construct one Huffman tree and assigns the code bit strings and lengths. + * Update the total bit length for the current block. + * IN assertion: the field freq is set for all tree elements. + * OUT assertions: the fields len and code are set to the optimal bit length + * and corresponding code. The length opt_len is updated; static_len is + * also updated if stree is not null. The field max_code is set. + */ +function build_tree(s, desc) +// deflate_state *s; +// tree_desc *desc; /* the tree descriptor */ +{ + var tree = desc.dyn_tree; + var stree = desc.stat_desc.static_tree; + var has_stree = desc.stat_desc.has_stree; + var elems = desc.stat_desc.elems; + var n, m; /* iterate over heap elements */ + var max_code = -1; /* largest code with non zero frequency */ + var node; /* new node being created */ + + /* Construct the initial heap, with least frequent element in + * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. + * heap[0] is not used. + */ + s.heap_len = 0; + s.heap_max = HEAP_SIZE$1; + + for (n = 0; n < elems; n++) { + if (tree[n * 2]/*.Freq*/ !== 0) { + s.heap[++s.heap_len] = max_code = n; + s.depth[n] = 0; + + } else { + tree[n * 2 + 1]/*.Len*/ = 0; + } + } + + /* The pkzip format requires that at least one distance code exists, + * and that at least one bit should be sent even if there is only one + * possible code. So to avoid special checks later on we force at least + * two codes of non zero frequency. + */ + while (s.heap_len < 2) { + node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0); + tree[node * 2]/*.Freq*/ = 1; + s.depth[node] = 0; + s.opt_len--; + + if (has_stree) { + s.static_len -= stree[node * 2 + 1]/*.Len*/; + } + /* node is 0 or 1 so it does not have extra bits */ + } + desc.max_code = max_code; + + /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, + * establish sub-heaps of increasing lengths: + */ + for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); } + + /* Construct the Huffman tree by repeatedly combining the least two + * frequent nodes. + */ + node = elems; /* next internal node of the tree */ + do { + //pqremove(s, tree, n); /* n = node of least frequency */ + /*** pqremove ***/ + n = s.heap[1/*SMALLEST*/]; + s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--]; + pqdownheap(s, tree, 1/*SMALLEST*/); + /***/ + + m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */ + + s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */ + s.heap[--s.heap_max] = m; + + /* Create a new node father of n and m */ + tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/; + s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1; + tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node; + + /* and insert the new node in the heap */ + s.heap[1/*SMALLEST*/] = node++; + pqdownheap(s, tree, 1/*SMALLEST*/); + + } while (s.heap_len >= 2); + + s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/]; + + /* At this point, the fields freq and dad are set. We can now + * generate the bit lengths. + */ + gen_bitlen(s, desc); + + /* The field len is now set, we can generate the bit codes */ + gen_codes(tree, max_code, s.bl_count); +} + + +/* =========================================================================== + * Scan a literal or distance tree to determine the frequencies of the codes + * in the bit length tree. + */ +function scan_tree(s, tree, max_code) +// deflate_state *s; +// ct_data *tree; /* the tree to be scanned */ +// int max_code; /* and its largest code of non zero frequency */ +{ + var n; /* iterates over all tree elements */ + var prevlen = -1; /* last emitted length */ + var curlen; /* length of current code */ + + var nextlen = tree[0 * 2 + 1]; /* length of next code */ + + var count = 0; /* repeat count of the current code */ + var max_count = 7; /* max repeat count */ + var min_count = 4; /* min repeat count */ + + if (nextlen === 0) { + max_count = 138; + min_count = 3; + } + tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */ + + for (n = 0; n <= max_code; n++) { + curlen = nextlen; + nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; + + if (++count < max_count && curlen === nextlen) { + continue; + + } else if (count < min_count) { + s.bl_tree[curlen * 2]/*.Freq*/ += count; + + } else if (curlen !== 0) { + + if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; } + s.bl_tree[REP_3_6 * 2]/*.Freq*/++; + + } else if (count <= 10) { + s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++; + + } else { + s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++; + } + + count = 0; + prevlen = curlen; + + if (nextlen === 0) { + max_count = 138; + min_count = 3; + + } else if (curlen === nextlen) { + max_count = 6; + min_count = 3; + + } else { + max_count = 7; + min_count = 4; + } + } +} + + +/* =========================================================================== + * Send a literal or distance tree in compressed form, using the codes in + * bl_tree. + */ +function send_tree(s, tree, max_code) +// deflate_state *s; +// ct_data *tree; /* the tree to be scanned */ +// int max_code; /* and its largest code of non zero frequency */ +{ + var n; /* iterates over all tree elements */ + var prevlen = -1; /* last emitted length */ + var curlen; /* length of current code */ + + var nextlen = tree[0 * 2 + 1]; /* length of next code */ + + var count = 0; /* repeat count of the current code */ + var max_count = 7; /* max repeat count */ + var min_count = 4; /* min repeat count */ + + /* tree[max_code+1].Len = -1; */ /* guard already set */ + if (nextlen === 0) { + max_count = 138; + min_count = 3; + } + + for (n = 0; n <= max_code; n++) { + curlen = nextlen; + nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; + + if (++count < max_count && curlen === nextlen) { + continue; + + } else if (count < min_count) { + do { send_code(s, curlen, s.bl_tree); } while (--count !== 0); + + } else if (curlen !== 0) { + if (curlen !== prevlen) { + send_code(s, curlen, s.bl_tree); + count--; + } + //Assert(count >= 3 && count <= 6, " 3_6?"); + send_code(s, REP_3_6, s.bl_tree); + send_bits(s, count - 3, 2); + + } else if (count <= 10) { + send_code(s, REPZ_3_10, s.bl_tree); + send_bits(s, count - 3, 3); + + } else { + send_code(s, REPZ_11_138, s.bl_tree); + send_bits(s, count - 11, 7); + } + + count = 0; + prevlen = curlen; + if (nextlen === 0) { + max_count = 138; + min_count = 3; + + } else if (curlen === nextlen) { + max_count = 6; + min_count = 3; + + } else { + max_count = 7; + min_count = 4; + } + } +} + + +/* =========================================================================== + * Construct the Huffman tree for the bit lengths and return the index in + * bl_order of the last bit length code to send. + */ +function build_bl_tree(s) { + var max_blindex; /* index of last bit length code of non zero freq */ + + /* Determine the bit length frequencies for literal and distance trees */ + scan_tree(s, s.dyn_ltree, s.l_desc.max_code); + scan_tree(s, s.dyn_dtree, s.d_desc.max_code); + + /* Build the bit length tree: */ + build_tree(s, s.bl_desc); + /* opt_len now includes the length of the tree representations, except + * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. + */ + + /* Determine the number of bit length codes to send. The pkzip format + * requires that at least 4 bit length codes be sent. (appnote.txt says + * 3 but the actual value used is 4.) + */ + for (max_blindex = BL_CODES$1 - 1; max_blindex >= 3; max_blindex--) { + if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) { + break; + } + } + /* Update opt_len to include the bit length tree and counts */ + s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; + //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", + // s->opt_len, s->static_len)); + + return max_blindex; +} + + +/* =========================================================================== + * Send the header for a block using dynamic Huffman trees: the counts, the + * lengths of the bit length codes, the literal tree and the distance tree. + * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. + */ +function send_all_trees(s, lcodes, dcodes, blcodes) +// deflate_state *s; +// int lcodes, dcodes, blcodes; /* number of codes for each tree */ +{ + var rank; /* index in bl_order */ + + //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); + //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, + // "too many codes"); + //Tracev((stderr, "\nbl counts: ")); + send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ + send_bits(s, dcodes - 1, 5); + send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ + for (rank = 0; rank < blcodes; rank++) { + //Tracev((stderr, "\nbl code %2d ", bl_order[rank])); + send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3); + } + //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); + + send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */ + //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); + + send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */ + //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); +} + + +/* =========================================================================== + * Check if the data type is TEXT or BINARY, using the following algorithm: + * - TEXT if the two conditions below are satisfied: + * a) There are no non-portable control characters belonging to the + * "black list" (0..6, 14..25, 28..31). + * b) There is at least one printable character belonging to the + * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). + * - BINARY otherwise. + * - The following partially-portable control characters form a + * "gray list" that is ignored in this detection algorithm: + * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). + * IN assertion: the fields Freq of dyn_ltree are set. + */ +function detect_data_type(s) { + /* black_mask is the bit mask of black-listed bytes + * set bits 0..6, 14..25, and 28..31 + * 0xf3ffc07f = binary 11110011111111111100000001111111 + */ + var black_mask = 0xf3ffc07f; + var n; + + /* Check for non-textual ("black-listed") bytes. */ + for (n = 0; n <= 31; n++, black_mask >>>= 1) { + if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) { + return Z_BINARY; + } + } + + /* Check for textual ("white-listed") bytes. */ + if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 || + s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) { + return Z_TEXT; + } + for (n = 32; n < LITERALS$1; n++) { + if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) { + return Z_TEXT; + } + } + + /* There are no "black-listed" or "white-listed" bytes: + * this stream either is empty or has tolerated ("gray-listed") bytes only. + */ + return Z_BINARY; +} + + +var static_init_done = false; + +/* =========================================================================== + * Initialize the tree data structures for a new zlib stream. + */ +function _tr_init(s) +{ + + if (!static_init_done) { + tr_static_init(); + static_init_done = true; + } + + s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc); + s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc); + s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc); + + s.bi_buf = 0; + s.bi_valid = 0; + + /* Initialize the first block of the first file: */ + init_block(s); +} + + +/* =========================================================================== + * Send a stored block + */ +function _tr_stored_block(s, buf, stored_len, last) +//DeflateState *s; +//charf *buf; /* input block */ +//ulg stored_len; /* length of input block */ +//int last; /* one if this is the last block for a file */ +{ + send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */ + copy_block(s, buf, stored_len, true); /* with header */ +} + + +/* =========================================================================== + * Send one empty static block to give enough lookahead for inflate. + * This takes 10 bits, of which 7 may remain in the bit buffer. + */ +function _tr_align(s) { + send_bits(s, STATIC_TREES << 1, 3); + send_code(s, END_BLOCK, static_ltree); + bi_flush(s); +} + + +/* =========================================================================== + * Determine the best encoding for the current block: dynamic trees, static + * trees or store, and output the encoded block to the zip file. + */ +function _tr_flush_block(s, buf, stored_len, last) +//DeflateState *s; +//charf *buf; /* input block, or NULL if too old */ +//ulg stored_len; /* length of input block */ +//int last; /* one if this is the last block for a file */ +{ + var opt_lenb, static_lenb; /* opt_len and static_len in bytes */ + var max_blindex = 0; /* index of last bit length code of non zero freq */ + + /* Build the Huffman trees unless a stored block is forced */ + if (s.level > 0) { + + /* Check if the file is binary or text */ + if (s.strm.data_type === Z_UNKNOWN$1) { + s.strm.data_type = detect_data_type(s); + } + + /* Construct the literal and distance trees */ + build_tree(s, s.l_desc); + // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, + // s->static_len)); + + build_tree(s, s.d_desc); + // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, + // s->static_len)); + /* At this point, opt_len and static_len are the total bit lengths of + * the compressed block data, excluding the tree representations. + */ + + /* Build the bit length tree for the above two trees, and get the index + * in bl_order of the last bit length code to send. + */ + max_blindex = build_bl_tree(s); + + /* Determine the best encoding. Compute the block lengths in bytes. */ + opt_lenb = (s.opt_len + 3 + 7) >>> 3; + static_lenb = (s.static_len + 3 + 7) >>> 3; + + // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", + // opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, + // s->last_lit)); + + if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; } + + } else { + // Assert(buf != (char*)0, "lost buf"); + opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ + } + + if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) { + /* 4: two words for the lengths */ + + /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. + * Otherwise we can't have processed more than WSIZE input bytes since + * the last block flush, because compression would have been + * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to + * transform a block into a stored block. + */ + _tr_stored_block(s, buf, stored_len, last); + + } else if (s.strategy === Z_FIXED$1 || static_lenb === opt_lenb) { + + send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3); + compress_block(s, static_ltree, static_dtree); + + } else { + send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3); + send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1); + compress_block(s, s.dyn_ltree, s.dyn_dtree); + } + // Assert (s->compressed_len == s->bits_sent, "bad compressed size"); + /* The above check is made mod 2^32, for files larger than 512 MB + * and uLong implemented on 32 bits. + */ + init_block(s); + + if (last) { + bi_windup(s); + } + // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, + // s->compressed_len-7*last)); +} + +/* =========================================================================== + * Save the match info and tally the frequency counts. Return true if + * the current block must be flushed. + */ +function _tr_tally(s, dist, lc) +// deflate_state *s; +// unsigned dist; /* distance of matched string */ +// unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ +{ + //var out_length, in_length, dcode; + + s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff; + s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff; + + s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff; + s.last_lit++; + + if (dist === 0) { + /* lc is the unmatched char */ + s.dyn_ltree[lc * 2]/*.Freq*/++; + } else { + s.matches++; + /* Here, lc is the match length - MIN_MATCH */ + dist--; /* dist = match distance - 1 */ + //Assert((ush)dist < (ush)MAX_DIST(s) && + // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && + // (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); + + s.dyn_ltree[(_length_code[lc] + LITERALS$1 + 1) * 2]/*.Freq*/++; + s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++; + } + +// (!) This block is disabled in zlib defailts, +// don't enable it for binary compatibility + +//#ifdef TRUNCATE_BLOCK +// /* Try to guess if it is profitable to stop the current block here */ +// if ((s.last_lit & 0x1fff) === 0 && s.level > 2) { +// /* Compute an upper bound for the compressed length */ +// out_length = s.last_lit*8; +// in_length = s.strstart - s.block_start; +// +// for (dcode = 0; dcode < D_CODES; dcode++) { +// out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]); +// } +// out_length >>>= 3; +// //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", +// // s->last_lit, in_length, out_length, +// // 100L - out_length*100L/in_length)); +// if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) { +// return true; +// } +// } +//#endif + + return (s.last_lit === s.lit_bufsize - 1); + /* We avoid equality with lit_bufsize because of wraparound at 64K + * on 16 bit machines and because stored blocks are restricted to + * 64K-1 bytes. + */ +} + +var _tr_init_1 = _tr_init; +var _tr_stored_block_1 = _tr_stored_block; +var _tr_flush_block_1 = _tr_flush_block; +var _tr_tally_1 = _tr_tally; +var _tr_align_1 = _tr_align; + +var trees = { + _tr_init: _tr_init_1, + _tr_stored_block: _tr_stored_block_1, + _tr_flush_block: _tr_flush_block_1, + _tr_tally: _tr_tally_1, + _tr_align: _tr_align_1 +}; + +// Note: adler32 takes 12% for level 0 and 2% for level 6. +// It doesn't worth to make additional optimizationa as in original. +// Small size is preferable. + +function adler32(adler, buf, len, pos) { + var s1 = (adler & 0xffff) |0, + s2 = ((adler >>> 16) & 0xffff) |0, + n = 0; + + while (len !== 0) { + // Set limit ~ twice less than 5552, to keep + // s2 in 31-bits, because we force signed ints. + // in other case %= will fail. + n = len > 2000 ? 2000 : len; + len -= n; + + do { + s1 = (s1 + buf[pos++]) |0; + s2 = (s2 + s1) |0; + } while (--n); + + s1 %= 65521; + s2 %= 65521; + } + + return (s1 | (s2 << 16)) |0; +} + + +var adler32_1 = adler32; + +// Note: we can't get significant speed boost here. +// So write code to minimize size - no pregenerated tables +// and array tools dependencies. + + +// Use ordinary array, since untyped makes no boost here +function makeTable() { + var c, table = []; + + for (var n = 0; n < 256; n++) { + c = n; + for (var k = 0; k < 8; k++) { + c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1)); + } + table[n] = c; + } + + return table; +} + +// Create table on load. Just 255 signed longs. Not a problem. +var crcTable = makeTable(); + + +function crc32(crc, buf, len, pos) { + var t = crcTable, + end = pos + len; + + crc ^= -1; + + for (var i = pos; i < end; i++) { + crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF]; + } + + return (crc ^ (-1)); // >>> 0; +} + + +var crc32_1 = crc32; + +var messages = { + 2: 'need dictionary', /* Z_NEED_DICT 2 */ + 1: 'stream end', /* Z_STREAM_END 1 */ + 0: '', /* Z_OK 0 */ + '-1': 'file error', /* Z_ERRNO (-1) */ + '-2': 'stream error', /* Z_STREAM_ERROR (-2) */ + '-3': 'data error', /* Z_DATA_ERROR (-3) */ + '-4': 'insufficient memory', /* Z_MEM_ERROR (-4) */ + '-5': 'buffer error', /* Z_BUF_ERROR (-5) */ + '-6': 'incompatible version' /* Z_VERSION_ERROR (-6) */ +}; + +/* Public constants ==========================================================*/ +/* ===========================================================================*/ + + +/* Allowed flush values; see deflate() and inflate() below for details */ +var Z_NO_FLUSH$1 = 0; +var Z_PARTIAL_FLUSH = 1; +//var Z_SYNC_FLUSH = 2; +var Z_FULL_FLUSH = 3; +var Z_FINISH$1 = 4; +var Z_BLOCK = 5; +//var Z_TREES = 6; + + +/* Return codes for the compression/decompression functions. Negative values + * are errors, positive values are used for special but normal events. + */ +var Z_OK$1 = 0; +var Z_STREAM_END$1 = 1; +//var Z_NEED_DICT = 2; +//var Z_ERRNO = -1; +var Z_STREAM_ERROR = -2; +var Z_DATA_ERROR = -3; +//var Z_MEM_ERROR = -4; +var Z_BUF_ERROR = -5; +//var Z_VERSION_ERROR = -6; + + +/* compression levels */ +//var Z_NO_COMPRESSION = 0; +//var Z_BEST_SPEED = 1; +//var Z_BEST_COMPRESSION = 9; +var Z_DEFAULT_COMPRESSION$1 = -1; + + +var Z_FILTERED = 1; +var Z_HUFFMAN_ONLY = 2; +var Z_RLE = 3; +var Z_FIXED = 4; +var Z_DEFAULT_STRATEGY$1 = 0; + +/* Possible values of the data_type field (though see inflate()) */ +//var Z_BINARY = 0; +//var Z_TEXT = 1; +//var Z_ASCII = 1; // = Z_TEXT +var Z_UNKNOWN = 2; + + +/* The deflate compression method */ +var Z_DEFLATED$1 = 8; + +/*============================================================================*/ + + +var MAX_MEM_LEVEL = 9; +/* Maximum value for memLevel in deflateInit2 */ +var MAX_WBITS = 15; +/* 32K LZ77 window */ +var DEF_MEM_LEVEL = 8; + + +var LENGTH_CODES = 29; +/* number of length codes, not counting the special END_BLOCK code */ +var LITERALS = 256; +/* number of literal bytes 0..255 */ +var L_CODES = LITERALS + 1 + LENGTH_CODES; +/* number of Literal or Length codes, including the END_BLOCK code */ +var D_CODES = 30; +/* number of distance codes */ +var BL_CODES = 19; +/* number of codes used to transfer the bit lengths */ +var HEAP_SIZE = 2 * L_CODES + 1; +/* maximum heap size */ +var MAX_BITS = 15; +/* All codes must not exceed MAX_BITS bits */ + +var MIN_MATCH = 3; +var MAX_MATCH = 258; +var MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1); + +var PRESET_DICT = 0x20; + +var INIT_STATE = 42; +var EXTRA_STATE = 69; +var NAME_STATE = 73; +var COMMENT_STATE = 91; +var HCRC_STATE = 103; +var BUSY_STATE = 113; +var FINISH_STATE = 666; + +var BS_NEED_MORE = 1; /* block not completed, need more input or more output */ +var BS_BLOCK_DONE = 2; /* block flush performed */ +var BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */ +var BS_FINISH_DONE = 4; /* finish done, accept no more input or output */ + +var OS_CODE = 0x03; // Unix :) . Don't detect, use this default. + +function err(strm, errorCode) { + strm.msg = messages[errorCode]; + return errorCode; +} + +function rank(f) { + return ((f) << 1) - ((f) > 4 ? 9 : 0); +} + +function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } + + +/* ========================================================================= + * Flush as much pending output as possible. All deflate() output goes + * through this function so some applications may wish to modify it + * to avoid allocating a large strm->output buffer and copying into it. + * (See also read_buf()). + */ +function flush_pending(strm) { + var s = strm.state; + + //_tr_flush_bits(s); + var len = s.pending; + if (len > strm.avail_out) { + len = strm.avail_out; + } + if (len === 0) { return; } + + common.arraySet(strm.output, s.pending_buf, s.pending_out, len, strm.next_out); + strm.next_out += len; + s.pending_out += len; + strm.total_out += len; + strm.avail_out -= len; + s.pending -= len; + if (s.pending === 0) { + s.pending_out = 0; + } +} + + +function flush_block_only(s, last) { + trees._tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last); + s.block_start = s.strstart; + flush_pending(s.strm); +} + + +function put_byte(s, b) { + s.pending_buf[s.pending++] = b; +} + + +/* ========================================================================= + * Put a short in the pending buffer. The 16-bit value is put in MSB order. + * IN assertion: the stream state is correct and there is enough room in + * pending_buf. + */ +function putShortMSB(s, b) { +// put_byte(s, (Byte)(b >> 8)); +// put_byte(s, (Byte)(b & 0xff)); + s.pending_buf[s.pending++] = (b >>> 8) & 0xff; + s.pending_buf[s.pending++] = b & 0xff; +} + + +/* =========================================================================== + * Read a new buffer from the current input stream, update the adler32 + * and total number of bytes read. All deflate() input goes through + * this function so some applications may wish to modify it to avoid + * allocating a large strm->input buffer and copying from it. + * (See also flush_pending()). + */ +function read_buf(strm, buf, start, size) { + var len = strm.avail_in; + + if (len > size) { len = size; } + if (len === 0) { return 0; } + + strm.avail_in -= len; + + // zmemcpy(buf, strm->next_in, len); + common.arraySet(buf, strm.input, strm.next_in, len, start); + if (strm.state.wrap === 1) { + strm.adler = adler32_1(strm.adler, buf, len, start); + } + + else if (strm.state.wrap === 2) { + strm.adler = crc32_1(strm.adler, buf, len, start); + } + + strm.next_in += len; + strm.total_in += len; + + return len; +} + + +/* =========================================================================== + * Set match_start to the longest match starting at the given string and + * return its length. Matches shorter or equal to prev_length are discarded, + * in which case the result is equal to prev_length and match_start is + * garbage. + * IN assertions: cur_match is the head of the hash chain for the current + * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 + * OUT assertion: the match length is not greater than s->lookahead. + */ +function longest_match(s, cur_match) { + var chain_length = s.max_chain_length; /* max hash chain length */ + var scan = s.strstart; /* current string */ + var match; /* matched string */ + var len; /* length of current match */ + var best_len = s.prev_length; /* best match length so far */ + var nice_match = s.nice_match; /* stop if match long enough */ + var limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ? + s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0; + + var _win = s.window; // shortcut + + var wmask = s.w_mask; + var prev = s.prev; + + /* Stop when cur_match becomes <= limit. To simplify the code, + * we prevent matches with the string of window index 0. + */ + + var strend = s.strstart + MAX_MATCH; + var scan_end1 = _win[scan + best_len - 1]; + var scan_end = _win[scan + best_len]; + + /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. + * It is easy to get rid of this optimization if necessary. + */ + // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); + + /* Do not waste too much time if we already have a good match: */ + if (s.prev_length >= s.good_match) { + chain_length >>= 2; + } + /* Do not look for matches beyond the end of the input. This is necessary + * to make deflate deterministic. + */ + if (nice_match > s.lookahead) { nice_match = s.lookahead; } + + // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); + + do { + // Assert(cur_match < s->strstart, "no future"); + match = cur_match; + + /* Skip to next match if the match length cannot increase + * or if the match length is less than 2. Note that the checks below + * for insufficient lookahead only occur occasionally for performance + * reasons. Therefore uninitialized memory will be accessed, and + * conditional jumps will be made that depend on those values. + * However the length of the match is limited to the lookahead, so + * the output of deflate is not affected by the uninitialized values. + */ + + if (_win[match + best_len] !== scan_end || + _win[match + best_len - 1] !== scan_end1 || + _win[match] !== _win[scan] || + _win[++match] !== _win[scan + 1]) { + continue; + } + + /* The check at best_len-1 can be removed because it will be made + * again later. (This heuristic is not always a win.) + * It is not necessary to compare scan[2] and match[2] since they + * are always equal when the other bytes match, given that + * the hash keys are equal and that HASH_BITS >= 8. + */ + scan += 2; + match++; + // Assert(*scan == *match, "match[2]?"); + + /* We check for insufficient lookahead only every 8th comparison; + * the 256th check will be made at strstart+258. + */ + do { + /*jshint noempty:false*/ + } while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && + _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && + _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && + _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && + scan < strend); + + // Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); + + len = MAX_MATCH - (strend - scan); + scan = strend - MAX_MATCH; + + if (len > best_len) { + s.match_start = cur_match; + best_len = len; + if (len >= nice_match) { + break; + } + scan_end1 = _win[scan + best_len - 1]; + scan_end = _win[scan + best_len]; + } + } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0); + + if (best_len <= s.lookahead) { + return best_len; + } + return s.lookahead; +} + + +/* =========================================================================== + * Fill the window when the lookahead becomes insufficient. + * Updates strstart and lookahead. + * + * IN assertion: lookahead < MIN_LOOKAHEAD + * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD + * At least one byte has been read, or avail_in == 0; reads are + * performed for at least two bytes (required for the zip translate_eol + * option -- not supported here). + */ +function fill_window(s) { + var _w_size = s.w_size; + var p, n, m, more, str; + + //Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); + + do { + more = s.window_size - s.lookahead - s.strstart; + + // JS ints have 32 bit, block below not needed + /* Deal with !@#$% 64K limit: */ + //if (sizeof(int) <= 2) { + // if (more == 0 && s->strstart == 0 && s->lookahead == 0) { + // more = wsize; + // + // } else if (more == (unsigned)(-1)) { + // /* Very unlikely, but possible on 16 bit machine if + // * strstart == 0 && lookahead == 1 (input done a byte at time) + // */ + // more--; + // } + //} + + + /* If the window is almost full and there is insufficient lookahead, + * move the upper half to the lower one to make room in the upper half. + */ + if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) { + + common.arraySet(s.window, s.window, _w_size, _w_size, 0); + s.match_start -= _w_size; + s.strstart -= _w_size; + /* we now have strstart >= MAX_DIST */ + s.block_start -= _w_size; + + /* Slide the hash table (could be avoided with 32 bit values + at the expense of memory usage). We slide even when level == 0 + to keep the hash table consistent if we switch back to level > 0 + later. (Using level 0 permanently is not an optimal usage of + zlib, so we don't care about this pathological case.) + */ + + n = s.hash_size; + p = n; + do { + m = s.head[--p]; + s.head[p] = (m >= _w_size ? m - _w_size : 0); + } while (--n); + + n = _w_size; + p = n; + do { + m = s.prev[--p]; + s.prev[p] = (m >= _w_size ? m - _w_size : 0); + /* If n is not on any hash chain, prev[n] is garbage but + * its value will never be used. + */ + } while (--n); + + more += _w_size; + } + if (s.strm.avail_in === 0) { + break; + } + + /* If there was no sliding: + * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && + * more == window_size - lookahead - strstart + * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) + * => more >= window_size - 2*WSIZE + 2 + * In the BIG_MEM or MMAP case (not yet supported), + * window_size == input_size + MIN_LOOKAHEAD && + * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. + * Otherwise, window_size == 2*WSIZE so more >= 2. + * If there was sliding, more >= WSIZE. So in all cases, more >= 2. + */ + //Assert(more >= 2, "more < 2"); + n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more); + s.lookahead += n; + + /* Initialize the hash value now that we have some input: */ + if (s.lookahead + s.insert >= MIN_MATCH) { + str = s.strstart - s.insert; + s.ins_h = s.window[str]; + + /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */ + s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + 1]) & s.hash_mask; +//#if MIN_MATCH != 3 +// Call update_hash() MIN_MATCH-3 more times +//#endif + while (s.insert) { + /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ + s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; + + s.prev[str & s.w_mask] = s.head[s.ins_h]; + s.head[s.ins_h] = str; + str++; + s.insert--; + if (s.lookahead + s.insert < MIN_MATCH) { + break; + } + } + } + /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, + * but this is not important since only literal bytes will be emitted. + */ + + } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0); + + /* If the WIN_INIT bytes after the end of the current data have never been + * written, then zero those bytes in order to avoid memory check reports of + * the use of uninitialized (or uninitialised as Julian writes) bytes by + * the longest match routines. Update the high water mark for the next + * time through here. WIN_INIT is set to MAX_MATCH since the longest match + * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. + */ +// if (s.high_water < s.window_size) { +// var curr = s.strstart + s.lookahead; +// var init = 0; +// +// if (s.high_water < curr) { +// /* Previous high water mark below current data -- zero WIN_INIT +// * bytes or up to end of window, whichever is less. +// */ +// init = s.window_size - curr; +// if (init > WIN_INIT) +// init = WIN_INIT; +// zmemzero(s->window + curr, (unsigned)init); +// s->high_water = curr + init; +// } +// else if (s->high_water < (ulg)curr + WIN_INIT) { +// /* High water mark at or above current data, but below current data +// * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up +// * to end of window, whichever is less. +// */ +// init = (ulg)curr + WIN_INIT - s->high_water; +// if (init > s->window_size - s->high_water) +// init = s->window_size - s->high_water; +// zmemzero(s->window + s->high_water, (unsigned)init); +// s->high_water += init; +// } +// } +// +// Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, +// "not enough room for search"); +} + +/* =========================================================================== + * Copy without compression as much as possible from the input stream, return + * the current block state. + * This function does not insert new strings in the dictionary since + * uncompressible data is probably not useful. This function is used + * only for the level=0 compression option. + * NOTE: this function should be optimized to avoid extra copying from + * window to pending_buf. + */ +function deflate_stored(s, flush) { + /* Stored blocks are limited to 0xffff bytes, pending_buf is limited + * to pending_buf_size, and each stored block has a 5 byte header: + */ + var max_block_size = 0xffff; + + if (max_block_size > s.pending_buf_size - 5) { + max_block_size = s.pending_buf_size - 5; + } + + /* Copy as much as possible from input to output: */ + for (;;) { + /* Fill the window as much as possible: */ + if (s.lookahead <= 1) { + + //Assert(s->strstart < s->w_size+MAX_DIST(s) || + // s->block_start >= (long)s->w_size, "slide too late"); +// if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) || +// s.block_start >= s.w_size)) { +// throw new Error("slide too late"); +// } + + fill_window(s); + if (s.lookahead === 0 && flush === Z_NO_FLUSH$1) { + return BS_NEED_MORE; + } + + if (s.lookahead === 0) { + break; + } + /* flush the current block */ + } + //Assert(s->block_start >= 0L, "block gone"); +// if (s.block_start < 0) throw new Error("block gone"); + + s.strstart += s.lookahead; + s.lookahead = 0; + + /* Emit a stored block if pending_buf will be full: */ + var max_start = s.block_start + max_block_size; + + if (s.strstart === 0 || s.strstart >= max_start) { + /* strstart == 0 is possible when wraparound on 16-bit machine */ + s.lookahead = s.strstart - max_start; + s.strstart = max_start; + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + + + } + /* Flush if we may have to slide, otherwise block_start may become + * negative and the data will be gone: + */ + if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + } + + s.insert = 0; + + if (flush === Z_FINISH$1) { + /*** FLUSH_BLOCK(s, 1); ***/ + flush_block_only(s, true); + if (s.strm.avail_out === 0) { + return BS_FINISH_STARTED; + } + /***/ + return BS_FINISH_DONE; + } + + if (s.strstart > s.block_start) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + + return BS_NEED_MORE; +} + +/* =========================================================================== + * Compress as much as possible from the input stream, return the current + * block state. + * This function does not perform lazy evaluation of matches and inserts + * new strings in the dictionary only for unmatched strings or for short + * matches. It is used only for the fast compression options. + */ +function deflate_fast(s, flush) { + var hash_head; /* head of the hash chain */ + var bflush; /* set if current block must be flushed */ + + for (;;) { + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the next match, plus MIN_MATCH bytes to insert the + * string following the next match. + */ + if (s.lookahead < MIN_LOOKAHEAD) { + fill_window(s); + if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH$1) { + return BS_NEED_MORE; + } + if (s.lookahead === 0) { + break; /* flush the current block */ + } + } + + /* Insert the string window[strstart .. strstart+2] in the + * dictionary, and set hash_head to the head of the hash chain: + */ + hash_head = 0/*NIL*/; + if (s.lookahead >= MIN_MATCH) { + /*** INSERT_STRING(s, s.strstart, hash_head); ***/ + s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; + hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; + s.head[s.ins_h] = s.strstart; + /***/ + } + + /* Find the longest match, discarding those <= prev_length. + * At this point we have always match_length < MIN_MATCH + */ + if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) { + /* To simplify the code, we prevent matches with the string + * of window index 0 (in particular we have to avoid a match + * of the string with itself at the start of the input file). + */ + s.match_length = longest_match(s, hash_head); + /* longest_match() sets match_start */ + } + if (s.match_length >= MIN_MATCH) { + // check_match(s, s.strstart, s.match_start, s.match_length); // for debug only + + /*** _tr_tally_dist(s, s.strstart - s.match_start, + s.match_length - MIN_MATCH, bflush); ***/ + bflush = trees._tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH); + + s.lookahead -= s.match_length; + + /* Insert new strings in the hash table only if the match length + * is not too large. This saves time but degrades compression. + */ + if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) { + s.match_length--; /* string at strstart already in table */ + do { + s.strstart++; + /*** INSERT_STRING(s, s.strstart, hash_head); ***/ + s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; + hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; + s.head[s.ins_h] = s.strstart; + /***/ + /* strstart never exceeds WSIZE-MAX_MATCH, so there are + * always MIN_MATCH bytes ahead. + */ + } while (--s.match_length !== 0); + s.strstart++; + } else + { + s.strstart += s.match_length; + s.match_length = 0; + s.ins_h = s.window[s.strstart]; + /* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */ + s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + 1]) & s.hash_mask; + +//#if MIN_MATCH != 3 +// Call UPDATE_HASH() MIN_MATCH-3 more times +//#endif + /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not + * matter since it will be recomputed at next deflate call. + */ + } + } else { + /* No match, output a literal byte */ + //Tracevv((stderr,"%c", s.window[s.strstart])); + /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ + bflush = trees._tr_tally(s, 0, s.window[s.strstart]); + + s.lookahead--; + s.strstart++; + } + if (bflush) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + } + s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1); + if (flush === Z_FINISH$1) { + /*** FLUSH_BLOCK(s, 1); ***/ + flush_block_only(s, true); + if (s.strm.avail_out === 0) { + return BS_FINISH_STARTED; + } + /***/ + return BS_FINISH_DONE; + } + if (s.last_lit) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + return BS_BLOCK_DONE; +} + +/* =========================================================================== + * Same as above, but achieves better compression. We use a lazy + * evaluation for matches: a match is finally adopted only if there is + * no better match at the next window position. + */ +function deflate_slow(s, flush) { + var hash_head; /* head of hash chain */ + var bflush; /* set if current block must be flushed */ + + var max_insert; + + /* Process the input block. */ + for (;;) { + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the next match, plus MIN_MATCH bytes to insert the + * string following the next match. + */ + if (s.lookahead < MIN_LOOKAHEAD) { + fill_window(s); + if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH$1) { + return BS_NEED_MORE; + } + if (s.lookahead === 0) { break; } /* flush the current block */ + } + + /* Insert the string window[strstart .. strstart+2] in the + * dictionary, and set hash_head to the head of the hash chain: + */ + hash_head = 0/*NIL*/; + if (s.lookahead >= MIN_MATCH) { + /*** INSERT_STRING(s, s.strstart, hash_head); ***/ + s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; + hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; + s.head[s.ins_h] = s.strstart; + /***/ + } + + /* Find the longest match, discarding those <= prev_length. + */ + s.prev_length = s.match_length; + s.prev_match = s.match_start; + s.match_length = MIN_MATCH - 1; + + if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match && + s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) { + /* To simplify the code, we prevent matches with the string + * of window index 0 (in particular we have to avoid a match + * of the string with itself at the start of the input file). + */ + s.match_length = longest_match(s, hash_head); + /* longest_match() sets match_start */ + + if (s.match_length <= 5 && + (s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) { + + /* If prev_match is also MIN_MATCH, match_start is garbage + * but we will ignore the current match anyway. + */ + s.match_length = MIN_MATCH - 1; + } + } + /* If there was a match at the previous step and the current + * match is not better, output the previous match: + */ + if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) { + max_insert = s.strstart + s.lookahead - MIN_MATCH; + /* Do not insert strings in hash table beyond this. */ + + //check_match(s, s.strstart-1, s.prev_match, s.prev_length); + + /***_tr_tally_dist(s, s.strstart - 1 - s.prev_match, + s.prev_length - MIN_MATCH, bflush);***/ + bflush = trees._tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH); + /* Insert in hash table all strings up to the end of the match. + * strstart-1 and strstart are already inserted. If there is not + * enough lookahead, the last two strings are not inserted in + * the hash table. + */ + s.lookahead -= s.prev_length - 1; + s.prev_length -= 2; + do { + if (++s.strstart <= max_insert) { + /*** INSERT_STRING(s, s.strstart, hash_head); ***/ + s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; + hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; + s.head[s.ins_h] = s.strstart; + /***/ + } + } while (--s.prev_length !== 0); + s.match_available = 0; + s.match_length = MIN_MATCH - 1; + s.strstart++; + + if (bflush) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + + } else if (s.match_available) { + /* If there was no match at the previous position, output a + * single literal. If there was a match but the current match + * is longer, truncate the previous match to a single literal. + */ + //Tracevv((stderr,"%c", s->window[s->strstart-1])); + /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ + bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]); + + if (bflush) { + /*** FLUSH_BLOCK_ONLY(s, 0) ***/ + flush_block_only(s, false); + /***/ + } + s.strstart++; + s.lookahead--; + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + } else { + /* There is no previous match to compare with, wait for + * the next step to decide. + */ + s.match_available = 1; + s.strstart++; + s.lookahead--; + } + } + //Assert (flush != Z_NO_FLUSH, "no flush?"); + if (s.match_available) { + //Tracevv((stderr,"%c", s->window[s->strstart-1])); + /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ + bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]); + + s.match_available = 0; + } + s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1; + if (flush === Z_FINISH$1) { + /*** FLUSH_BLOCK(s, 1); ***/ + flush_block_only(s, true); + if (s.strm.avail_out === 0) { + return BS_FINISH_STARTED; + } + /***/ + return BS_FINISH_DONE; + } + if (s.last_lit) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + + return BS_BLOCK_DONE; +} + + +/* =========================================================================== + * For Z_RLE, simply look for runs of bytes, generate matches only of distance + * one. Do not maintain a hash table. (It will be regenerated if this run of + * deflate switches away from Z_RLE.) + */ +function deflate_rle(s, flush) { + var bflush; /* set if current block must be flushed */ + var prev; /* byte at distance one to match */ + var scan, strend; /* scan goes up to strend for length of run */ + + var _win = s.window; + + for (;;) { + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the longest run, plus one for the unrolled loop. + */ + if (s.lookahead <= MAX_MATCH) { + fill_window(s); + if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH$1) { + return BS_NEED_MORE; + } + if (s.lookahead === 0) { break; } /* flush the current block */ + } + + /* See how many times the previous byte repeats */ + s.match_length = 0; + if (s.lookahead >= MIN_MATCH && s.strstart > 0) { + scan = s.strstart - 1; + prev = _win[scan]; + if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) { + strend = s.strstart + MAX_MATCH; + do { + /*jshint noempty:false*/ + } while (prev === _win[++scan] && prev === _win[++scan] && + prev === _win[++scan] && prev === _win[++scan] && + prev === _win[++scan] && prev === _win[++scan] && + prev === _win[++scan] && prev === _win[++scan] && + scan < strend); + s.match_length = MAX_MATCH - (strend - scan); + if (s.match_length > s.lookahead) { + s.match_length = s.lookahead; + } + } + //Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); + } + + /* Emit match if have run of MIN_MATCH or longer, else emit literal */ + if (s.match_length >= MIN_MATCH) { + //check_match(s, s.strstart, s.strstart - 1, s.match_length); + + /*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/ + bflush = trees._tr_tally(s, 1, s.match_length - MIN_MATCH); + + s.lookahead -= s.match_length; + s.strstart += s.match_length; + s.match_length = 0; + } else { + /* No match, output a literal byte */ + //Tracevv((stderr,"%c", s->window[s->strstart])); + /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ + bflush = trees._tr_tally(s, 0, s.window[s.strstart]); + + s.lookahead--; + s.strstart++; + } + if (bflush) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + } + s.insert = 0; + if (flush === Z_FINISH$1) { + /*** FLUSH_BLOCK(s, 1); ***/ + flush_block_only(s, true); + if (s.strm.avail_out === 0) { + return BS_FINISH_STARTED; + } + /***/ + return BS_FINISH_DONE; + } + if (s.last_lit) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + return BS_BLOCK_DONE; +} + +/* =========================================================================== + * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. + * (It will be regenerated if this run of deflate switches away from Huffman.) + */ +function deflate_huff(s, flush) { + var bflush; /* set if current block must be flushed */ + + for (;;) { + /* Make sure that we have a literal to write. */ + if (s.lookahead === 0) { + fill_window(s); + if (s.lookahead === 0) { + if (flush === Z_NO_FLUSH$1) { + return BS_NEED_MORE; + } + break; /* flush the current block */ + } + } + + /* Output a literal byte */ + s.match_length = 0; + //Tracevv((stderr,"%c", s->window[s->strstart])); + /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ + bflush = trees._tr_tally(s, 0, s.window[s.strstart]); + s.lookahead--; + s.strstart++; + if (bflush) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + } + s.insert = 0; + if (flush === Z_FINISH$1) { + /*** FLUSH_BLOCK(s, 1); ***/ + flush_block_only(s, true); + if (s.strm.avail_out === 0) { + return BS_FINISH_STARTED; + } + /***/ + return BS_FINISH_DONE; + } + if (s.last_lit) { + /*** FLUSH_BLOCK(s, 0); ***/ + flush_block_only(s, false); + if (s.strm.avail_out === 0) { + return BS_NEED_MORE; + } + /***/ + } + return BS_BLOCK_DONE; +} + +/* Values for max_lazy_match, good_match and max_chain_length, depending on + * the desired pack level (0..9). The values given below have been tuned to + * exclude worst case performance for pathological files. Better values may be + * found for specific files. + */ +function Config(good_length, max_lazy, nice_length, max_chain, func) { + this.good_length = good_length; + this.max_lazy = max_lazy; + this.nice_length = nice_length; + this.max_chain = max_chain; + this.func = func; +} + +var configuration_table; + +configuration_table = [ + /* good lazy nice chain */ + new Config(0, 0, 0, 0, deflate_stored), /* 0 store only */ + new Config(4, 4, 8, 4, deflate_fast), /* 1 max speed, no lazy matches */ + new Config(4, 5, 16, 8, deflate_fast), /* 2 */ + new Config(4, 6, 32, 32, deflate_fast), /* 3 */ + + new Config(4, 4, 16, 16, deflate_slow), /* 4 lazy matches */ + new Config(8, 16, 32, 32, deflate_slow), /* 5 */ + new Config(8, 16, 128, 128, deflate_slow), /* 6 */ + new Config(8, 32, 128, 256, deflate_slow), /* 7 */ + new Config(32, 128, 258, 1024, deflate_slow), /* 8 */ + new Config(32, 258, 258, 4096, deflate_slow) /* 9 max compression */ +]; + + +/* =========================================================================== + * Initialize the "longest match" routines for a new zlib stream + */ +function lm_init(s) { + s.window_size = 2 * s.w_size; + + /*** CLEAR_HASH(s); ***/ + zero(s.head); // Fill with NIL (= 0); + + /* Set the default configuration parameters: + */ + s.max_lazy_match = configuration_table[s.level].max_lazy; + s.good_match = configuration_table[s.level].good_length; + s.nice_match = configuration_table[s.level].nice_length; + s.max_chain_length = configuration_table[s.level].max_chain; + + s.strstart = 0; + s.block_start = 0; + s.lookahead = 0; + s.insert = 0; + s.match_length = s.prev_length = MIN_MATCH - 1; + s.match_available = 0; + s.ins_h = 0; +} + + +function DeflateState() { + this.strm = null; /* pointer back to this zlib stream */ + this.status = 0; /* as the name implies */ + this.pending_buf = null; /* output still pending */ + this.pending_buf_size = 0; /* size of pending_buf */ + this.pending_out = 0; /* next pending byte to output to the stream */ + this.pending = 0; /* nb of bytes in the pending buffer */ + this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */ + this.gzhead = null; /* gzip header information to write */ + this.gzindex = 0; /* where in extra, name, or comment */ + this.method = Z_DEFLATED$1; /* can only be DEFLATED */ + this.last_flush = -1; /* value of flush param for previous deflate call */ + + this.w_size = 0; /* LZ77 window size (32K by default) */ + this.w_bits = 0; /* log2(w_size) (8..16) */ + this.w_mask = 0; /* w_size - 1 */ + + this.window = null; + /* Sliding window. Input bytes are read into the second half of the window, + * and move to the first half later to keep a dictionary of at least wSize + * bytes. With this organization, matches are limited to a distance of + * wSize-MAX_MATCH bytes, but this ensures that IO is always + * performed with a length multiple of the block size. + */ + + this.window_size = 0; + /* Actual size of window: 2*wSize, except when the user input buffer + * is directly used as sliding window. + */ + + this.prev = null; + /* Link to older string with same hash index. To limit the size of this + * array to 64K, this link is maintained only for the last 32K strings. + * An index in this array is thus a window index modulo 32K. + */ + + this.head = null; /* Heads of the hash chains or NIL. */ + + this.ins_h = 0; /* hash index of string to be inserted */ + this.hash_size = 0; /* number of elements in hash table */ + this.hash_bits = 0; /* log2(hash_size) */ + this.hash_mask = 0; /* hash_size-1 */ + + this.hash_shift = 0; + /* Number of bits by which ins_h must be shifted at each input + * step. It must be such that after MIN_MATCH steps, the oldest + * byte no longer takes part in the hash key, that is: + * hash_shift * MIN_MATCH >= hash_bits + */ + + this.block_start = 0; + /* Window position at the beginning of the current output block. Gets + * negative when the window is moved backwards. + */ + + this.match_length = 0; /* length of best match */ + this.prev_match = 0; /* previous match */ + this.match_available = 0; /* set if previous match exists */ + this.strstart = 0; /* start of string to insert */ + this.match_start = 0; /* start of matching string */ + this.lookahead = 0; /* number of valid bytes ahead in window */ + + this.prev_length = 0; + /* Length of the best match at previous step. Matches not greater than this + * are discarded. This is used in the lazy match evaluation. + */ + + this.max_chain_length = 0; + /* To speed up deflation, hash chains are never searched beyond this + * length. A higher limit improves compression ratio but degrades the + * speed. + */ + + this.max_lazy_match = 0; + /* Attempt to find a better match only when the current match is strictly + * smaller than this value. This mechanism is used only for compression + * levels >= 4. + */ + // That's alias to max_lazy_match, don't use directly + //this.max_insert_length = 0; + /* Insert new strings in the hash table only if the match length is not + * greater than this length. This saves time but degrades compression. + * max_insert_length is used only for compression levels <= 3. + */ + + this.level = 0; /* compression level (1..9) */ + this.strategy = 0; /* favor or force Huffman coding*/ + + this.good_match = 0; + /* Use a faster search when the previous match is longer than this */ + + this.nice_match = 0; /* Stop searching when current match exceeds this */ + + /* used by trees.c: */ + + /* Didn't use ct_data typedef below to suppress compiler warning */ + + // struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ + // struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ + // struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ + + // Use flat array of DOUBLE size, with interleaved fata, + // because JS does not support effective + this.dyn_ltree = new common.Buf16(HEAP_SIZE * 2); + this.dyn_dtree = new common.Buf16((2 * D_CODES + 1) * 2); + this.bl_tree = new common.Buf16((2 * BL_CODES + 1) * 2); + zero(this.dyn_ltree); + zero(this.dyn_dtree); + zero(this.bl_tree); + + this.l_desc = null; /* desc. for literal tree */ + this.d_desc = null; /* desc. for distance tree */ + this.bl_desc = null; /* desc. for bit length tree */ + + //ush bl_count[MAX_BITS+1]; + this.bl_count = new common.Buf16(MAX_BITS + 1); + /* number of codes at each bit length for an optimal tree */ + + //int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ + this.heap = new common.Buf16(2 * L_CODES + 1); /* heap used to build the Huffman trees */ + zero(this.heap); + + this.heap_len = 0; /* number of elements in the heap */ + this.heap_max = 0; /* element of largest frequency */ + /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. + * The same heap array is used to build all trees. + */ + + this.depth = new common.Buf16(2 * L_CODES + 1); //uch depth[2*L_CODES+1]; + zero(this.depth); + /* Depth of each subtree used as tie breaker for trees of equal frequency + */ + + this.l_buf = 0; /* buffer index for literals or lengths */ + + this.lit_bufsize = 0; + /* Size of match buffer for literals/lengths. There are 4 reasons for + * limiting lit_bufsize to 64K: + * - frequencies can be kept in 16 bit counters + * - if compression is not successful for the first block, all input + * data is still in the window so we can still emit a stored block even + * when input comes from standard input. (This can also be done for + * all blocks if lit_bufsize is not greater than 32K.) + * - if compression is not successful for a file smaller than 64K, we can + * even emit a stored file instead of a stored block (saving 5 bytes). + * This is applicable only for zip (not gzip or zlib). + * - creating new Huffman trees less frequently may not provide fast + * adaptation to changes in the input data statistics. (Take for + * example a binary file with poorly compressible code followed by + * a highly compressible string table.) Smaller buffer sizes give + * fast adaptation but have of course the overhead of transmitting + * trees more frequently. + * - I can't count above 4 + */ + + this.last_lit = 0; /* running index in l_buf */ + + this.d_buf = 0; + /* Buffer index for distances. To simplify the code, d_buf and l_buf have + * the same number of elements. To use different lengths, an extra flag + * array would be necessary. + */ + + this.opt_len = 0; /* bit length of current block with optimal trees */ + this.static_len = 0; /* bit length of current block with static trees */ + this.matches = 0; /* number of string matches in current block */ + this.insert = 0; /* bytes at end of window left to insert */ + + + this.bi_buf = 0; + /* Output buffer. bits are inserted starting at the bottom (least + * significant bits). + */ + this.bi_valid = 0; + /* Number of valid bits in bi_buf. All bits above the last valid bit + * are always zero. + */ + + // Used for window memory init. We safely ignore it for JS. That makes + // sense only for pointers and memory check tools. + //this.high_water = 0; + /* High water mark offset in window for initialized bytes -- bytes above + * this are set to zero in order to avoid memory check warnings when + * longest match routines access bytes past the input. This is then + * updated to the new high water mark. + */ +} + + +function deflateResetKeep(strm) { + var s; + + if (!strm || !strm.state) { + return err(strm, Z_STREAM_ERROR); + } + + strm.total_in = strm.total_out = 0; + strm.data_type = Z_UNKNOWN; + + s = strm.state; + s.pending = 0; + s.pending_out = 0; + + if (s.wrap < 0) { + s.wrap = -s.wrap; + /* was made negative by deflate(..., Z_FINISH); */ + } + s.status = (s.wrap ? INIT_STATE : BUSY_STATE); + strm.adler = (s.wrap === 2) ? + 0 // crc32(0, Z_NULL, 0) + : + 1; // adler32(0, Z_NULL, 0) + s.last_flush = Z_NO_FLUSH$1; + trees._tr_init(s); + return Z_OK$1; +} + + +function deflateReset(strm) { + var ret = deflateResetKeep(strm); + if (ret === Z_OK$1) { + lm_init(strm.state); + } + return ret; +} + + +function deflateSetHeader(strm, head) { + if (!strm || !strm.state) { return Z_STREAM_ERROR; } + if (strm.state.wrap !== 2) { return Z_STREAM_ERROR; } + strm.state.gzhead = head; + return Z_OK$1; +} + + +function deflateInit2(strm, level, method, windowBits, memLevel, strategy) { + if (!strm) { // === Z_NULL + return Z_STREAM_ERROR; + } + var wrap = 1; + + if (level === Z_DEFAULT_COMPRESSION$1) { + level = 6; + } + + if (windowBits < 0) { /* suppress zlib wrapper */ + wrap = 0; + windowBits = -windowBits; + } + + else if (windowBits > 15) { + wrap = 2; /* write gzip wrapper instead */ + windowBits -= 16; + } + + + if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED$1 || + windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || + strategy < 0 || strategy > Z_FIXED) { + return err(strm, Z_STREAM_ERROR); + } + + + if (windowBits === 8) { + windowBits = 9; + } + /* until 256-byte window bug fixed */ + + var s = new DeflateState(); + + strm.state = s; + s.strm = strm; + + s.wrap = wrap; + s.gzhead = null; + s.w_bits = windowBits; + s.w_size = 1 << s.w_bits; + s.w_mask = s.w_size - 1; + + s.hash_bits = memLevel + 7; + s.hash_size = 1 << s.hash_bits; + s.hash_mask = s.hash_size - 1; + s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH); + + s.window = new common.Buf8(s.w_size * 2); + s.head = new common.Buf16(s.hash_size); + s.prev = new common.Buf16(s.w_size); + + // Don't need mem init magic for JS. + //s.high_water = 0; /* nothing written to s->window yet */ + + s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ + + s.pending_buf_size = s.lit_bufsize * 4; + + //overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); + //s->pending_buf = (uchf *) overlay; + s.pending_buf = new common.Buf8(s.pending_buf_size); + + // It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`) + //s->d_buf = overlay + s->lit_bufsize/sizeof(ush); + s.d_buf = 1 * s.lit_bufsize; + + //s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; + s.l_buf = (1 + 2) * s.lit_bufsize; + + s.level = level; + s.strategy = strategy; + s.method = method; + + return deflateReset(strm); +} + +function deflateInit(strm, level) { + return deflateInit2(strm, level, Z_DEFLATED$1, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY$1); +} + + +function deflate$1(strm, flush) { + var old_flush, s; + var beg, val; // for gzip header write only + + if (!strm || !strm.state || + flush > Z_BLOCK || flush < 0) { + return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR; + } + + s = strm.state; + + if (!strm.output || + (!strm.input && strm.avail_in !== 0) || + (s.status === FINISH_STATE && flush !== Z_FINISH$1)) { + return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR); + } + + s.strm = strm; /* just in case */ + old_flush = s.last_flush; + s.last_flush = flush; + + /* Write the header */ + if (s.status === INIT_STATE) { + + if (s.wrap === 2) { // GZIP header + strm.adler = 0; //crc32(0L, Z_NULL, 0); + put_byte(s, 31); + put_byte(s, 139); + put_byte(s, 8); + if (!s.gzhead) { // s->gzhead == Z_NULL + put_byte(s, 0); + put_byte(s, 0); + put_byte(s, 0); + put_byte(s, 0); + put_byte(s, 0); + put_byte(s, s.level === 9 ? 2 : + (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? + 4 : 0)); + put_byte(s, OS_CODE); + s.status = BUSY_STATE; + } + else { + put_byte(s, (s.gzhead.text ? 1 : 0) + + (s.gzhead.hcrc ? 2 : 0) + + (!s.gzhead.extra ? 0 : 4) + + (!s.gzhead.name ? 0 : 8) + + (!s.gzhead.comment ? 0 : 16) + ); + put_byte(s, s.gzhead.time & 0xff); + put_byte(s, (s.gzhead.time >> 8) & 0xff); + put_byte(s, (s.gzhead.time >> 16) & 0xff); + put_byte(s, (s.gzhead.time >> 24) & 0xff); + put_byte(s, s.level === 9 ? 2 : + (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? + 4 : 0)); + put_byte(s, s.gzhead.os & 0xff); + if (s.gzhead.extra && s.gzhead.extra.length) { + put_byte(s, s.gzhead.extra.length & 0xff); + put_byte(s, (s.gzhead.extra.length >> 8) & 0xff); + } + if (s.gzhead.hcrc) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending, 0); + } + s.gzindex = 0; + s.status = EXTRA_STATE; + } + } + else // DEFLATE header + { + var header = (Z_DEFLATED$1 + ((s.w_bits - 8) << 4)) << 8; + var level_flags = -1; + + if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) { + level_flags = 0; + } else if (s.level < 6) { + level_flags = 1; + } else if (s.level === 6) { + level_flags = 2; + } else { + level_flags = 3; + } + header |= (level_flags << 6); + if (s.strstart !== 0) { header |= PRESET_DICT; } + header += 31 - (header % 31); + + s.status = BUSY_STATE; + putShortMSB(s, header); + + /* Save the adler32 of the preset dictionary: */ + if (s.strstart !== 0) { + putShortMSB(s, strm.adler >>> 16); + putShortMSB(s, strm.adler & 0xffff); + } + strm.adler = 1; // adler32(0L, Z_NULL, 0); + } + } + +//#ifdef GZIP + if (s.status === EXTRA_STATE) { + if (s.gzhead.extra/* != Z_NULL*/) { + beg = s.pending; /* start of bytes to update crc */ + + while (s.gzindex < (s.gzhead.extra.length & 0xffff)) { + if (s.pending === s.pending_buf_size) { + if (s.gzhead.hcrc && s.pending > beg) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg); + } + flush_pending(strm); + beg = s.pending; + if (s.pending === s.pending_buf_size) { + break; + } + } + put_byte(s, s.gzhead.extra[s.gzindex] & 0xff); + s.gzindex++; + } + if (s.gzhead.hcrc && s.pending > beg) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg); + } + if (s.gzindex === s.gzhead.extra.length) { + s.gzindex = 0; + s.status = NAME_STATE; + } + } + else { + s.status = NAME_STATE; + } + } + if (s.status === NAME_STATE) { + if (s.gzhead.name/* != Z_NULL*/) { + beg = s.pending; /* start of bytes to update crc */ + //int val; + + do { + if (s.pending === s.pending_buf_size) { + if (s.gzhead.hcrc && s.pending > beg) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg); + } + flush_pending(strm); + beg = s.pending; + if (s.pending === s.pending_buf_size) { + val = 1; + break; + } + } + // JS specific: little magic to add zero terminator to end of string + if (s.gzindex < s.gzhead.name.length) { + val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff; + } else { + val = 0; + } + put_byte(s, val); + } while (val !== 0); + + if (s.gzhead.hcrc && s.pending > beg) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg); + } + if (val === 0) { + s.gzindex = 0; + s.status = COMMENT_STATE; + } + } + else { + s.status = COMMENT_STATE; + } + } + if (s.status === COMMENT_STATE) { + if (s.gzhead.comment/* != Z_NULL*/) { + beg = s.pending; /* start of bytes to update crc */ + //int val; + + do { + if (s.pending === s.pending_buf_size) { + if (s.gzhead.hcrc && s.pending > beg) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg); + } + flush_pending(strm); + beg = s.pending; + if (s.pending === s.pending_buf_size) { + val = 1; + break; + } + } + // JS specific: little magic to add zero terminator to end of string + if (s.gzindex < s.gzhead.comment.length) { + val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff; + } else { + val = 0; + } + put_byte(s, val); + } while (val !== 0); + + if (s.gzhead.hcrc && s.pending > beg) { + strm.adler = crc32_1(strm.adler, s.pending_buf, s.pending - beg, beg); + } + if (val === 0) { + s.status = HCRC_STATE; + } + } + else { + s.status = HCRC_STATE; + } + } + if (s.status === HCRC_STATE) { + if (s.gzhead.hcrc) { + if (s.pending + 2 > s.pending_buf_size) { + flush_pending(strm); + } + if (s.pending + 2 <= s.pending_buf_size) { + put_byte(s, strm.adler & 0xff); + put_byte(s, (strm.adler >> 8) & 0xff); + strm.adler = 0; //crc32(0L, Z_NULL, 0); + s.status = BUSY_STATE; + } + } + else { + s.status = BUSY_STATE; + } + } +//#endif + + /* Flush as much pending output as possible */ + if (s.pending !== 0) { + flush_pending(strm); + if (strm.avail_out === 0) { + /* Since avail_out is 0, deflate will be called again with + * more output space, but possibly with both pending and + * avail_in equal to zero. There won't be anything to do, + * but this is not an error situation so make sure we + * return OK instead of BUF_ERROR at next call of deflate: + */ + s.last_flush = -1; + return Z_OK$1; + } + + /* Make sure there is something to do and avoid duplicate consecutive + * flushes. For repeated and useless calls with Z_FINISH, we keep + * returning Z_STREAM_END instead of Z_BUF_ERROR. + */ + } else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) && + flush !== Z_FINISH$1) { + return err(strm, Z_BUF_ERROR); + } + + /* User must not provide more input after the first FINISH: */ + if (s.status === FINISH_STATE && strm.avail_in !== 0) { + return err(strm, Z_BUF_ERROR); + } + + /* Start a new block or continue the current one. + */ + if (strm.avail_in !== 0 || s.lookahead !== 0 || + (flush !== Z_NO_FLUSH$1 && s.status !== FINISH_STATE)) { + var bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) : + (s.strategy === Z_RLE ? deflate_rle(s, flush) : + configuration_table[s.level].func(s, flush)); + + if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) { + s.status = FINISH_STATE; + } + if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) { + if (strm.avail_out === 0) { + s.last_flush = -1; + /* avoid BUF_ERROR next call, see above */ + } + return Z_OK$1; + /* If flush != Z_NO_FLUSH && avail_out == 0, the next call + * of deflate should use the same flush parameter to make sure + * that the flush is complete. So we don't have to output an + * empty block here, this will be done at next call. This also + * ensures that for a very small output buffer, we emit at most + * one empty block. + */ + } + if (bstate === BS_BLOCK_DONE) { + if (flush === Z_PARTIAL_FLUSH) { + trees._tr_align(s); + } + else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ + + trees._tr_stored_block(s, 0, 0, false); + /* For a full flush, this empty block will be recognized + * as a special marker by inflate_sync(). + */ + if (flush === Z_FULL_FLUSH) { + /*** CLEAR_HASH(s); ***/ /* forget history */ + zero(s.head); // Fill with NIL (= 0); + + if (s.lookahead === 0) { + s.strstart = 0; + s.block_start = 0; + s.insert = 0; + } + } + } + flush_pending(strm); + if (strm.avail_out === 0) { + s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */ + return Z_OK$1; + } + } + } + //Assert(strm->avail_out > 0, "bug2"); + //if (strm.avail_out <= 0) { throw new Error("bug2");} + + if (flush !== Z_FINISH$1) { return Z_OK$1; } + if (s.wrap <= 0) { return Z_STREAM_END$1; } + + /* Write the trailer */ + if (s.wrap === 2) { + put_byte(s, strm.adler & 0xff); + put_byte(s, (strm.adler >> 8) & 0xff); + put_byte(s, (strm.adler >> 16) & 0xff); + put_byte(s, (strm.adler >> 24) & 0xff); + put_byte(s, strm.total_in & 0xff); + put_byte(s, (strm.total_in >> 8) & 0xff); + put_byte(s, (strm.total_in >> 16) & 0xff); + put_byte(s, (strm.total_in >> 24) & 0xff); + } + else + { + putShortMSB(s, strm.adler >>> 16); + putShortMSB(s, strm.adler & 0xffff); + } + + flush_pending(strm); + /* If avail_out is zero, the application will call deflate again + * to flush the rest. + */ + if (s.wrap > 0) { s.wrap = -s.wrap; } + /* write the trailer only once! */ + return s.pending !== 0 ? Z_OK$1 : Z_STREAM_END$1; +} + +function deflateEnd(strm) { + var status; + + if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { + return Z_STREAM_ERROR; + } + + status = strm.state.status; + if (status !== INIT_STATE && + status !== EXTRA_STATE && + status !== NAME_STATE && + status !== COMMENT_STATE && + status !== HCRC_STATE && + status !== BUSY_STATE && + status !== FINISH_STATE + ) { + return err(strm, Z_STREAM_ERROR); + } + + strm.state = null; + + return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK$1; +} + + +/* ========================================================================= + * Initializes the compression dictionary from the given byte + * sequence without producing any compressed output. + */ +function deflateSetDictionary(strm, dictionary) { + var dictLength = dictionary.length; + + var s; + var str, n; + var wrap; + var avail; + var next; + var input; + var tmpDict; + + if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { + return Z_STREAM_ERROR; + } + + s = strm.state; + wrap = s.wrap; + + if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) { + return Z_STREAM_ERROR; + } + + /* when using zlib wrappers, compute Adler-32 for provided dictionary */ + if (wrap === 1) { + /* adler32(strm->adler, dictionary, dictLength); */ + strm.adler = adler32_1(strm.adler, dictionary, dictLength, 0); + } + + s.wrap = 0; /* avoid computing Adler-32 in read_buf */ + + /* if dictionary would fill window, just replace the history */ + if (dictLength >= s.w_size) { + if (wrap === 0) { /* already empty otherwise */ + /*** CLEAR_HASH(s); ***/ + zero(s.head); // Fill with NIL (= 0); + s.strstart = 0; + s.block_start = 0; + s.insert = 0; + } + /* use the tail */ + // dictionary = dictionary.slice(dictLength - s.w_size); + tmpDict = new common.Buf8(s.w_size); + common.arraySet(tmpDict, dictionary, dictLength - s.w_size, s.w_size, 0); + dictionary = tmpDict; + dictLength = s.w_size; + } + /* insert dictionary into window and hash */ + avail = strm.avail_in; + next = strm.next_in; + input = strm.input; + strm.avail_in = dictLength; + strm.next_in = 0; + strm.input = dictionary; + fill_window(s); + while (s.lookahead >= MIN_MATCH) { + str = s.strstart; + n = s.lookahead - (MIN_MATCH - 1); + do { + /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ + s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; + + s.prev[str & s.w_mask] = s.head[s.ins_h]; + + s.head[s.ins_h] = str; + str++; + } while (--n); + s.strstart = str; + s.lookahead = MIN_MATCH - 1; + fill_window(s); + } + s.strstart += s.lookahead; + s.block_start = s.strstart; + s.insert = s.lookahead; + s.lookahead = 0; + s.match_length = s.prev_length = MIN_MATCH - 1; + s.match_available = 0; + strm.next_in = next; + strm.input = input; + strm.avail_in = avail; + s.wrap = wrap; + return Z_OK$1; +} + + +var deflateInit_1 = deflateInit; +var deflateInit2_1 = deflateInit2; +var deflateReset_1 = deflateReset; +var deflateResetKeep_1 = deflateResetKeep; +var deflateSetHeader_1 = deflateSetHeader; +var deflate_2$1 = deflate$1; +var deflateEnd_1 = deflateEnd; +var deflateSetDictionary_1 = deflateSetDictionary; +var deflateInfo = 'pako deflate (from Nodeca project)'; + +/* Not implemented +exports.deflateBound = deflateBound; +exports.deflateCopy = deflateCopy; +exports.deflateParams = deflateParams; +exports.deflatePending = deflatePending; +exports.deflatePrime = deflatePrime; +exports.deflateTune = deflateTune; +*/ + +var deflate_1$2 = { + deflateInit: deflateInit_1, + deflateInit2: deflateInit2_1, + deflateReset: deflateReset_1, + deflateResetKeep: deflateResetKeep_1, + deflateSetHeader: deflateSetHeader_1, + deflate: deflate_2$1, + deflateEnd: deflateEnd_1, + deflateSetDictionary: deflateSetDictionary_1, + deflateInfo: deflateInfo +}; + +// Quick check if we can use fast array to bin string conversion +// +// - apply(Array) can fail on Android 2.2 +// - apply(Uint8Array) can fail on iOS 5.1 Safary +// +var STR_APPLY_OK = true; +var STR_APPLY_UIA_OK = true; + +try { String.fromCharCode.apply(null, [ 0 ]); } catch (__) { STR_APPLY_OK = false; } +try { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; } + + +// Table with utf8 lengths (calculated by first byte of sequence) +// Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS, +// because max possible codepoint is 0x10ffff +var _utf8len = new common.Buf8(256); +for (var q = 0; q < 256; q++) { + _utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1); +} +_utf8len[254] = _utf8len[254] = 1; // Invalid sequence start + + +// convert string to array (typed, when possible) +var string2buf = function (str) { + var buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0; + + // count binary size + for (m_pos = 0; m_pos < str_len; m_pos++) { + c = str.charCodeAt(m_pos); + if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) { + c2 = str.charCodeAt(m_pos + 1); + if ((c2 & 0xfc00) === 0xdc00) { + c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00); + m_pos++; + } + } + buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4; + } + + // allocate buffer + buf = new common.Buf8(buf_len); + + // convert + for (i = 0, m_pos = 0; i < buf_len; m_pos++) { + c = str.charCodeAt(m_pos); + if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) { + c2 = str.charCodeAt(m_pos + 1); + if ((c2 & 0xfc00) === 0xdc00) { + c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00); + m_pos++; + } + } + if (c < 0x80) { + /* one byte */ + buf[i++] = c; + } else if (c < 0x800) { + /* two bytes */ + buf[i++] = 0xC0 | (c >>> 6); + buf[i++] = 0x80 | (c & 0x3f); + } else if (c < 0x10000) { + /* three bytes */ + buf[i++] = 0xE0 | (c >>> 12); + buf[i++] = 0x80 | (c >>> 6 & 0x3f); + buf[i++] = 0x80 | (c & 0x3f); + } else { + /* four bytes */ + buf[i++] = 0xf0 | (c >>> 18); + buf[i++] = 0x80 | (c >>> 12 & 0x3f); + buf[i++] = 0x80 | (c >>> 6 & 0x3f); + buf[i++] = 0x80 | (c & 0x3f); + } + } + + return buf; +}; + +// Helper (used in 2 places) +function buf2binstring(buf, len) { + // use fallback for big arrays to avoid stack overflow + if (len < 65537) { + if ((buf.subarray && STR_APPLY_UIA_OK) || (!buf.subarray && STR_APPLY_OK)) { + return String.fromCharCode.apply(null, common.shrinkBuf(buf, len)); + } + } + + var result = ''; + for (var i = 0; i < len; i++) { + result += String.fromCharCode(buf[i]); + } + return result; +} + + +// Convert byte array to binary string +var buf2binstring_1 = function (buf) { + return buf2binstring(buf, buf.length); +}; + + +// Convert binary string (typed, when possible) +var binstring2buf = function (str) { + var buf = new common.Buf8(str.length); + for (var i = 0, len = buf.length; i < len; i++) { + buf[i] = str.charCodeAt(i); + } + return buf; +}; + + +// convert array to string +var buf2string = function (buf, max) { + var i, out, c, c_len; + var len = max || buf.length; + + // Reserve max possible length (2 words per char) + // NB: by unknown reasons, Array is significantly faster for + // String.fromCharCode.apply than Uint16Array. + var utf16buf = new Array(len * 2); + + for (out = 0, i = 0; i < len;) { + c = buf[i++]; + // quick process ascii + if (c < 0x80) { utf16buf[out++] = c; continue; } + + c_len = _utf8len[c]; + // skip 5 & 6 byte codes + if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; } + + // apply mask on first byte + c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07; + // join the rest + while (c_len > 1 && i < len) { + c = (c << 6) | (buf[i++] & 0x3f); + c_len--; + } + + // terminated by end of string? + if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; } + + if (c < 0x10000) { + utf16buf[out++] = c; + } else { + c -= 0x10000; + utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff); + utf16buf[out++] = 0xdc00 | (c & 0x3ff); + } + } + + return buf2binstring(utf16buf, out); +}; + + +// Calculate max possible position in utf8 buffer, +// that will not break sequence. If that's not possible +// - (very small limits) return max size as is. +// +// buf[] - utf8 bytes array +// max - length limit (mandatory); +var utf8border = function (buf, max) { + var pos; + + max = max || buf.length; + if (max > buf.length) { max = buf.length; } + + // go back from last position, until start of sequence found + pos = max - 1; + while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; } + + // Fuckup - very small and broken sequence, + // return max, because we should return something anyway. + if (pos < 0) { return max; } + + // If we came to start of buffer - that means vuffer is too small, + // return max too. + if (pos === 0) { return max; } + + return (pos + _utf8len[buf[pos]] > max) ? pos : max; +}; + +var strings = { + string2buf: string2buf, + buf2binstring: buf2binstring_1, + binstring2buf: binstring2buf, + buf2string: buf2string, + utf8border: utf8border +}; + +function ZStream() { + /* next input byte */ + this.input = null; // JS specific, because we have no pointers + this.next_in = 0; + /* number of bytes available at input */ + this.avail_in = 0; + /* total number of input bytes read so far */ + this.total_in = 0; + /* next output byte should be put there */ + this.output = null; // JS specific, because we have no pointers + this.next_out = 0; + /* remaining free space at output */ + this.avail_out = 0; + /* total number of bytes output so far */ + this.total_out = 0; + /* last error message, NULL if no error */ + this.msg = ''/*Z_NULL*/; + /* not visible by applications */ + this.state = null; + /* best guess about the data type: binary or text */ + this.data_type = 2/*Z_UNKNOWN*/; + /* adler32 value of the uncompressed data */ + this.adler = 0; +} + +var zstream = ZStream; + +var toString = Object.prototype.toString; + +/* Public constants ==========================================================*/ +/* ===========================================================================*/ + +var Z_NO_FLUSH = 0; +var Z_FINISH = 4; + +var Z_OK = 0; +var Z_STREAM_END = 1; +var Z_SYNC_FLUSH = 2; + +var Z_DEFAULT_COMPRESSION = -1; + +var Z_DEFAULT_STRATEGY = 0; + +var Z_DEFLATED = 8; + +/* ===========================================================================*/ + + +/** + * class Deflate + * + * Generic JS-style wrapper for zlib calls. If you don't need + * streaming behaviour - use more simple functions: [[deflate]], + * [[deflateRaw]] and [[gzip]]. + **/ + +/* internal + * Deflate.chunks -> Array + * + * Chunks of output data, if [[Deflate#onData]] not overriden. + **/ + +/** + * Deflate.result -> Uint8Array|Array + * + * Compressed result, generated by default [[Deflate#onData]] + * and [[Deflate#onEnd]] handlers. Filled after you push last chunk + * (call [[Deflate#push]] with `Z_FINISH` / `true` param) or if you + * push a chunk with explicit flush (call [[Deflate#push]] with + * `Z_SYNC_FLUSH` param). + **/ + +/** + * Deflate.err -> Number + * + * Error code after deflate finished. 0 (Z_OK) on success. + * You will not need it in real life, because deflate errors + * are possible only on wrong options or bad `onData` / `onEnd` + * custom handlers. + **/ + +/** + * Deflate.msg -> String + * + * Error message, if [[Deflate.err]] != 0 + **/ + + +/** + * new Deflate(options) + * - options (Object): zlib deflate options. + * + * Creates new deflator instance with specified params. Throws exception + * on bad params. Supported options: + * + * - `level` + * - `windowBits` + * - `memLevel` + * - `strategy` + * - `dictionary` + * + * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) + * for more information on these. + * + * Additional options, for internal needs: + * + * - `chunkSize` - size of generated data chunks (16K by default) + * - `raw` (Boolean) - do raw deflate + * - `gzip` (Boolean) - create gzip wrapper + * - `to` (String) - if equal to 'string', then result will be "binary string" + * (each char code [0..255]) + * - `header` (Object) - custom header for gzip + * - `text` (Boolean) - true if compressed data believed to be text + * - `time` (Number) - modification time, unix timestamp + * - `os` (Number) - operation system code + * - `extra` (Array) - array of bytes with extra data (max 65536) + * - `name` (String) - file name (binary string) + * - `comment` (String) - comment (binary string) + * - `hcrc` (Boolean) - true if header crc should be added + * + * ##### Example: + * + * ```javascript + * var pako = require('pako') + * , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9]) + * , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]); + * + * var deflate = new pako.Deflate({ level: 3}); + * + * deflate.push(chunk1, false); + * deflate.push(chunk2, true); // true -> last chunk + * + * if (deflate.err) { throw new Error(deflate.err); } + * + * console.log(deflate.result); + * ``` + **/ +function Deflate(options) { + if (!(this instanceof Deflate)) return new Deflate(options); + + this.options = common.assign({ + level: Z_DEFAULT_COMPRESSION, + method: Z_DEFLATED, + chunkSize: 16384, + windowBits: 15, + memLevel: 8, + strategy: Z_DEFAULT_STRATEGY, + to: '' + }, options || {}); + + var opt = this.options; + + if (opt.raw && (opt.windowBits > 0)) { + opt.windowBits = -opt.windowBits; + } + + else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) { + opt.windowBits += 16; + } + + this.err = 0; // error code, if happens (0 = Z_OK) + this.msg = ''; // error message + this.ended = false; // used to avoid multiple onEnd() calls + this.chunks = []; // chunks of compressed data + + this.strm = new zstream(); + this.strm.avail_out = 0; + + var status = deflate_1$2.deflateInit2( + this.strm, + opt.level, + opt.method, + opt.windowBits, + opt.memLevel, + opt.strategy + ); + + if (status !== Z_OK) { + throw new Error(messages[status]); + } + + if (opt.header) { + deflate_1$2.deflateSetHeader(this.strm, opt.header); + } + + if (opt.dictionary) { + var dict; + // Convert data if needed + if (typeof opt.dictionary === 'string') { + // If we need to compress text, change encoding to utf8. + dict = strings.string2buf(opt.dictionary); + } else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') { + dict = new Uint8Array(opt.dictionary); + } else { + dict = opt.dictionary; + } + + status = deflate_1$2.deflateSetDictionary(this.strm, dict); + + if (status !== Z_OK) { + throw new Error(messages[status]); + } + + this._dict_set = true; + } +} + +/** + * Deflate#push(data[, mode]) -> Boolean + * - data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be + * converted to utf8 byte sequence. + * - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + * See constants. Skipped or `false` means Z_NO_FLUSH, `true` meansh Z_FINISH. + * + * Sends input data to deflate pipe, generating [[Deflate#onData]] calls with + * new compressed chunks. Returns `true` on success. The last data block must have + * mode Z_FINISH (or `true`). That will flush internal pending buffers and call + * [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you + * can use mode Z_SYNC_FLUSH, keeping the compression context. + * + * On fail call [[Deflate#onEnd]] with error code and return false. + * + * We strongly recommend to use `Uint8Array` on input for best speed (output + * array format is detected automatically). Also, don't skip last param and always + * use the same type in your code (boolean or number). That will improve JS speed. + * + * For regular `Array`-s make sure all elements are [0..255]. + * + * ##### Example + * + * ```javascript + * push(chunk, false); // push one of data chunks + * ... + * push(chunk, true); // push last chunk + * ``` + **/ +Deflate.prototype.push = function (data, mode) { + var strm = this.strm; + var chunkSize = this.options.chunkSize; + var status, _mode; + + if (this.ended) { return false; } + + _mode = (mode === ~~mode) ? mode : ((mode === true) ? Z_FINISH : Z_NO_FLUSH); + + // Convert data if needed + if (typeof data === 'string') { + // If we need to compress text, change encoding to utf8. + strm.input = strings.string2buf(data); + } else if (toString.call(data) === '[object ArrayBuffer]') { + strm.input = new Uint8Array(data); + } else { + strm.input = data; + } + + strm.next_in = 0; + strm.avail_in = strm.input.length; + + do { + if (strm.avail_out === 0) { + strm.output = new common.Buf8(chunkSize); + strm.next_out = 0; + strm.avail_out = chunkSize; + } + status = deflate_1$2.deflate(strm, _mode); /* no bad return value */ + + if (status !== Z_STREAM_END && status !== Z_OK) { + this.onEnd(status); + this.ended = true; + return false; + } + if (strm.avail_out === 0 || (strm.avail_in === 0 && (_mode === Z_FINISH || _mode === Z_SYNC_FLUSH))) { + if (this.options.to === 'string') { + this.onData(strings.buf2binstring(common.shrinkBuf(strm.output, strm.next_out))); + } else { + this.onData(common.shrinkBuf(strm.output, strm.next_out)); + } + } + } while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== Z_STREAM_END); + + // Finalize on the last chunk. + if (_mode === Z_FINISH) { + status = deflate_1$2.deflateEnd(this.strm); + this.onEnd(status); + this.ended = true; + return status === Z_OK; + } + + // callback interim results if Z_SYNC_FLUSH. + if (_mode === Z_SYNC_FLUSH) { + this.onEnd(Z_OK); + strm.avail_out = 0; + return true; + } + + return true; +}; + + +/** + * Deflate#onData(chunk) -> Void + * - chunk (Uint8Array|Array|String): ouput data. Type of array depends + * on js engine support. When string output requested, each chunk + * will be string. + * + * By default, stores data blocks in `chunks[]` property and glue + * those in `onEnd`. Override this handler, if you need another behaviour. + **/ +Deflate.prototype.onData = function (chunk) { + this.chunks.push(chunk); +}; + + +/** + * Deflate#onEnd(status) -> Void + * - status (Number): deflate status. 0 (Z_OK) on success, + * other if not. + * + * Called once after you tell deflate that the input stream is + * complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) + * or if an error happened. By default - join collected chunks, + * free memory and fill `results` / `err` properties. + **/ +Deflate.prototype.onEnd = function (status) { + // On success - join + if (status === Z_OK) { + if (this.options.to === 'string') { + this.result = this.chunks.join(''); + } else { + this.result = common.flattenChunks(this.chunks); + } + } + this.chunks = []; + this.err = status; + this.msg = this.strm.msg; +}; + + +/** + * deflate(data[, options]) -> Uint8Array|Array|String + * - data (Uint8Array|Array|String): input data to compress. + * - options (Object): zlib deflate options. + * + * Compress `data` with deflate algorithm and `options`. + * + * Supported options are: + * + * - level + * - windowBits + * - memLevel + * - strategy + * - dictionary + * + * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) + * for more information on these. + * + * Sugar (options): + * + * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify + * negative windowBits implicitly. + * - `to` (String) - if equal to 'string', then result will be "binary string" + * (each char code [0..255]) + * + * ##### Example: + * + * ```javascript + * var pako = require('pako') + * , data = Uint8Array([1,2,3,4,5,6,7,8,9]); + * + * console.log(pako.deflate(data)); + * ``` + **/ +function deflate(input, options) { + var deflator = new Deflate(options); + + deflator.push(input, true); + + // That will never happens, if you don't cheat with options :) + if (deflator.err) { throw deflator.msg || messages[deflator.err]; } + + return deflator.result; +} + + +/** + * deflateRaw(data[, options]) -> Uint8Array|Array|String + * - data (Uint8Array|Array|String): input data to compress. + * - options (Object): zlib deflate options. + * + * The same as [[deflate]], but creates raw data, without wrapper + * (header and adler32 crc). + **/ +function deflateRaw(input, options) { + options = options || {}; + options.raw = true; + return deflate(input, options); +} + + +/** + * gzip(data[, options]) -> Uint8Array|Array|String + * - data (Uint8Array|Array|String): input data to compress. + * - options (Object): zlib deflate options. + * + * The same as [[deflate]], but create gzip wrapper instead of + * deflate one. + **/ +function gzip(input, options) { + options = options || {}; + options.gzip = true; + return deflate(input, options); +} + + +var Deflate_1 = Deflate; +var deflate_2 = deflate; +var deflateRaw_1 = deflateRaw; +var gzip_1 = gzip; + +var deflate_1 = { + Deflate: Deflate_1, + deflate: deflate_2, + deflateRaw: deflateRaw_1, + gzip: gzip_1 +}; + +// See state defs from inflate.js +var BAD$1 = 30; /* got a data error -- remain here until reset */ +var TYPE$1 = 12; /* i: waiting for type bits, including last-flag bit */ + +/* + Decode literal, length, and distance codes and write out the resulting + literal and match bytes until either not enough input or output is + available, an end-of-block is encountered, or a data error is encountered. + When large enough input and output buffers are supplied to inflate(), for + example, a 16K input buffer and a 64K output buffer, more than 95% of the + inflate execution time is spent in this routine. + + Entry assumptions: + + state.mode === LEN + strm.avail_in >= 6 + strm.avail_out >= 258 + start >= strm.avail_out + state.bits < 8 + + On return, state.mode is one of: + + LEN -- ran out of enough output space or enough available input + TYPE -- reached end of block code, inflate() to interpret next block + BAD -- error in block data + + Notes: + + - The maximum input bits used by a length/distance pair is 15 bits for the + length code, 5 bits for the length extra, 15 bits for the distance code, + and 13 bits for the distance extra. This totals 48 bits, or six bytes. + Therefore if strm.avail_in >= 6, then there is enough input to avoid + checking for available input while decoding. + + - The maximum bytes that a single length/distance pair can output is 258 + bytes, which is the maximum length that can be coded. inflate_fast() + requires strm.avail_out >= 258 for each loop to avoid checking for + output space. + */ +var inffast = function inflate_fast(strm, start) { + var state; + var _in; /* local strm.input */ + var last; /* have enough input while in < last */ + var _out; /* local strm.output */ + var beg; /* inflate()'s initial strm.output */ + var end; /* while out < end, enough space available */ +//#ifdef INFLATE_STRICT + var dmax; /* maximum distance from zlib header */ +//#endif + var wsize; /* window size or zero if not using window */ + var whave; /* valid bytes in the window */ + var wnext; /* window write index */ + // Use `s_window` instead `window`, avoid conflict with instrumentation tools + var s_window; /* allocated sliding window, if wsize != 0 */ + var hold; /* local strm.hold */ + var bits; /* local strm.bits */ + var lcode; /* local strm.lencode */ + var dcode; /* local strm.distcode */ + var lmask; /* mask for first level of length codes */ + var dmask; /* mask for first level of distance codes */ + var here; /* retrieved table entry */ + var op; /* code bits, operation, extra bits, or */ + /* window position, window bytes to copy */ + var len; /* match length, unused bytes */ + var dist; /* match distance */ + var from; /* where to copy match from */ + var from_source; + + + var input, output; // JS specific, because we have no pointers + + /* copy state to local variables */ + state = strm.state; + //here = state.here; + _in = strm.next_in; + input = strm.input; + last = _in + (strm.avail_in - 5); + _out = strm.next_out; + output = strm.output; + beg = _out - (start - strm.avail_out); + end = _out + (strm.avail_out - 257); +//#ifdef INFLATE_STRICT + dmax = state.dmax; +//#endif + wsize = state.wsize; + whave = state.whave; + wnext = state.wnext; + s_window = state.window; + hold = state.hold; + bits = state.bits; + lcode = state.lencode; + dcode = state.distcode; + lmask = (1 << state.lenbits) - 1; + dmask = (1 << state.distbits) - 1; + + + /* decode literals and length/distances until end-of-block or not enough + input data or output space */ + + top: + do { + if (bits < 15) { + hold += input[_in++] << bits; + bits += 8; + hold += input[_in++] << bits; + bits += 8; + } + + here = lcode[hold & lmask]; + + dolen: + for (;;) { // Goto emulation + op = here >>> 24/*here.bits*/; + hold >>>= op; + bits -= op; + op = (here >>> 16) & 0xff/*here.op*/; + if (op === 0) { /* literal */ + //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? + // "inflate: literal '%c'\n" : + // "inflate: literal 0x%02x\n", here.val)); + output[_out++] = here & 0xffff/*here.val*/; + } + else if (op & 16) { /* length base */ + len = here & 0xffff/*here.val*/; + op &= 15; /* number of extra bits */ + if (op) { + if (bits < op) { + hold += input[_in++] << bits; + bits += 8; + } + len += hold & ((1 << op) - 1); + hold >>>= op; + bits -= op; + } + //Tracevv((stderr, "inflate: length %u\n", len)); + if (bits < 15) { + hold += input[_in++] << bits; + bits += 8; + hold += input[_in++] << bits; + bits += 8; + } + here = dcode[hold & dmask]; + + dodist: + for (;;) { // goto emulation + op = here >>> 24/*here.bits*/; + hold >>>= op; + bits -= op; + op = (here >>> 16) & 0xff/*here.op*/; + + if (op & 16) { /* distance base */ + dist = here & 0xffff/*here.val*/; + op &= 15; /* number of extra bits */ + if (bits < op) { + hold += input[_in++] << bits; + bits += 8; + if (bits < op) { + hold += input[_in++] << bits; + bits += 8; + } + } + dist += hold & ((1 << op) - 1); +//#ifdef INFLATE_STRICT + if (dist > dmax) { + strm.msg = 'invalid distance too far back'; + state.mode = BAD$1; + break top; + } +//#endif + hold >>>= op; + bits -= op; + //Tracevv((stderr, "inflate: distance %u\n", dist)); + op = _out - beg; /* max distance in output */ + if (dist > op) { /* see if copy from window */ + op = dist - op; /* distance back in window */ + if (op > whave) { + if (state.sane) { + strm.msg = 'invalid distance too far back'; + state.mode = BAD$1; + break top; + } + +// (!) This block is disabled in zlib defailts, +// don't enable it for binary compatibility +//#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR +// if (len <= op - whave) { +// do { +// output[_out++] = 0; +// } while (--len); +// continue top; +// } +// len -= op - whave; +// do { +// output[_out++] = 0; +// } while (--op > whave); +// if (op === 0) { +// from = _out - dist; +// do { +// output[_out++] = output[from++]; +// } while (--len); +// continue top; +// } +//#endif + } + from = 0; // window index + from_source = s_window; + if (wnext === 0) { /* very common case */ + from += wsize - op; + if (op < len) { /* some from window */ + len -= op; + do { + output[_out++] = s_window[from++]; + } while (--op); + from = _out - dist; /* rest from output */ + from_source = output; + } + } + else if (wnext < op) { /* wrap around window */ + from += wsize + wnext - op; + op -= wnext; + if (op < len) { /* some from end of window */ + len -= op; + do { + output[_out++] = s_window[from++]; + } while (--op); + from = 0; + if (wnext < len) { /* some from start of window */ + op = wnext; + len -= op; + do { + output[_out++] = s_window[from++]; + } while (--op); + from = _out - dist; /* rest from output */ + from_source = output; + } + } + } + else { /* contiguous in window */ + from += wnext - op; + if (op < len) { /* some from window */ + len -= op; + do { + output[_out++] = s_window[from++]; + } while (--op); + from = _out - dist; /* rest from output */ + from_source = output; + } + } + while (len > 2) { + output[_out++] = from_source[from++]; + output[_out++] = from_source[from++]; + output[_out++] = from_source[from++]; + len -= 3; + } + if (len) { + output[_out++] = from_source[from++]; + if (len > 1) { + output[_out++] = from_source[from++]; + } + } + } + else { + from = _out - dist; /* copy direct from output */ + do { /* minimum length is three */ + output[_out++] = output[from++]; + output[_out++] = output[from++]; + output[_out++] = output[from++]; + len -= 3; + } while (len > 2); + if (len) { + output[_out++] = output[from++]; + if (len > 1) { + output[_out++] = output[from++]; + } + } + } + } + else if ((op & 64) === 0) { /* 2nd level distance code */ + here = dcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))]; + continue dodist; + } + else { + strm.msg = 'invalid distance code'; + state.mode = BAD$1; + break top; + } + + break; // need to emulate goto via "continue" + } + } + else if ((op & 64) === 0) { /* 2nd level length code */ + here = lcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))]; + continue dolen; + } + else if (op & 32) { /* end-of-block */ + //Tracevv((stderr, "inflate: end of block\n")); + state.mode = TYPE$1; + break top; + } + else { + strm.msg = 'invalid literal/length code'; + state.mode = BAD$1; + break top; + } + + break; // need to emulate goto via "continue" + } + } while (_in < last && _out < end); + + /* return unused bytes (on entry, bits < 8, so in won't go too far back) */ + len = bits >> 3; + _in -= len; + bits -= len << 3; + hold &= (1 << bits) - 1; + + /* update state and return */ + strm.next_in = _in; + strm.next_out = _out; + strm.avail_in = (_in < last ? 5 + (last - _in) : 5 - (_in - last)); + strm.avail_out = (_out < end ? 257 + (end - _out) : 257 - (_out - end)); + state.hold = hold; + state.bits = bits; + return; +}; + +var MAXBITS = 15; +var ENOUGH_LENS$1 = 852; +var ENOUGH_DISTS$1 = 592; +//var ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS); + +var CODES$1 = 0; +var LENS$1 = 1; +var DISTS$1 = 2; + +var lbase = [ /* Length codes 257..285 base */ + 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, + 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 +]; + +var lext = [ /* Length codes 257..285 extra */ + 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, + 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78 +]; + +var dbase = [ /* Distance codes 0..29 base */ + 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, + 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, + 8193, 12289, 16385, 24577, 0, 0 +]; + +var dext = [ /* Distance codes 0..29 extra */ + 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, + 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, + 28, 28, 29, 29, 64, 64 +]; + +var inftrees = function inflate_table(type, lens, lens_index, codes, table, table_index, work, opts) +{ + var bits = opts.bits; + //here = opts.here; /* table entry for duplication */ + + var len = 0; /* a code's length in bits */ + var sym = 0; /* index of code symbols */ + var min = 0, max = 0; /* minimum and maximum code lengths */ + var root = 0; /* number of index bits for root table */ + var curr = 0; /* number of index bits for current table */ + var drop = 0; /* code bits to drop for sub-table */ + var left = 0; /* number of prefix codes available */ + var used = 0; /* code entries in table used */ + var huff = 0; /* Huffman code */ + var incr; /* for incrementing code, index */ + var fill; /* index for replicating entries */ + var low; /* low bits for current root entry */ + var mask; /* mask for low root bits */ + var next; /* next available space in table */ + var base = null; /* base value table to use */ + var base_index = 0; +// var shoextra; /* extra bits table to use */ + var end; /* use base and extra for symbol > end */ + var count = new common.Buf16(MAXBITS + 1); //[MAXBITS+1]; /* number of codes of each length */ + var offs = new common.Buf16(MAXBITS + 1); //[MAXBITS+1]; /* offsets in table for each length */ + var extra = null; + var extra_index = 0; + + var here_bits, here_op, here_val; + + /* + Process a set of code lengths to create a canonical Huffman code. The + code lengths are lens[0..codes-1]. Each length corresponds to the + symbols 0..codes-1. The Huffman code is generated by first sorting the + symbols by length from short to long, and retaining the symbol order + for codes with equal lengths. Then the code starts with all zero bits + for the first code of the shortest length, and the codes are integer + increments for the same length, and zeros are appended as the length + increases. For the deflate format, these bits are stored backwards + from their more natural integer increment ordering, and so when the + decoding tables are built in the large loop below, the integer codes + are incremented backwards. + + This routine assumes, but does not check, that all of the entries in + lens[] are in the range 0..MAXBITS. The caller must assure this. + 1..MAXBITS is interpreted as that code length. zero means that that + symbol does not occur in this code. + + The codes are sorted by computing a count of codes for each length, + creating from that a table of starting indices for each length in the + sorted table, and then entering the symbols in order in the sorted + table. The sorted table is work[], with that space being provided by + the caller. + + The length counts are used for other purposes as well, i.e. finding + the minimum and maximum length codes, determining if there are any + codes at all, checking for a valid set of lengths, and looking ahead + at length counts to determine sub-table sizes when building the + decoding tables. + */ + + /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ + for (len = 0; len <= MAXBITS; len++) { + count[len] = 0; + } + for (sym = 0; sym < codes; sym++) { + count[lens[lens_index + sym]]++; + } + + /* bound code lengths, force root to be within code lengths */ + root = bits; + for (max = MAXBITS; max >= 1; max--) { + if (count[max] !== 0) { break; } + } + if (root > max) { + root = max; + } + if (max === 0) { /* no symbols to code at all */ + //table.op[opts.table_index] = 64; //here.op = (var char)64; /* invalid code marker */ + //table.bits[opts.table_index] = 1; //here.bits = (var char)1; + //table.val[opts.table_index++] = 0; //here.val = (var short)0; + table[table_index++] = (1 << 24) | (64 << 16) | 0; + + + //table.op[opts.table_index] = 64; + //table.bits[opts.table_index] = 1; + //table.val[opts.table_index++] = 0; + table[table_index++] = (1 << 24) | (64 << 16) | 0; + + opts.bits = 1; + return 0; /* no symbols, but wait for decoding to report error */ + } + for (min = 1; min < max; min++) { + if (count[min] !== 0) { break; } + } + if (root < min) { + root = min; + } + + /* check for an over-subscribed or incomplete set of lengths */ + left = 1; + for (len = 1; len <= MAXBITS; len++) { + left <<= 1; + left -= count[len]; + if (left < 0) { + return -1; + } /* over-subscribed */ + } + if (left > 0 && (type === CODES$1 || max !== 1)) { + return -1; /* incomplete set */ + } + + /* generate offsets into symbol table for each length for sorting */ + offs[1] = 0; + for (len = 1; len < MAXBITS; len++) { + offs[len + 1] = offs[len] + count[len]; + } + + /* sort symbols by length, by symbol order within each length */ + for (sym = 0; sym < codes; sym++) { + if (lens[lens_index + sym] !== 0) { + work[offs[lens[lens_index + sym]]++] = sym; + } + } + + /* + Create and fill in decoding tables. In this loop, the table being + filled is at next and has curr index bits. The code being used is huff + with length len. That code is converted to an index by dropping drop + bits off of the bottom. For codes where len is less than drop + curr, + those top drop + curr - len bits are incremented through all values to + fill the table with replicated entries. + + root is the number of index bits for the root table. When len exceeds + root, sub-tables are created pointed to by the root entry with an index + of the low root bits of huff. This is saved in low to check for when a + new sub-table should be started. drop is zero when the root table is + being filled, and drop is root when sub-tables are being filled. + + When a new sub-table is needed, it is necessary to look ahead in the + code lengths to determine what size sub-table is needed. The length + counts are used for this, and so count[] is decremented as codes are + entered in the tables. + + used keeps track of how many table entries have been allocated from the + provided *table space. It is checked for LENS and DIST tables against + the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in + the initial root table size constants. See the comments in inftrees.h + for more information. + + sym increments through all symbols, and the loop terminates when + all codes of length max, i.e. all codes, have been processed. This + routine permits incomplete codes, so another loop after this one fills + in the rest of the decoding tables with invalid code markers. + */ + + /* set up for code type */ + // poor man optimization - use if-else instead of switch, + // to avoid deopts in old v8 + if (type === CODES$1) { + base = extra = work; /* dummy value--not used */ + end = 19; + + } else if (type === LENS$1) { + base = lbase; + base_index -= 257; + extra = lext; + extra_index -= 257; + end = 256; + + } else { /* DISTS */ + base = dbase; + extra = dext; + end = -1; + } + + /* initialize opts for loop */ + huff = 0; /* starting code */ + sym = 0; /* starting code symbol */ + len = min; /* starting code length */ + next = table_index; /* current table to fill in */ + curr = root; /* current table index bits */ + drop = 0; /* current bits to drop from code for index */ + low = -1; /* trigger new sub-table when len > root */ + used = 1 << root; /* use root table entries */ + mask = used - 1; /* mask for comparing low */ + + /* check available table space */ + if ((type === LENS$1 && used > ENOUGH_LENS$1) || + (type === DISTS$1 && used > ENOUGH_DISTS$1)) { + return 1; + } + + /* process all codes and make table entries */ + for (;;) { + /* create table entry */ + here_bits = len - drop; + if (work[sym] < end) { + here_op = 0; + here_val = work[sym]; + } + else if (work[sym] > end) { + here_op = extra[extra_index + work[sym]]; + here_val = base[base_index + work[sym]]; + } + else { + here_op = 32 + 64; /* end of block */ + here_val = 0; + } + + /* replicate for those indices with low len bits equal to huff */ + incr = 1 << (len - drop); + fill = 1 << curr; + min = fill; /* save offset to next table */ + do { + fill -= incr; + table[next + (huff >> drop) + fill] = (here_bits << 24) | (here_op << 16) | here_val |0; + } while (fill !== 0); + + /* backwards increment the len-bit code huff */ + incr = 1 << (len - 1); + while (huff & incr) { + incr >>= 1; + } + if (incr !== 0) { + huff &= incr - 1; + huff += incr; + } else { + huff = 0; + } + + /* go to next symbol, update count, len */ + sym++; + if (--count[len] === 0) { + if (len === max) { break; } + len = lens[lens_index + work[sym]]; + } + + /* create new sub-table if needed */ + if (len > root && (huff & mask) !== low) { + /* if first time, transition to sub-tables */ + if (drop === 0) { + drop = root; + } + + /* increment past last table */ + next += min; /* here min is 1 << curr */ + + /* determine length of next table */ + curr = len - drop; + left = 1 << curr; + while (curr + drop < max) { + left -= count[curr + drop]; + if (left <= 0) { break; } + curr++; + left <<= 1; + } + + /* check for enough space */ + used += 1 << curr; + if ((type === LENS$1 && used > ENOUGH_LENS$1) || + (type === DISTS$1 && used > ENOUGH_DISTS$1)) { + return 1; + } + + /* point entry in root table to sub-table */ + low = huff & mask; + /*table.op[low] = curr; + table.bits[low] = root; + table.val[low] = next - opts.table_index;*/ + table[low] = (root << 24) | (curr << 16) | (next - table_index) |0; + } + } + + /* fill in remaining table entry if code is incomplete (guaranteed to have + at most one remaining entry, since if the code is incomplete, the + maximum code length that was allowed to get this far is one bit) */ + if (huff !== 0) { + //table.op[next + huff] = 64; /* invalid code marker */ + //table.bits[next + huff] = len - drop; + //table.val[next + huff] = 0; + table[next + huff] = ((len - drop) << 24) | (64 << 16) |0; + } + + /* set return parameters */ + //opts.table_index += used; + opts.bits = root; + return 0; +}; + +var CODES = 0; +var LENS = 1; +var DISTS = 2; + +/* Public constants ==========================================================*/ +/* ===========================================================================*/ + + +/* Allowed flush values; see deflate() and inflate() below for details */ +//var Z_NO_FLUSH = 0; +//var Z_PARTIAL_FLUSH = 1; +//var Z_SYNC_FLUSH = 2; +//var Z_FULL_FLUSH = 3; +var Z_FINISH$2 = 4; +var Z_BLOCK$1 = 5; +var Z_TREES = 6; + + +/* Return codes for the compression/decompression functions. Negative values + * are errors, positive values are used for special but normal events. + */ +var Z_OK$2 = 0; +var Z_STREAM_END$2 = 1; +var Z_NEED_DICT = 2; +//var Z_ERRNO = -1; +var Z_STREAM_ERROR$1 = -2; +var Z_DATA_ERROR$1 = -3; +var Z_MEM_ERROR = -4; +var Z_BUF_ERROR$1 = -5; +//var Z_VERSION_ERROR = -6; + +/* The deflate compression method */ +var Z_DEFLATED$2 = 8; + + +/* STATES ====================================================================*/ +/* ===========================================================================*/ + + +var HEAD = 1; /* i: waiting for magic header */ +var FLAGS = 2; /* i: waiting for method and flags (gzip) */ +var TIME = 3; /* i: waiting for modification time (gzip) */ +var OS = 4; /* i: waiting for extra flags and operating system (gzip) */ +var EXLEN = 5; /* i: waiting for extra length (gzip) */ +var EXTRA = 6; /* i: waiting for extra bytes (gzip) */ +var NAME = 7; /* i: waiting for end of file name (gzip) */ +var COMMENT = 8; /* i: waiting for end of comment (gzip) */ +var HCRC = 9; /* i: waiting for header crc (gzip) */ +var DICTID = 10; /* i: waiting for dictionary check value */ +var DICT = 11; /* waiting for inflateSetDictionary() call */ +var TYPE = 12; /* i: waiting for type bits, including last-flag bit */ +var TYPEDO = 13; /* i: same, but skip check to exit inflate on new block */ +var STORED = 14; /* i: waiting for stored size (length and complement) */ +var COPY_ = 15; /* i/o: same as COPY below, but only first time in */ +var COPY = 16; /* i/o: waiting for input or output to copy stored block */ +var TABLE = 17; /* i: waiting for dynamic block table lengths */ +var LENLENS = 18; /* i: waiting for code length code lengths */ +var CODELENS = 19; /* i: waiting for length/lit and distance code lengths */ +var LEN_ = 20; /* i: same as LEN below, but only first time in */ +var LEN = 21; /* i: waiting for length/lit/eob code */ +var LENEXT = 22; /* i: waiting for length extra bits */ +var DIST = 23; /* i: waiting for distance code */ +var DISTEXT = 24; /* i: waiting for distance extra bits */ +var MATCH = 25; /* o: waiting for output space to copy string */ +var LIT = 26; /* o: waiting for output space to write literal */ +var CHECK = 27; /* i: waiting for 32-bit check value */ +var LENGTH = 28; /* i: waiting for 32-bit length (gzip) */ +var DONE = 29; /* finished check, done -- remain here until reset */ +var BAD = 30; /* got a data error -- remain here until reset */ +var MEM = 31; /* got an inflate() memory error -- remain here until reset */ +var SYNC = 32; /* looking for synchronization bytes to restart inflate() */ + +/* ===========================================================================*/ + + + +var ENOUGH_LENS = 852; +var ENOUGH_DISTS = 592; +//var ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS); + +var MAX_WBITS$1 = 15; +/* 32K LZ77 window */ +var DEF_WBITS = MAX_WBITS$1; + + +function zswap32(q) { + return (((q >>> 24) & 0xff) + + ((q >>> 8) & 0xff00) + + ((q & 0xff00) << 8) + + ((q & 0xff) << 24)); +} + + +function InflateState() { + this.mode = 0; /* current inflate mode */ + this.last = false; /* true if processing last block */ + this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */ + this.havedict = false; /* true if dictionary provided */ + this.flags = 0; /* gzip header method and flags (0 if zlib) */ + this.dmax = 0; /* zlib header max distance (INFLATE_STRICT) */ + this.check = 0; /* protected copy of check value */ + this.total = 0; /* protected copy of output count */ + // TODO: may be {} + this.head = null; /* where to save gzip header information */ + + /* sliding window */ + this.wbits = 0; /* log base 2 of requested window size */ + this.wsize = 0; /* window size or zero if not using window */ + this.whave = 0; /* valid bytes in the window */ + this.wnext = 0; /* window write index */ + this.window = null; /* allocated sliding window, if needed */ + + /* bit accumulator */ + this.hold = 0; /* input bit accumulator */ + this.bits = 0; /* number of bits in "in" */ + + /* for string and stored block copying */ + this.length = 0; /* literal or length of data to copy */ + this.offset = 0; /* distance back to copy string from */ + + /* for table and code decoding */ + this.extra = 0; /* extra bits needed */ + + /* fixed and dynamic code tables */ + this.lencode = null; /* starting table for length/literal codes */ + this.distcode = null; /* starting table for distance codes */ + this.lenbits = 0; /* index bits for lencode */ + this.distbits = 0; /* index bits for distcode */ + + /* dynamic table building */ + this.ncode = 0; /* number of code length code lengths */ + this.nlen = 0; /* number of length code lengths */ + this.ndist = 0; /* number of distance code lengths */ + this.have = 0; /* number of code lengths in lens[] */ + this.next = null; /* next available space in codes[] */ + + this.lens = new common.Buf16(320); /* temporary storage for code lengths */ + this.work = new common.Buf16(288); /* work area for code table building */ + + /* + because we don't have pointers in js, we use lencode and distcode directly + as buffers so we don't need codes + */ + //this.codes = new utils.Buf32(ENOUGH); /* space for code tables */ + this.lendyn = null; /* dynamic table for length/literal codes (JS specific) */ + this.distdyn = null; /* dynamic table for distance codes (JS specific) */ + this.sane = 0; /* if false, allow invalid distance too far */ + this.back = 0; /* bits back of last unprocessed length/lit */ + this.was = 0; /* initial length of match */ +} + +function inflateResetKeep(strm) { + var state; + + if (!strm || !strm.state) { return Z_STREAM_ERROR$1; } + state = strm.state; + strm.total_in = strm.total_out = state.total = 0; + strm.msg = ''; /*Z_NULL*/ + if (state.wrap) { /* to support ill-conceived Java test suite */ + strm.adler = state.wrap & 1; + } + state.mode = HEAD; + state.last = 0; + state.havedict = 0; + state.dmax = 32768; + state.head = null/*Z_NULL*/; + state.hold = 0; + state.bits = 0; + //state.lencode = state.distcode = state.next = state.codes; + state.lencode = state.lendyn = new common.Buf32(ENOUGH_LENS); + state.distcode = state.distdyn = new common.Buf32(ENOUGH_DISTS); + + state.sane = 1; + state.back = -1; + //Tracev((stderr, "inflate: reset\n")); + return Z_OK$2; +} + +function inflateReset(strm) { + var state; + + if (!strm || !strm.state) { return Z_STREAM_ERROR$1; } + state = strm.state; + state.wsize = 0; + state.whave = 0; + state.wnext = 0; + return inflateResetKeep(strm); + +} + +function inflateReset2(strm, windowBits) { + var wrap; + var state; + + /* get the state */ + if (!strm || !strm.state) { return Z_STREAM_ERROR$1; } + state = strm.state; + + /* extract wrap request from windowBits parameter */ + if (windowBits < 0) { + wrap = 0; + windowBits = -windowBits; + } + else { + wrap = (windowBits >> 4) + 1; + if (windowBits < 48) { + windowBits &= 15; + } + } + + /* set number of window bits, free window if different */ + if (windowBits && (windowBits < 8 || windowBits > 15)) { + return Z_STREAM_ERROR$1; + } + if (state.window !== null && state.wbits !== windowBits) { + state.window = null; + } + + /* update state and reset the rest of it */ + state.wrap = wrap; + state.wbits = windowBits; + return inflateReset(strm); +} + +function inflateInit2(strm, windowBits) { + var ret; + var state; + + if (!strm) { return Z_STREAM_ERROR$1; } + //strm.msg = Z_NULL; /* in case we return an error */ + + state = new InflateState(); + + //if (state === Z_NULL) return Z_MEM_ERROR; + //Tracev((stderr, "inflate: allocated\n")); + strm.state = state; + state.window = null/*Z_NULL*/; + ret = inflateReset2(strm, windowBits); + if (ret !== Z_OK$2) { + strm.state = null/*Z_NULL*/; + } + return ret; +} + +function inflateInit(strm) { + return inflateInit2(strm, DEF_WBITS); +} + + +/* + Return state with length and distance decoding tables and index sizes set to + fixed code decoding. Normally this returns fixed tables from inffixed.h. + If BUILDFIXED is defined, then instead this routine builds the tables the + first time it's called, and returns those tables the first time and + thereafter. This reduces the size of the code by about 2K bytes, in + exchange for a little execution time. However, BUILDFIXED should not be + used for threaded applications, since the rewriting of the tables and virgin + may not be thread-safe. + */ +var virgin = true; + +var lenfix; +var distfix; // We have no pointers in JS, so keep tables separate + +function fixedtables(state) { + /* build fixed huffman tables if first call (may not be thread safe) */ + if (virgin) { + var sym; + + lenfix = new common.Buf32(512); + distfix = new common.Buf32(32); + + /* literal/length table */ + sym = 0; + while (sym < 144) { state.lens[sym++] = 8; } + while (sym < 256) { state.lens[sym++] = 9; } + while (sym < 280) { state.lens[sym++] = 7; } + while (sym < 288) { state.lens[sym++] = 8; } + + inftrees(LENS, state.lens, 0, 288, lenfix, 0, state.work, { bits: 9 }); + + /* distance table */ + sym = 0; + while (sym < 32) { state.lens[sym++] = 5; } + + inftrees(DISTS, state.lens, 0, 32, distfix, 0, state.work, { bits: 5 }); + + /* do this just once */ + virgin = false; + } + + state.lencode = lenfix; + state.lenbits = 9; + state.distcode = distfix; + state.distbits = 5; +} + + +/* + Update the window with the last wsize (normally 32K) bytes written before + returning. If window does not exist yet, create it. This is only called + when a window is already in use, or when output has been written during this + inflate call, but the end of the deflate stream has not been reached yet. + It is also called to create a window for dictionary data when a dictionary + is loaded. + + Providing output buffers larger than 32K to inflate() should provide a speed + advantage, since only the last 32K of output is copied to the sliding window + upon return from inflate(), and since all distances after the first 32K of + output will fall in the output data, making match copies simpler and faster. + The advantage may be dependent on the size of the processor's data caches. + */ +function updatewindow(strm, src, end, copy) { + var dist; + var state = strm.state; + + /* if it hasn't been done already, allocate space for the window */ + if (state.window === null) { + state.wsize = 1 << state.wbits; + state.wnext = 0; + state.whave = 0; + + state.window = new common.Buf8(state.wsize); + } + + /* copy state->wsize or less output bytes into the circular window */ + if (copy >= state.wsize) { + common.arraySet(state.window, src, end - state.wsize, state.wsize, 0); + state.wnext = 0; + state.whave = state.wsize; + } + else { + dist = state.wsize - state.wnext; + if (dist > copy) { + dist = copy; + } + //zmemcpy(state->window + state->wnext, end - copy, dist); + common.arraySet(state.window, src, end - copy, dist, state.wnext); + copy -= dist; + if (copy) { + //zmemcpy(state->window, end - copy, copy); + common.arraySet(state.window, src, end - copy, copy, 0); + state.wnext = copy; + state.whave = state.wsize; + } + else { + state.wnext += dist; + if (state.wnext === state.wsize) { state.wnext = 0; } + if (state.whave < state.wsize) { state.whave += dist; } + } + } + return 0; +} + +function inflate$1(strm, flush) { + var state; + var input, output; // input/output buffers + var next; /* next input INDEX */ + var put; /* next output INDEX */ + var have, left; /* available input and output */ + var hold; /* bit buffer */ + var bits; /* bits in bit buffer */ + var _in, _out; /* save starting available input and output */ + var copy; /* number of stored or match bytes to copy */ + var from; /* where to copy match bytes from */ + var from_source; + var here = 0; /* current decoding table entry */ + var here_bits, here_op, here_val; // paked "here" denormalized (JS specific) + //var last; /* parent table entry */ + var last_bits, last_op, last_val; // paked "last" denormalized (JS specific) + var len; /* length to copy for repeats, bits to drop */ + var ret; /* return code */ + var hbuf = new common.Buf8(4); /* buffer for gzip header crc calculation */ + var opts; + + var n; // temporary var for NEED_BITS + + var order = /* permutation of code lengths */ + [ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ]; + + + if (!strm || !strm.state || !strm.output || + (!strm.input && strm.avail_in !== 0)) { + return Z_STREAM_ERROR$1; + } + + state = strm.state; + if (state.mode === TYPE) { state.mode = TYPEDO; } /* skip check */ + + + //--- LOAD() --- + put = strm.next_out; + output = strm.output; + left = strm.avail_out; + next = strm.next_in; + input = strm.input; + have = strm.avail_in; + hold = state.hold; + bits = state.bits; + //--- + + _in = have; + _out = left; + ret = Z_OK$2; + + inf_leave: // goto emulation + for (;;) { + switch (state.mode) { + case HEAD: + if (state.wrap === 0) { + state.mode = TYPEDO; + break; + } + //=== NEEDBITS(16); + while (bits < 16) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + if ((state.wrap & 2) && hold === 0x8b1f) { /* gzip header */ + state.check = 0/*crc32(0L, Z_NULL, 0)*/; + //=== CRC2(state.check, hold); + hbuf[0] = hold & 0xff; + hbuf[1] = (hold >>> 8) & 0xff; + state.check = crc32_1(state.check, hbuf, 2, 0); + //===// + + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + state.mode = FLAGS; + break; + } + state.flags = 0; /* expect zlib header */ + if (state.head) { + state.head.done = false; + } + if (!(state.wrap & 1) || /* check if zlib header allowed */ + (((hold & 0xff)/*BITS(8)*/ << 8) + (hold >> 8)) % 31) { + strm.msg = 'incorrect header check'; + state.mode = BAD; + break; + } + if ((hold & 0x0f)/*BITS(4)*/ !== Z_DEFLATED$2) { + strm.msg = 'unknown compression method'; + state.mode = BAD; + break; + } + //--- DROPBITS(4) ---// + hold >>>= 4; + bits -= 4; + //---// + len = (hold & 0x0f)/*BITS(4)*/ + 8; + if (state.wbits === 0) { + state.wbits = len; + } + else if (len > state.wbits) { + strm.msg = 'invalid window size'; + state.mode = BAD; + break; + } + state.dmax = 1 << len; + //Tracev((stderr, "inflate: zlib header ok\n")); + strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/; + state.mode = hold & 0x200 ? DICTID : TYPE; + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + break; + case FLAGS: + //=== NEEDBITS(16); */ + while (bits < 16) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.flags = hold; + if ((state.flags & 0xff) !== Z_DEFLATED$2) { + strm.msg = 'unknown compression method'; + state.mode = BAD; + break; + } + if (state.flags & 0xe000) { + strm.msg = 'unknown header flags set'; + state.mode = BAD; + break; + } + if (state.head) { + state.head.text = ((hold >> 8) & 1); + } + if (state.flags & 0x0200) { + //=== CRC2(state.check, hold); + hbuf[0] = hold & 0xff; + hbuf[1] = (hold >>> 8) & 0xff; + state.check = crc32_1(state.check, hbuf, 2, 0); + //===// + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + state.mode = TIME; + /* falls through */ + case TIME: + //=== NEEDBITS(32); */ + while (bits < 32) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + if (state.head) { + state.head.time = hold; + } + if (state.flags & 0x0200) { + //=== CRC4(state.check, hold) + hbuf[0] = hold & 0xff; + hbuf[1] = (hold >>> 8) & 0xff; + hbuf[2] = (hold >>> 16) & 0xff; + hbuf[3] = (hold >>> 24) & 0xff; + state.check = crc32_1(state.check, hbuf, 4, 0); + //=== + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + state.mode = OS; + /* falls through */ + case OS: + //=== NEEDBITS(16); */ + while (bits < 16) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + if (state.head) { + state.head.xflags = (hold & 0xff); + state.head.os = (hold >> 8); + } + if (state.flags & 0x0200) { + //=== CRC2(state.check, hold); + hbuf[0] = hold & 0xff; + hbuf[1] = (hold >>> 8) & 0xff; + state.check = crc32_1(state.check, hbuf, 2, 0); + //===// + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + state.mode = EXLEN; + /* falls through */ + case EXLEN: + if (state.flags & 0x0400) { + //=== NEEDBITS(16); */ + while (bits < 16) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.length = hold; + if (state.head) { + state.head.extra_len = hold; + } + if (state.flags & 0x0200) { + //=== CRC2(state.check, hold); + hbuf[0] = hold & 0xff; + hbuf[1] = (hold >>> 8) & 0xff; + state.check = crc32_1(state.check, hbuf, 2, 0); + //===// + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + } + else if (state.head) { + state.head.extra = null/*Z_NULL*/; + } + state.mode = EXTRA; + /* falls through */ + case EXTRA: + if (state.flags & 0x0400) { + copy = state.length; + if (copy > have) { copy = have; } + if (copy) { + if (state.head) { + len = state.head.extra_len - state.length; + if (!state.head.extra) { + // Use untyped array for more conveniend processing later + state.head.extra = new Array(state.head.extra_len); + } + common.arraySet( + state.head.extra, + input, + next, + // extra field is limited to 65536 bytes + // - no need for additional size check + copy, + /*len + copy > state.head.extra_max - len ? state.head.extra_max : copy,*/ + len + ); + //zmemcpy(state.head.extra + len, next, + // len + copy > state.head.extra_max ? + // state.head.extra_max - len : copy); + } + if (state.flags & 0x0200) { + state.check = crc32_1(state.check, input, copy, next); + } + have -= copy; + next += copy; + state.length -= copy; + } + if (state.length) { break inf_leave; } + } + state.length = 0; + state.mode = NAME; + /* falls through */ + case NAME: + if (state.flags & 0x0800) { + if (have === 0) { break inf_leave; } + copy = 0; + do { + // TODO: 2 or 1 bytes? + len = input[next + copy++]; + /* use constant limit because in js we should not preallocate memory */ + if (state.head && len && + (state.length < 65536 /*state.head.name_max*/)) { + state.head.name += String.fromCharCode(len); + } + } while (len && copy < have); + + if (state.flags & 0x0200) { + state.check = crc32_1(state.check, input, copy, next); + } + have -= copy; + next += copy; + if (len) { break inf_leave; } + } + else if (state.head) { + state.head.name = null; + } + state.length = 0; + state.mode = COMMENT; + /* falls through */ + case COMMENT: + if (state.flags & 0x1000) { + if (have === 0) { break inf_leave; } + copy = 0; + do { + len = input[next + copy++]; + /* use constant limit because in js we should not preallocate memory */ + if (state.head && len && + (state.length < 65536 /*state.head.comm_max*/)) { + state.head.comment += String.fromCharCode(len); + } + } while (len && copy < have); + if (state.flags & 0x0200) { + state.check = crc32_1(state.check, input, copy, next); + } + have -= copy; + next += copy; + if (len) { break inf_leave; } + } + else if (state.head) { + state.head.comment = null; + } + state.mode = HCRC; + /* falls through */ + case HCRC: + if (state.flags & 0x0200) { + //=== NEEDBITS(16); */ + while (bits < 16) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + if (hold !== (state.check & 0xffff)) { + strm.msg = 'header crc mismatch'; + state.mode = BAD; + break; + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + } + if (state.head) { + state.head.hcrc = ((state.flags >> 9) & 1); + state.head.done = true; + } + strm.adler = state.check = 0; + state.mode = TYPE; + break; + case DICTID: + //=== NEEDBITS(32); */ + while (bits < 32) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + strm.adler = state.check = zswap32(hold); + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + state.mode = DICT; + /* falls through */ + case DICT: + if (state.havedict === 0) { + //--- RESTORE() --- + strm.next_out = put; + strm.avail_out = left; + strm.next_in = next; + strm.avail_in = have; + state.hold = hold; + state.bits = bits; + //--- + return Z_NEED_DICT; + } + strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/; + state.mode = TYPE; + /* falls through */ + case TYPE: + if (flush === Z_BLOCK$1 || flush === Z_TREES) { break inf_leave; } + /* falls through */ + case TYPEDO: + if (state.last) { + //--- BYTEBITS() ---// + hold >>>= bits & 7; + bits -= bits & 7; + //---// + state.mode = CHECK; + break; + } + //=== NEEDBITS(3); */ + while (bits < 3) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.last = (hold & 0x01)/*BITS(1)*/; + //--- DROPBITS(1) ---// + hold >>>= 1; + bits -= 1; + //---// + + switch ((hold & 0x03)/*BITS(2)*/) { + case 0: /* stored block */ + //Tracev((stderr, "inflate: stored block%s\n", + // state.last ? " (last)" : "")); + state.mode = STORED; + break; + case 1: /* fixed block */ + fixedtables(state); + //Tracev((stderr, "inflate: fixed codes block%s\n", + // state.last ? " (last)" : "")); + state.mode = LEN_; /* decode codes */ + if (flush === Z_TREES) { + //--- DROPBITS(2) ---// + hold >>>= 2; + bits -= 2; + //---// + break inf_leave; + } + break; + case 2: /* dynamic block */ + //Tracev((stderr, "inflate: dynamic codes block%s\n", + // state.last ? " (last)" : "")); + state.mode = TABLE; + break; + case 3: + strm.msg = 'invalid block type'; + state.mode = BAD; + } + //--- DROPBITS(2) ---// + hold >>>= 2; + bits -= 2; + //---// + break; + case STORED: + //--- BYTEBITS() ---// /* go to byte boundary */ + hold >>>= bits & 7; + bits -= bits & 7; + //---// + //=== NEEDBITS(32); */ + while (bits < 32) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + if ((hold & 0xffff) !== ((hold >>> 16) ^ 0xffff)) { + strm.msg = 'invalid stored block lengths'; + state.mode = BAD; + break; + } + state.length = hold & 0xffff; + //Tracev((stderr, "inflate: stored length %u\n", + // state.length)); + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + state.mode = COPY_; + if (flush === Z_TREES) { break inf_leave; } + /* falls through */ + case COPY_: + state.mode = COPY; + /* falls through */ + case COPY: + copy = state.length; + if (copy) { + if (copy > have) { copy = have; } + if (copy > left) { copy = left; } + if (copy === 0) { break inf_leave; } + //--- zmemcpy(put, next, copy); --- + common.arraySet(output, input, next, copy, put); + //---// + have -= copy; + next += copy; + left -= copy; + put += copy; + state.length -= copy; + break; + } + //Tracev((stderr, "inflate: stored end\n")); + state.mode = TYPE; + break; + case TABLE: + //=== NEEDBITS(14); */ + while (bits < 14) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.nlen = (hold & 0x1f)/*BITS(5)*/ + 257; + //--- DROPBITS(5) ---// + hold >>>= 5; + bits -= 5; + //---// + state.ndist = (hold & 0x1f)/*BITS(5)*/ + 1; + //--- DROPBITS(5) ---// + hold >>>= 5; + bits -= 5; + //---// + state.ncode = (hold & 0x0f)/*BITS(4)*/ + 4; + //--- DROPBITS(4) ---// + hold >>>= 4; + bits -= 4; + //---// +//#ifndef PKZIP_BUG_WORKAROUND + if (state.nlen > 286 || state.ndist > 30) { + strm.msg = 'too many length or distance symbols'; + state.mode = BAD; + break; + } +//#endif + //Tracev((stderr, "inflate: table sizes ok\n")); + state.have = 0; + state.mode = LENLENS; + /* falls through */ + case LENLENS: + while (state.have < state.ncode) { + //=== NEEDBITS(3); + while (bits < 3) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.lens[order[state.have++]] = (hold & 0x07);//BITS(3); + //--- DROPBITS(3) ---// + hold >>>= 3; + bits -= 3; + //---// + } + while (state.have < 19) { + state.lens[order[state.have++]] = 0; + } + // We have separate tables & no pointers. 2 commented lines below not needed. + //state.next = state.codes; + //state.lencode = state.next; + // Switch to use dynamic table + state.lencode = state.lendyn; + state.lenbits = 7; + + opts = { bits: state.lenbits }; + ret = inftrees(CODES, state.lens, 0, 19, state.lencode, 0, state.work, opts); + state.lenbits = opts.bits; + + if (ret) { + strm.msg = 'invalid code lengths set'; + state.mode = BAD; + break; + } + //Tracev((stderr, "inflate: code lengths ok\n")); + state.have = 0; + state.mode = CODELENS; + /* falls through */ + case CODELENS: + while (state.have < state.nlen + state.ndist) { + for (;;) { + here = state.lencode[hold & ((1 << state.lenbits) - 1)];/*BITS(state.lenbits)*/ + here_bits = here >>> 24; + here_op = (here >>> 16) & 0xff; + here_val = here & 0xffff; + + if ((here_bits) <= bits) { break; } + //--- PULLBYTE() ---// + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + //---// + } + if (here_val < 16) { + //--- DROPBITS(here.bits) ---// + hold >>>= here_bits; + bits -= here_bits; + //---// + state.lens[state.have++] = here_val; + } + else { + if (here_val === 16) { + //=== NEEDBITS(here.bits + 2); + n = here_bits + 2; + while (bits < n) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + //--- DROPBITS(here.bits) ---// + hold >>>= here_bits; + bits -= here_bits; + //---// + if (state.have === 0) { + strm.msg = 'invalid bit length repeat'; + state.mode = BAD; + break; + } + len = state.lens[state.have - 1]; + copy = 3 + (hold & 0x03);//BITS(2); + //--- DROPBITS(2) ---// + hold >>>= 2; + bits -= 2; + //---// + } + else if (here_val === 17) { + //=== NEEDBITS(here.bits + 3); + n = here_bits + 3; + while (bits < n) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + //--- DROPBITS(here.bits) ---// + hold >>>= here_bits; + bits -= here_bits; + //---// + len = 0; + copy = 3 + (hold & 0x07);//BITS(3); + //--- DROPBITS(3) ---// + hold >>>= 3; + bits -= 3; + //---// + } + else { + //=== NEEDBITS(here.bits + 7); + n = here_bits + 7; + while (bits < n) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + //--- DROPBITS(here.bits) ---// + hold >>>= here_bits; + bits -= here_bits; + //---// + len = 0; + copy = 11 + (hold & 0x7f);//BITS(7); + //--- DROPBITS(7) ---// + hold >>>= 7; + bits -= 7; + //---// + } + if (state.have + copy > state.nlen + state.ndist) { + strm.msg = 'invalid bit length repeat'; + state.mode = BAD; + break; + } + while (copy--) { + state.lens[state.have++] = len; + } + } + } + + /* handle error breaks in while */ + if (state.mode === BAD) { break; } + + /* check for end-of-block code (better have one) */ + if (state.lens[256] === 0) { + strm.msg = 'invalid code -- missing end-of-block'; + state.mode = BAD; + break; + } + + /* build code tables -- note: do not change the lenbits or distbits + values here (9 and 6) without reading the comments in inftrees.h + concerning the ENOUGH constants, which depend on those values */ + state.lenbits = 9; + + opts = { bits: state.lenbits }; + ret = inftrees(LENS, state.lens, 0, state.nlen, state.lencode, 0, state.work, opts); + // We have separate tables & no pointers. 2 commented lines below not needed. + // state.next_index = opts.table_index; + state.lenbits = opts.bits; + // state.lencode = state.next; + + if (ret) { + strm.msg = 'invalid literal/lengths set'; + state.mode = BAD; + break; + } + + state.distbits = 6; + //state.distcode.copy(state.codes); + // Switch to use dynamic table + state.distcode = state.distdyn; + opts = { bits: state.distbits }; + ret = inftrees(DISTS, state.lens, state.nlen, state.ndist, state.distcode, 0, state.work, opts); + // We have separate tables & no pointers. 2 commented lines below not needed. + // state.next_index = opts.table_index; + state.distbits = opts.bits; + // state.distcode = state.next; + + if (ret) { + strm.msg = 'invalid distances set'; + state.mode = BAD; + break; + } + //Tracev((stderr, 'inflate: codes ok\n')); + state.mode = LEN_; + if (flush === Z_TREES) { break inf_leave; } + /* falls through */ + case LEN_: + state.mode = LEN; + /* falls through */ + case LEN: + if (have >= 6 && left >= 258) { + //--- RESTORE() --- + strm.next_out = put; + strm.avail_out = left; + strm.next_in = next; + strm.avail_in = have; + state.hold = hold; + state.bits = bits; + //--- + inffast(strm, _out); + //--- LOAD() --- + put = strm.next_out; + output = strm.output; + left = strm.avail_out; + next = strm.next_in; + input = strm.input; + have = strm.avail_in; + hold = state.hold; + bits = state.bits; + //--- + + if (state.mode === TYPE) { + state.back = -1; + } + break; + } + state.back = 0; + for (;;) { + here = state.lencode[hold & ((1 << state.lenbits) - 1)]; /*BITS(state.lenbits)*/ + here_bits = here >>> 24; + here_op = (here >>> 16) & 0xff; + here_val = here & 0xffff; + + if (here_bits <= bits) { break; } + //--- PULLBYTE() ---// + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + //---// + } + if (here_op && (here_op & 0xf0) === 0) { + last_bits = here_bits; + last_op = here_op; + last_val = here_val; + for (;;) { + here = state.lencode[last_val + + ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)]; + here_bits = here >>> 24; + here_op = (here >>> 16) & 0xff; + here_val = here & 0xffff; + + if ((last_bits + here_bits) <= bits) { break; } + //--- PULLBYTE() ---// + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + //---// + } + //--- DROPBITS(last.bits) ---// + hold >>>= last_bits; + bits -= last_bits; + //---// + state.back += last_bits; + } + //--- DROPBITS(here.bits) ---// + hold >>>= here_bits; + bits -= here_bits; + //---// + state.back += here_bits; + state.length = here_val; + if (here_op === 0) { + //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? + // "inflate: literal '%c'\n" : + // "inflate: literal 0x%02x\n", here.val)); + state.mode = LIT; + break; + } + if (here_op & 32) { + //Tracevv((stderr, "inflate: end of block\n")); + state.back = -1; + state.mode = TYPE; + break; + } + if (here_op & 64) { + strm.msg = 'invalid literal/length code'; + state.mode = BAD; + break; + } + state.extra = here_op & 15; + state.mode = LENEXT; + /* falls through */ + case LENEXT: + if (state.extra) { + //=== NEEDBITS(state.extra); + n = state.extra; + while (bits < n) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.length += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/; + //--- DROPBITS(state.extra) ---// + hold >>>= state.extra; + bits -= state.extra; + //---// + state.back += state.extra; + } + //Tracevv((stderr, "inflate: length %u\n", state.length)); + state.was = state.length; + state.mode = DIST; + /* falls through */ + case DIST: + for (;;) { + here = state.distcode[hold & ((1 << state.distbits) - 1)];/*BITS(state.distbits)*/ + here_bits = here >>> 24; + here_op = (here >>> 16) & 0xff; + here_val = here & 0xffff; + + if ((here_bits) <= bits) { break; } + //--- PULLBYTE() ---// + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + //---// + } + if ((here_op & 0xf0) === 0) { + last_bits = here_bits; + last_op = here_op; + last_val = here_val; + for (;;) { + here = state.distcode[last_val + + ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)]; + here_bits = here >>> 24; + here_op = (here >>> 16) & 0xff; + here_val = here & 0xffff; + + if ((last_bits + here_bits) <= bits) { break; } + //--- PULLBYTE() ---// + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + //---// + } + //--- DROPBITS(last.bits) ---// + hold >>>= last_bits; + bits -= last_bits; + //---// + state.back += last_bits; + } + //--- DROPBITS(here.bits) ---// + hold >>>= here_bits; + bits -= here_bits; + //---// + state.back += here_bits; + if (here_op & 64) { + strm.msg = 'invalid distance code'; + state.mode = BAD; + break; + } + state.offset = here_val; + state.extra = (here_op) & 15; + state.mode = DISTEXT; + /* falls through */ + case DISTEXT: + if (state.extra) { + //=== NEEDBITS(state.extra); + n = state.extra; + while (bits < n) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + state.offset += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/; + //--- DROPBITS(state.extra) ---// + hold >>>= state.extra; + bits -= state.extra; + //---// + state.back += state.extra; + } +//#ifdef INFLATE_STRICT + if (state.offset > state.dmax) { + strm.msg = 'invalid distance too far back'; + state.mode = BAD; + break; + } +//#endif + //Tracevv((stderr, "inflate: distance %u\n", state.offset)); + state.mode = MATCH; + /* falls through */ + case MATCH: + if (left === 0) { break inf_leave; } + copy = _out - left; + if (state.offset > copy) { /* copy from window */ + copy = state.offset - copy; + if (copy > state.whave) { + if (state.sane) { + strm.msg = 'invalid distance too far back'; + state.mode = BAD; + break; + } +// (!) This block is disabled in zlib defailts, +// don't enable it for binary compatibility +//#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR +// Trace((stderr, "inflate.c too far\n")); +// copy -= state.whave; +// if (copy > state.length) { copy = state.length; } +// if (copy > left) { copy = left; } +// left -= copy; +// state.length -= copy; +// do { +// output[put++] = 0; +// } while (--copy); +// if (state.length === 0) { state.mode = LEN; } +// break; +//#endif + } + if (copy > state.wnext) { + copy -= state.wnext; + from = state.wsize - copy; + } + else { + from = state.wnext - copy; + } + if (copy > state.length) { copy = state.length; } + from_source = state.window; + } + else { /* copy from output */ + from_source = output; + from = put - state.offset; + copy = state.length; + } + if (copy > left) { copy = left; } + left -= copy; + state.length -= copy; + do { + output[put++] = from_source[from++]; + } while (--copy); + if (state.length === 0) { state.mode = LEN; } + break; + case LIT: + if (left === 0) { break inf_leave; } + output[put++] = state.length; + left--; + state.mode = LEN; + break; + case CHECK: + if (state.wrap) { + //=== NEEDBITS(32); + while (bits < 32) { + if (have === 0) { break inf_leave; } + have--; + // Use '|' insdead of '+' to make sure that result is signed + hold |= input[next++] << bits; + bits += 8; + } + //===// + _out -= left; + strm.total_out += _out; + state.total += _out; + if (_out) { + strm.adler = state.check = + /*UPDATE(state.check, put - _out, _out);*/ + (state.flags ? crc32_1(state.check, output, _out, put - _out) : adler32_1(state.check, output, _out, put - _out)); + + } + _out = left; + // NB: crc32 stored as signed 32-bit int, zswap32 returns signed too + if ((state.flags ? hold : zswap32(hold)) !== state.check) { + strm.msg = 'incorrect data check'; + state.mode = BAD; + break; + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + //Tracev((stderr, "inflate: check matches trailer\n")); + } + state.mode = LENGTH; + /* falls through */ + case LENGTH: + if (state.wrap && state.flags) { + //=== NEEDBITS(32); + while (bits < 32) { + if (have === 0) { break inf_leave; } + have--; + hold += input[next++] << bits; + bits += 8; + } + //===// + if (hold !== (state.total & 0xffffffff)) { + strm.msg = 'incorrect length check'; + state.mode = BAD; + break; + } + //=== INITBITS(); + hold = 0; + bits = 0; + //===// + //Tracev((stderr, "inflate: length matches trailer\n")); + } + state.mode = DONE; + /* falls through */ + case DONE: + ret = Z_STREAM_END$2; + break inf_leave; + case BAD: + ret = Z_DATA_ERROR$1; + break inf_leave; + case MEM: + return Z_MEM_ERROR; + case SYNC: + /* falls through */ + default: + return Z_STREAM_ERROR$1; + } + } + + // inf_leave <- here is real place for "goto inf_leave", emulated via "break inf_leave" + + /* + Return from inflate(), updating the total counts and the check value. + If there was no progress during the inflate() call, return a buffer + error. Call updatewindow() to create and/or update the window state. + Note: a memory error from inflate() is non-recoverable. + */ + + //--- RESTORE() --- + strm.next_out = put; + strm.avail_out = left; + strm.next_in = next; + strm.avail_in = have; + state.hold = hold; + state.bits = bits; + //--- + + if (state.wsize || (_out !== strm.avail_out && state.mode < BAD && + (state.mode < CHECK || flush !== Z_FINISH$2))) { + if (updatewindow(strm, strm.output, strm.next_out, _out - strm.avail_out)) { + state.mode = MEM; + return Z_MEM_ERROR; + } + } + _in -= strm.avail_in; + _out -= strm.avail_out; + strm.total_in += _in; + strm.total_out += _out; + state.total += _out; + if (state.wrap && _out) { + strm.adler = state.check = /*UPDATE(state.check, strm.next_out - _out, _out);*/ + (state.flags ? crc32_1(state.check, output, _out, strm.next_out - _out) : adler32_1(state.check, output, _out, strm.next_out - _out)); + } + strm.data_type = state.bits + (state.last ? 64 : 0) + + (state.mode === TYPE ? 128 : 0) + + (state.mode === LEN_ || state.mode === COPY_ ? 256 : 0); + if (((_in === 0 && _out === 0) || flush === Z_FINISH$2) && ret === Z_OK$2) { + ret = Z_BUF_ERROR$1; + } + return ret; +} + +function inflateEnd(strm) { + + if (!strm || !strm.state /*|| strm->zfree == (free_func)0*/) { + return Z_STREAM_ERROR$1; + } + + var state = strm.state; + if (state.window) { + state.window = null; + } + strm.state = null; + return Z_OK$2; +} + +function inflateGetHeader(strm, head) { + var state; + + /* check state */ + if (!strm || !strm.state) { return Z_STREAM_ERROR$1; } + state = strm.state; + if ((state.wrap & 2) === 0) { return Z_STREAM_ERROR$1; } + + /* save header structure */ + state.head = head; + head.done = false; + return Z_OK$2; +} + +function inflateSetDictionary(strm, dictionary) { + var dictLength = dictionary.length; + + var state; + var dictid; + var ret; + + /* check state */ + if (!strm /* == Z_NULL */ || !strm.state /* == Z_NULL */) { return Z_STREAM_ERROR$1; } + state = strm.state; + + if (state.wrap !== 0 && state.mode !== DICT) { + return Z_STREAM_ERROR$1; + } + + /* check for correct dictionary identifier */ + if (state.mode === DICT) { + dictid = 1; /* adler32(0, null, 0)*/ + /* dictid = adler32(dictid, dictionary, dictLength); */ + dictid = adler32_1(dictid, dictionary, dictLength, 0); + if (dictid !== state.check) { + return Z_DATA_ERROR$1; + } + } + /* copy dictionary to window using updatewindow(), which will amend the + existing dictionary if appropriate */ + ret = updatewindow(strm, dictionary, dictLength, dictLength); + if (ret) { + state.mode = MEM; + return Z_MEM_ERROR; + } + state.havedict = 1; + // Tracev((stderr, "inflate: dictionary set\n")); + return Z_OK$2; +} + +var inflateReset_1 = inflateReset; +var inflateReset2_1 = inflateReset2; +var inflateResetKeep_1 = inflateResetKeep; +var inflateInit_1 = inflateInit; +var inflateInit2_1 = inflateInit2; +var inflate_2$1 = inflate$1; +var inflateEnd_1 = inflateEnd; +var inflateGetHeader_1 = inflateGetHeader; +var inflateSetDictionary_1 = inflateSetDictionary; +var inflateInfo = 'pako inflate (from Nodeca project)'; + +/* Not implemented +exports.inflateCopy = inflateCopy; +exports.inflateGetDictionary = inflateGetDictionary; +exports.inflateMark = inflateMark; +exports.inflatePrime = inflatePrime; +exports.inflateSync = inflateSync; +exports.inflateSyncPoint = inflateSyncPoint; +exports.inflateUndermine = inflateUndermine; +*/ + +var inflate_1$2 = { + inflateReset: inflateReset_1, + inflateReset2: inflateReset2_1, + inflateResetKeep: inflateResetKeep_1, + inflateInit: inflateInit_1, + inflateInit2: inflateInit2_1, + inflate: inflate_2$1, + inflateEnd: inflateEnd_1, + inflateGetHeader: inflateGetHeader_1, + inflateSetDictionary: inflateSetDictionary_1, + inflateInfo: inflateInfo +}; + +var constants = { + + /* Allowed flush values; see deflate() and inflate() below for details */ + Z_NO_FLUSH: 0, + Z_PARTIAL_FLUSH: 1, + Z_SYNC_FLUSH: 2, + Z_FULL_FLUSH: 3, + Z_FINISH: 4, + Z_BLOCK: 5, + Z_TREES: 6, + + /* Return codes for the compression/decompression functions. Negative values + * are errors, positive values are used for special but normal events. + */ + Z_OK: 0, + Z_STREAM_END: 1, + Z_NEED_DICT: 2, + Z_ERRNO: -1, + Z_STREAM_ERROR: -2, + Z_DATA_ERROR: -3, + //Z_MEM_ERROR: -4, + Z_BUF_ERROR: -5, + //Z_VERSION_ERROR: -6, + + /* compression levels */ + Z_NO_COMPRESSION: 0, + Z_BEST_SPEED: 1, + Z_BEST_COMPRESSION: 9, + Z_DEFAULT_COMPRESSION: -1, + + + Z_FILTERED: 1, + Z_HUFFMAN_ONLY: 2, + Z_RLE: 3, + Z_FIXED: 4, + Z_DEFAULT_STRATEGY: 0, + + /* Possible values of the data_type field (though see inflate()) */ + Z_BINARY: 0, + Z_TEXT: 1, + //Z_ASCII: 1, // = Z_TEXT (deprecated) + Z_UNKNOWN: 2, + + /* The deflate compression method */ + Z_DEFLATED: 8 + //Z_NULL: null // Use -1 or null inline, depending on var type +}; + +function GZheader() { + /* true if compressed data believed to be text */ + this.text = 0; + /* modification time */ + this.time = 0; + /* extra flags (not used when writing a gzip file) */ + this.xflags = 0; + /* operating system */ + this.os = 0; + /* pointer to extra field or Z_NULL if none */ + this.extra = null; + /* extra field length (valid if extra != Z_NULL) */ + this.extra_len = 0; // Actually, we don't need it in JS, + // but leave for few code modifications + + // + // Setup limits is not necessary because in js we should not preallocate memory + // for inflate use constant limit in 65536 bytes + // + + /* space at extra (only when reading header) */ + // this.extra_max = 0; + /* pointer to zero-terminated file name or Z_NULL */ + this.name = ''; + /* space at name (only when reading header) */ + // this.name_max = 0; + /* pointer to zero-terminated comment or Z_NULL */ + this.comment = ''; + /* space at comment (only when reading header) */ + // this.comm_max = 0; + /* true if there was or will be a header crc */ + this.hcrc = 0; + /* true when done reading gzip header (not used when writing a gzip file) */ + this.done = false; +} + +var gzheader = GZheader; + +var toString$1 = Object.prototype.toString; + +/** + * class Inflate + * + * Generic JS-style wrapper for zlib calls. If you don't need + * streaming behaviour - use more simple functions: [[inflate]] + * and [[inflateRaw]]. + **/ + +/* internal + * inflate.chunks -> Array + * + * Chunks of output data, if [[Inflate#onData]] not overriden. + **/ + +/** + * Inflate.result -> Uint8Array|Array|String + * + * Uncompressed result, generated by default [[Inflate#onData]] + * and [[Inflate#onEnd]] handlers. Filled after you push last chunk + * (call [[Inflate#push]] with `Z_FINISH` / `true` param) or if you + * push a chunk with explicit flush (call [[Inflate#push]] with + * `Z_SYNC_FLUSH` param). + **/ + +/** + * Inflate.err -> Number + * + * Error code after inflate finished. 0 (Z_OK) on success. + * Should be checked if broken data possible. + **/ + +/** + * Inflate.msg -> String + * + * Error message, if [[Inflate.err]] != 0 + **/ + + +/** + * new Inflate(options) + * - options (Object): zlib inflate options. + * + * Creates new inflator instance with specified params. Throws exception + * on bad params. Supported options: + * + * - `windowBits` + * - `dictionary` + * + * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) + * for more information on these. + * + * Additional options, for internal needs: + * + * - `chunkSize` - size of generated data chunks (16K by default) + * - `raw` (Boolean) - do raw inflate + * - `to` (String) - if equal to 'string', then result will be converted + * from utf8 to utf16 (javascript) string. When string output requested, + * chunk length can differ from `chunkSize`, depending on content. + * + * By default, when no options set, autodetect deflate/gzip data format via + * wrapper header. + * + * ##### Example: + * + * ```javascript + * var pako = require('pako') + * , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9]) + * , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]); + * + * var inflate = new pako.Inflate({ level: 3}); + * + * inflate.push(chunk1, false); + * inflate.push(chunk2, true); // true -> last chunk + * + * if (inflate.err) { throw new Error(inflate.err); } + * + * console.log(inflate.result); + * ``` + **/ +function Inflate(options) { + if (!(this instanceof Inflate)) return new Inflate(options); + + this.options = common.assign({ + chunkSize: 16384, + windowBits: 0, + to: '' + }, options || {}); + + var opt = this.options; + + // Force window size for `raw` data, if not set directly, + // because we have no header for autodetect. + if (opt.raw && (opt.windowBits >= 0) && (opt.windowBits < 16)) { + opt.windowBits = -opt.windowBits; + if (opt.windowBits === 0) { opt.windowBits = -15; } + } + + // If `windowBits` not defined (and mode not raw) - set autodetect flag for gzip/deflate + if ((opt.windowBits >= 0) && (opt.windowBits < 16) && + !(options && options.windowBits)) { + opt.windowBits += 32; + } + + // Gzip header has no info about windows size, we can do autodetect only + // for deflate. So, if window size not set, force it to max when gzip possible + if ((opt.windowBits > 15) && (opt.windowBits < 48)) { + // bit 3 (16) -> gzipped data + // bit 4 (32) -> autodetect gzip/deflate + if ((opt.windowBits & 15) === 0) { + opt.windowBits |= 15; + } + } + + this.err = 0; // error code, if happens (0 = Z_OK) + this.msg = ''; // error message + this.ended = false; // used to avoid multiple onEnd() calls + this.chunks = []; // chunks of compressed data + + this.strm = new zstream(); + this.strm.avail_out = 0; + + var status = inflate_1$2.inflateInit2( + this.strm, + opt.windowBits + ); + + if (status !== constants.Z_OK) { + throw new Error(messages[status]); + } + + this.header = new gzheader(); + + inflate_1$2.inflateGetHeader(this.strm, this.header); +} + +/** + * Inflate#push(data[, mode]) -> Boolean + * - data (Uint8Array|Array|ArrayBuffer|String): input data + * - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + * See constants. Skipped or `false` means Z_NO_FLUSH, `true` meansh Z_FINISH. + * + * Sends input data to inflate pipe, generating [[Inflate#onData]] calls with + * new output chunks. Returns `true` on success. The last data block must have + * mode Z_FINISH (or `true`). That will flush internal pending buffers and call + * [[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you + * can use mode Z_SYNC_FLUSH, keeping the decompression context. + * + * On fail call [[Inflate#onEnd]] with error code and return false. + * + * We strongly recommend to use `Uint8Array` on input for best speed (output + * format is detected automatically). Also, don't skip last param and always + * use the same type in your code (boolean or number). That will improve JS speed. + * + * For regular `Array`-s make sure all elements are [0..255]. + * + * ##### Example + * + * ```javascript + * push(chunk, false); // push one of data chunks + * ... + * push(chunk, true); // push last chunk + * ``` + **/ +Inflate.prototype.push = function (data, mode) { + var strm = this.strm; + var chunkSize = this.options.chunkSize; + var dictionary = this.options.dictionary; + var status, _mode; + var next_out_utf8, tail, utf8str; + var dict; + + // Flag to properly process Z_BUF_ERROR on testing inflate call + // when we check that all output data was flushed. + var allowBufError = false; + + if (this.ended) { return false; } + _mode = (mode === ~~mode) ? mode : ((mode === true) ? constants.Z_FINISH : constants.Z_NO_FLUSH); + + // Convert data if needed + if (typeof data === 'string') { + // Only binary strings can be decompressed on practice + strm.input = strings.binstring2buf(data); + } else if (toString$1.call(data) === '[object ArrayBuffer]') { + strm.input = new Uint8Array(data); + } else { + strm.input = data; + } + + strm.next_in = 0; + strm.avail_in = strm.input.length; + + do { + if (strm.avail_out === 0) { + strm.output = new common.Buf8(chunkSize); + strm.next_out = 0; + strm.avail_out = chunkSize; + } + + status = inflate_1$2.inflate(strm, constants.Z_NO_FLUSH); /* no bad return value */ + + if (status === constants.Z_NEED_DICT && dictionary) { + // Convert data if needed + if (typeof dictionary === 'string') { + dict = strings.string2buf(dictionary); + } else if (toString$1.call(dictionary) === '[object ArrayBuffer]') { + dict = new Uint8Array(dictionary); + } else { + dict = dictionary; + } + + status = inflate_1$2.inflateSetDictionary(this.strm, dict); + + } + + if (status === constants.Z_BUF_ERROR && allowBufError === true) { + status = constants.Z_OK; + allowBufError = false; + } + + if (status !== constants.Z_STREAM_END && status !== constants.Z_OK) { + this.onEnd(status); + this.ended = true; + return false; + } + + if (strm.next_out) { + if (strm.avail_out === 0 || status === constants.Z_STREAM_END || (strm.avail_in === 0 && (_mode === constants.Z_FINISH || _mode === constants.Z_SYNC_FLUSH))) { + + if (this.options.to === 'string') { + + next_out_utf8 = strings.utf8border(strm.output, strm.next_out); + + tail = strm.next_out - next_out_utf8; + utf8str = strings.buf2string(strm.output, next_out_utf8); + + // move tail + strm.next_out = tail; + strm.avail_out = chunkSize - tail; + if (tail) { common.arraySet(strm.output, strm.output, next_out_utf8, tail, 0); } + + this.onData(utf8str); + + } else { + this.onData(common.shrinkBuf(strm.output, strm.next_out)); + } + } + } + + // When no more input data, we should check that internal inflate buffers + // are flushed. The only way to do it when avail_out = 0 - run one more + // inflate pass. But if output data not exists, inflate return Z_BUF_ERROR. + // Here we set flag to process this error properly. + // + // NOTE. Deflate does not return error in this case and does not needs such + // logic. + if (strm.avail_in === 0 && strm.avail_out === 0) { + allowBufError = true; + } + + } while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== constants.Z_STREAM_END); + + if (status === constants.Z_STREAM_END) { + _mode = constants.Z_FINISH; + } + + // Finalize on the last chunk. + if (_mode === constants.Z_FINISH) { + status = inflate_1$2.inflateEnd(this.strm); + this.onEnd(status); + this.ended = true; + return status === constants.Z_OK; + } + + // callback interim results if Z_SYNC_FLUSH. + if (_mode === constants.Z_SYNC_FLUSH) { + this.onEnd(constants.Z_OK); + strm.avail_out = 0; + return true; + } + + return true; +}; + + +/** + * Inflate#onData(chunk) -> Void + * - chunk (Uint8Array|Array|String): ouput data. Type of array depends + * on js engine support. When string output requested, each chunk + * will be string. + * + * By default, stores data blocks in `chunks[]` property and glue + * those in `onEnd`. Override this handler, if you need another behaviour. + **/ +Inflate.prototype.onData = function (chunk) { + this.chunks.push(chunk); +}; + + +/** + * Inflate#onEnd(status) -> Void + * - status (Number): inflate status. 0 (Z_OK) on success, + * other if not. + * + * Called either after you tell inflate that the input stream is + * complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) + * or if an error happened. By default - join collected chunks, + * free memory and fill `results` / `err` properties. + **/ +Inflate.prototype.onEnd = function (status) { + // On success - join + if (status === constants.Z_OK) { + if (this.options.to === 'string') { + // Glue & convert here, until we teach pako to send + // utf8 alligned strings to onData + this.result = this.chunks.join(''); + } else { + this.result = common.flattenChunks(this.chunks); + } + } + this.chunks = []; + this.err = status; + this.msg = this.strm.msg; +}; + + +/** + * inflate(data[, options]) -> Uint8Array|Array|String + * - data (Uint8Array|Array|String): input data to decompress. + * - options (Object): zlib inflate options. + * + * Decompress `data` with inflate/ungzip and `options`. Autodetect + * format via wrapper header by default. That's why we don't provide + * separate `ungzip` method. + * + * Supported options are: + * + * - windowBits + * + * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) + * for more information. + * + * Sugar (options): + * + * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify + * negative windowBits implicitly. + * - `to` (String) - if equal to 'string', then result will be converted + * from utf8 to utf16 (javascript) string. When string output requested, + * chunk length can differ from `chunkSize`, depending on content. + * + * + * ##### Example: + * + * ```javascript + * var pako = require('pako') + * , input = pako.deflate([1,2,3,4,5,6,7,8,9]) + * , output; + * + * try { + * output = pako.inflate(input); + * } catch (err) + * console.log(err); + * } + * ``` + **/ +function inflate(input, options) { + var inflator = new Inflate(options); + + inflator.push(input, true); + + // That will never happens, if you don't cheat with options :) + if (inflator.err) { throw inflator.msg || messages[inflator.err]; } + + return inflator.result; +} + + +/** + * inflateRaw(data[, options]) -> Uint8Array|Array|String + * - data (Uint8Array|Array|String): input data to decompress. + * - options (Object): zlib inflate options. + * + * The same as [[inflate]], but creates raw data, without wrapper + * (header and adler32 crc). + **/ +function inflateRaw(input, options) { + options = options || {}; + options.raw = true; + return inflate(input, options); +} + + +/** + * ungzip(data[, options]) -> Uint8Array|Array|String + * - data (Uint8Array|Array|String): input data to decompress. + * - options (Object): zlib inflate options. + * + * Just shortcut to [[inflate]], because it autodetects format + * by header.content. Done for convenience. + **/ + + +var Inflate_1 = Inflate; +var inflate_2 = inflate; +var inflateRaw_1 = inflateRaw; +var ungzip = inflate; + +var inflate_1 = { + Inflate: Inflate_1, + inflate: inflate_2, + inflateRaw: inflateRaw_1, + ungzip: ungzip +}; + +var assign = common.assign; + + + + + +var pako = {}; + +assign(pako, deflate_1, inflate_1, constants); + +var index = pako; + +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* Robert D. Vincent +* +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ + +/** +* Decode a HDF5 file, but is most likely to be restricted to the features that are +* used for Minc2 file format. +* The input "0" is an array buffer, the metadata "debug" can be set to true to +* enable a verbose mode. +*/ +class Minc2Decoder extends Filter{ + + constructor(){ + super(); + + this.setMetadata("debug", false); + + this._type_enum = { + INT8: 1, + UINT8: 2, + INT16: 3, + UINT16: 4, + INT32: 5, + UINT32: 6, + FLT: 7, + DBL: 8, + STR: 9 + }; + + this._type_matching = [ + "int8", + "uint8", + "int16", + "uint16", + "int32", + "uint32", + "float32", + "float64", + "undef" // STR type is not compatible with minc + // we deal rgb8 manually + ]; + + this.type_sizes = [0, 1, 1, 2, 2, 4, 4, 4, 8, 0]; + + this._dv_offset = 0; + this._align = 8; + this._little_endian = true; + this._continuation_queue = []; + this._dv = null;//new DataView(abuf); + this._superblk = {}; + this._start_offset = 0; + this._huge_id = 0; + + } + + /** + * [PRIVATE] + */ + createLink() { + var r = {}; + // internal/private + r.hdr_offset = 0; // offset to object header. + r.data_offset = 0; // offset to actual data. + r.data_length = 0; // length of data. + r.n_filled = 0; // counts elements written to array + r.chunk_size = 0; // size of chunks + r.sym_btree = 0; // offset of symbol table btree + r.sym_lheap = 0; // offset of symbol table local heap + // permanent/global + r.name = ""; // name of this group or dataset. + r.attributes = {}; // indexed by attribute name. + r.children = []; // not associative for now. + r.array = undefined; // actual data, if dataset. + r.type = -1; // type of data. + r.inflate = false; // true if need to inflate (gzip). + r.dims = []; // dimension sizes. + return r; + } + + + /** + * [PRIVATE] + * + * Turns out that alignment of the messages in at least the + * version 1 object header is actually relative to the start + * of the header. So we update the start position of the + * header here, so we can refer to it when calculating the + * alignment in this.checkAlignment(). + */ + startAlignment() { + this._start_offset = this._dv_offset; + } + + + /** + * [PRIVATE] + */ + checkAlignment() { + var tmp = this._dv_offset - this._start_offset; + if ((tmp % this._align) !== 0) { + var n = this._align - (tmp % this._align); + this._dv_offset += n; + if (this.getMetadata("debug")) { + console.log('skipping ' + n + ' bytes at ' + tmp + ' for alignmnent'); + } + } + } + + + /** + * [PRIVATE] + * + * helper functions to manipulate the current DataView offset. + */ + skip(n_bytes) { + this._dv_offset += n_bytes; + } + + + /** + * [PRIVATE] + */ + seek(new_offset) { + this._dv_offset = new_offset; + } + + + /** + * [PRIVATE] + */ + tell() { + return this._dv_offset; + } + + + /** + * [PRIVATE] + * + * helper functions for access to our DataView. + */ + getU8() { + var v = this._dv.getUint8(this._dv_offset); + this._dv_offset += 1; + return v; + } + + + /** + * [PRIVATE] + */ + getU16() { + var v = this._dv.getUint16(this._dv_offset, this._little_endian); + this._dv_offset += 2; + return v; + } + + + /** + * [PRIVATE] + */ + getU32() { + var v = this._dv.getUint32(this._dv_offset, this._little_endian); + this._dv_offset += 4; + return v; + } + + + /** + * [PRIVATE] + */ + getU64() { + var v = this._dv.getUint64(this._dv_offset, this._little_endian); + this._dv_offset += 8; + return v; + } + + + /** + * [PRIVATE] + */ + getF32() { + var v = this._dv.getFloat32(this._dv_offset, this._little_endian); + this._dv_offset += 4; + return v; + } + + + /** + * [PRIVATE] + */ + getF64() { + var v = this._dv.getFloat64(this._dv_offset, this._little_endian); + this._dv_offset += 8; + return v; + } + + + /** + * [PRIVATE] + */ + getOffset(offsz) { + var v = 0; + offsz = offsz || this._superblk.offsz; + if (offsz === 4) { + v = this._dv.getUint32(this._dv_offset, this._little_endian); + } else if (offsz === 8) { + v = this._dv.getUint64(this._dv_offset, this._little_endian); + } else { + throw new Error('Unsupported value for offset size ' + offsz); + } + this._dv_offset += offsz; + return v; + } + + + /** + * [PRIVATE] + */ + getLength() { + var v = this._dv.getUint64(this._dv_offset, this._little_endian); + this._dv_offset += this._superblk.lensz; + return v; + } + + + /** + * [PRIVATE] + */ + getString(length) { + var r = ""; + var i; + var c; + for (i = 0; i < length; i += 1) { + c = this.getU8(); + if (c === 0) { + this._dv_offset += (length - i - 1); + break; + } + r += String.fromCharCode(c); + } + return r; + } + + + /** + * [PRIVATE] + */ + getArray(typ, n_bytes, new_off) { + var value; + var n_values; + var new_abuf; + var abuf = this._getInput(); + var i; + var spp = this._dv_offset; + if (new_off) { + this._dv_offset = new_off; + } + switch (typ) { + case this._type_enum.INT8: + value = new Int8Array(abuf, this._dv_offset, n_bytes); + break; + case this._type_enum.UINT8: + value = new Uint8Array(abuf, this._dv_offset, n_bytes); + break; + case this._type_enum.INT16: + if ((this._dv_offset % 2) !== 0) { + new_abuf = new ArrayBuffer(n_bytes); + n_values = n_bytes / 2; + value = new Int16Array(new_abuf); + for (i = 0; i < n_values; i += 1) { + value[i] = this.getU16(); + } + } else { + value = new Int16Array(abuf, this._dv_offset, n_bytes / 2); + this._dv_offset += n_bytes; + } + break; + case this._type_enum.UINT16: + if ((this._dv_offset % 2) !== 0) { + new_abuf = new ArrayBuffer(n_bytes); + n_values = n_bytes / 2; + value = new Uint16Array(new_abuf); + for (i = 0; i < n_values; i += 1) { + value[i] = this.getU16(); + } + } else { + value = new Uint16Array(abuf, this._dv_offset, n_bytes / 2); + this._dv_offset += n_bytes; + } + break; + case this._type_enum.INT32: + if ((this._dv_offset % 4) !== 0) { + new_abuf = new ArrayBuffer(n_bytes); + n_values = n_bytes / 4; + value = new Int32Array(new_abuf); + for (i = 0; i < n_values; i += 1) { + value[i] = this.getU32(); + } + } else { + value = new Int32Array(abuf, this._dv_offset, n_bytes / 4); + this._dv_offset += n_bytes; + } + break; + case this._type_enum.UINT32: + if ((this._dv_offset % 4) !== 0) { + new_abuf = new ArrayBuffer(n_bytes); + n_values = n_bytes / 4; + value = new Uint32Array(new_abuf); + for (i = 0; i < n_values; i += 1) { + value[i] = this.getU32(); + } + } else { + value = new Uint32Array(abuf, this._dv_offset, n_bytes / 4); + this._dv_offset += n_bytes; + } + break; + case this._type_enum.FLT: + if ((this._dv_offset % 4) !== 0) { + new_abuf = new ArrayBuffer(n_bytes); + n_values = n_bytes / 4; + value = new Float32Array(new_abuf); + for (i = 0; i < n_values; i += 1) { + value[i] = this.getF32(); + } + } else { + value = new Float32Array(abuf, this._dv_offset, n_bytes / 4); + this._dv_offset += n_bytes; + } + break; + case this._type_enum.DBL: + if ((this._dv_offset % 8) !== 0) { + new_abuf = new ArrayBuffer(n_bytes); + n_values = n_bytes / 8; + value = new Float64Array(new_abuf); + for (i = 0; i < n_values; i += 1) { + value[i] = this.getF64(); + } + } else { + value = new Float64Array(abuf, this._dv_offset, n_bytes / 8); + this._dv_offset += n_bytes; + } + break; + default: + throw new Error('Bad type in this.getArray ' + typ); + } + if (new_off) { + this._dv_offset = spp; + } + return value; + } + + + /** + * [PRIVATE] + * + * Get a variably-sized integer from the DataView. + */ + getUXX(n) { + var v; + var i; + switch (n) { + case 1: + v = this._dv.getUint8(this._dv_offset); + break; + case 2: + v = this._dv.getUint16(this._dv_offset, this._little_endian); + break; + case 4: + v = this._dv.getUint32(this._dv_offset, this._little_endian); + break; + case 8: + v = this._dv.getUint64(this._dv_offset, this._little_endian); + break; + default: + /* Certain hdf5 types can have odd numbers of bytes. We try + * to deal with that special case here. + */ + v = 0; + if (!this._little_endian) { + for (i = 0; i < n; i++) { + v = (v << 8) + this._dv.getUint8(this._dv_offset + i); + } + } + else { + for (i = n - 1; i >= 0; i--) { + v = (v << 8) + this._dv.getUint8(this._dv_offset + i); + } + } + } + this._dv_offset += n; + return v; + } + + + /** + * [PRIVATE] + * + * Verify that the expected signature is found at this offset. + */ + checkSignature(str) { + var i; + for (i = 0; i < str.length; i += 1) { + if (this._dv.getUint8(this._dv_offset + i) !== str.charCodeAt(i)) { + return false; + } + } + this.skip(str.length); + return true; + } + + + /** + * [PRIVATE] + */ + hdf5Superblock() { + var sb = {}; + if (!this.checkSignature("\u0089HDF\r\n\u001A\n")) { + throw new Error('Bad magic string in HDF5'); + } + sb.sbver = this.getU8(); + if (sb.sbver > 2) { + throw new Error('Unsupported HDF5 superblock version ' + sb.sbver); + } + if (sb.sbver <= 1) { + sb.fsver = this.getU8(); + sb.rgver = this.getU8(); + this.skip(1); // reserved + sb.shver = this.getU8(); + sb.offsz = this.getU8(); + sb.lensz = this.getU8(); + this.skip(1); // reserved + sb.gln_k = this.getU16(); + sb.gin_k = this.getU16(); + sb.cflags = this.getU32(); + if (sb.sbver === 1) { + sb.isin_k = this.getU16(); + this.skip(2); // reserved + } + sb.base_addr = this.getOffset(sb.offsz); + sb.gfsi_addr = this.getOffset(sb.offsz); + sb.eof_addr = this.getOffset(sb.offsz); + sb.dib_addr = this.getOffset(sb.offsz); + sb.root_ln_offs = this.getOffset(sb.offsz); + sb.root_addr = this.getOffset(sb.offsz); + sb.root_cache_type = this.getU32(); + this.skip(4); + this.skip(16); + } else { + sb.offsz = this.getU8(); + sb.lensz = this.getU8(); + sb.cflags = this.getU8(); + sb.base_addr = this.getOffset(sb.offsz); + sb.ext_addr = this.getOffset(sb.offsz); + sb.eof_addr = this.getOffset(sb.offsz); + sb.root_addr = this.getOffset(sb.offsz); + sb.checksum = this.getU32(); + } + if (this.getMetadata("debug")) { + console.log("HDF5 SB " + sb.sbver + " " + sb.offsz + " " + sb.lensz + " " + sb.cflags); + } + return sb; + } + + + /** + * [PRIVATE] + * + * read the v2 fractal heap header + */ + hdf5FractalHeapHeader() { + var fh = {}; + if (!this.checkSignature("FRHP")) { + throw new Error('Bad or missing FRHP signature'); + } + fh.ver = this.getU8(); // Version + fh.idlen = this.getU16(); // Heap ID length + fh.iof_el = this.getU16(); // I/O filter's encoded length + fh.flags = this.getU8(); // Flags + fh.objmax = this.getU32(); // Maximum size of managed objects. + fh.objnid = this.getLength(); // Next huge object ID + fh.objbta = this.getOffset(); // v2 B-tree address of huge objects + fh.nf_blk = this.getLength(); // Amount of free space in managed blocks + fh.af_blk = this.getOffset(); // Address of managed block free space manager + fh.heap_total = this.getLength(); // Amount of managed space in heap + fh.heap_alloc = this.getLength(); // Amount of allocated managed space in heap + fh.bai_offset = this.getLength(); // Offset of direct block allocation iterator + fh.heap_nobj = this.getLength(); // Number of managed objects in heap + fh.heap_chuge = this.getLength(); // Size of huge objects in heap + fh.heap_nhuge = this.getLength(); // Number of huge objects in heap + fh.heap_ctiny = this.getLength(); // Size of tiny objects in heap + fh.heap_ntiny = this.getLength(); // Number of tiny objects in heap + fh.table_width = this.getU16(); // Table width + fh.start_blksz = this.getLength(); // Starting block size + fh.max_blksz = this.getLength(); // Maximum direct block size + fh.max_heapsz = this.getU16(); // Maximum heap size + fh.rib_srows = this.getU16(); // Starting # of rows in root indirect block + fh.root_addr = this.getOffset(); // Address of root block + fh.rib_crows = this.getU16(); // Current # of rows in root indirect block + + var max_dblock_rows = Math.log2(fh.max_blksz) - Math.log2(fh.start_blksz) + 2; + fh.K = Math.min(fh.rib_crows, max_dblock_rows) * fh.table_width; + fh.N = (fh.rib_crows < max_dblock_rows) ? 0 : fh.K - (max_dblock_rows * fh.table_width); + + if (this.getMetadata("debug")) { + console.log("FRHP V" + fh.ver + " F" + fh.flags + " " + fh.objbta + " Total:" + fh.heap_total + " Alloc:" + fh.heap_alloc + " #obj:" + fh.heap_nobj + " width:" + fh.table_width + " start_blksz:" + fh.start_blksz + " max_blksz:" + fh.max_blksz + " " + fh.max_heapsz + " srows:" + fh.rib_srows + " crows:" + fh.rib_crows + " " + fh.heap_nhuge); + console.log(" K: " + fh.K + " N: " + fh.N); + } + + if (fh.iof_el > 0) { + throw new Error("Filters present in fractal heap."); + } + return fh; + } + + + /** + * [PRIVATE] + * + * read the v2 btree header + */ + hdf5V2BtreeHeader() { + var bh = {}; + if (!this.checkSignature("BTHD")) { + throw new Error('Bad or missing BTHD signature'); + } + bh.ver = this.getU8(); + bh.type = this.getU8(); + bh.nodesz = this.getU32(); + bh.recsz = this.getU16(); + bh.depth = this.getU16(); + bh.splitp = this.getU8(); + bh.mergep = this.getU8(); + bh.root_addr = this.getOffset(); + bh.root_nrec = this.getU16(); + bh.total_nrec = this.getLength(); + bh.checksum = this.getU32(); + + if (this.getMetadata("debug")) { + console.log("BTHD V" + bh.ver + " T" + bh.type + " " + bh.nodesz + " " + bh.recsz + " " + bh.depth + " " + bh.root_addr + " " + bh.root_nrec + " " + bh.total_nrec); + } + return bh; + } + + + + /** + * [PRIVATE] + * + * Enumerates btree records in a block. Records are found both in direct + * and indirect v2 btree blocks. + */ + hdf5V2BtreeRecords(fh, bt_type, nrec, link) { + var i; + var spp; // saved position pointer + var offset; + var length; + if (bt_type === 1) { + for (i = 0; i < nrec; i++) { + offset = this.getOffset(); + length = this.getLength(); + var id = this.getLength(); + if (this.getMetadata("debug")) { + console.log(" -> " + offset + " " + length + " " + id + " " + this._this._huge_id); + } + spp = this.tell(); + if (id === this._this._huge_id) { + this.seek(offset); + this.hdf5MsgAttribute(length, link); + } + this.seek(spp); + } + } + else if (bt_type === 8) { + var cb_offs; + var cb_leng; + /* maximum heap size is stored in bits! */ + cb_offs = fh.max_heapsz / 8; + var tmp = Math.min(fh.objmax, fh.max_blksz); + if (tmp <= 256) { + cb_leng = 1; + } + else if (tmp <= 65536) { + cb_leng = 2; + } + else { + cb_leng = 4; + } + for (i = 0; i < nrec; i++) { + /* Read managed fractal heap ID. + */ + var vt = this.getU8(); + if ((vt & 0xc0) !== 0) { + throw new Error('Bad Fractal Heap ID version ' + vt); + } + var id_type = (vt & 0x30); + var flags; + if (id_type === 0x10) { // huge! + this._this._huge_id = this.getUXX(7); + } + else if (id_type === 0x00) { // managed. + offset = this.getUXX(cb_offs); + length = this.getUXX(cb_leng); + } + else { + throw new Error("Can't handle this Heap ID: " + vt); + } + flags = this.getU8(); + + /* Read the rest of the record. + */ + this.getU32(); // creation order (IGNORE) + this.getU32(); // hash (IGNORE) + if (this.getMetadata("debug")) { + console.log(" -> " + vt + " " + offset + " " + length + " " + flags); + } + spp = this.tell(); + if (id_type === 0x10) { + /* A "huge" object is found by indexing through the btree + * present in the header + */ + this.seek(fh.objbta); + var bh = this.hdf5V2BtreeHeader(); + if (bh.type === 1) { + this.seek(bh.root_addr); + this.hdf5V2BtreeLeafNode(fh, bh.root_nrec, link); + } + else { + throw new Error("Can only handle type-1 btrees"); + } + } + else { + /* + * A managed object implies that the attribute message is + * found in the associated fractal heap at the specified + * offset in the heap. We get the actual address + * corresponding to the offset here. + */ + var location = this.hdf5FractalHeapOffset(fh, offset); + this.seek(location); + this.hdf5MsgAttribute(length, link); + } + this.seek(spp); + } + } + else { + throw new Error("Unhandled V2 btree type."); + } + } + + + /** + * [PRIVATE] + * + * read a v2 btree leaf node + */ + hdf5V2BtreeLeafNode(fh, nrec, link) { + + if (!this.checkSignature("BTLF")) { + throw new Error('Bad or missing BTLF signature'); + } + + var ver = this.getU8(); + var typ = this.getU8(); + + if (this.getMetadata("debug")) { + console.log("BTLF V" + ver + " T" + typ + " " + this.tell()); + } + this.hdf5V2BtreeRecords(fh, typ, nrec, link); + } + + + /** + * [PRIVATE] + * + * read the hdf5 v2 btree internal node + */ + hdf5V2BtreeInternalNode(fh, nrec, depth, link) { + + if (!this.checkSignature("BTIN")) { + throw new Error('Bad or missing BTIN signature'); + } + var ver = this.getU8(); + var type = this.getU8(); + var i; + + if (this.getMetadata("debug")) { + console.log("BTIN V" + ver + " T" + type); + } + this.hdf5V2BtreeRecords(fh, type, nrec, link); + for (i = 0; i <= nrec; i++) { + var child_offset = this.getOffset(); + var child_nrec = this.getUXX(1); // TODO: calculate real size!! + var child_total; + /* TODO: unfortunately, this field is optional and + * variably-sized. Calculating the size is non-trivial, as it + * depends on the total depth and size of the tree. For now + * we will just assume it is its minimum size, as I've never + * encountered a file with depth > 1 anyway. + */ + if (depth > 1) { + child_total = this.getUXX(1); + } + if (this.getMetadata("debug")) { + console.log(" child->" + child_offset + " " + child_nrec + " " + child_total); + } + } + } + + + /** + * [PRIVATE] + */ + hdf5GetMsgName(n) { + + // JO: used to be in the global scope. + /* Names of the various HDF5 messages. + * Note that MESSAGE23 appears to be illegal. All the rest are defined, + * although I've never encountered a BOGUS message! + */ + var msg_names = [ + "NIL", "Dataspace", "LinkInfo", "Datatype", "FillValue 1", "FillValue 2", + "Link", "ExternalFiles", "Layout", "BOGUS", "GroupInfo", "FilterPipeline", + "Attribute", "ObjectComment", "ObjectModTime 1", "SharedMsgTable", + "ObjHdrContinue", "SymbolTable", "ObjectModTime 2", "BtreeKValue", + "DriverInfo", "AttrInfo", "ObjectRefCnt", "MESSAGE23", + "FileSpaceInfo" + ]; + + if (n < msg_names.length) { + return msg_names[n]; + } + throw new Error('Unknown message type ' + n + " " + this.tell()); + } + + + /** + * [PRIVATE] + */ + hdf5V1BtreeNode(link) { + var abuf = this._getInput(); + var i; + var bt = {}; + if (!this.checkSignature("TREE")) { + throw new Error('Bad TREE signature at ' + this.tell()); + } + + bt.keys = []; + + bt.node_type = this.getU8(); + bt.node_level = this.getU8(); + bt.entries_used = this.getU16(); + bt.left_sibling = this.getOffset(); + bt.right_sibling = this.getOffset(); + + if (this.getMetadata("debug")) { + console.log("BTREE type " + bt.node_type + " lvl " + + bt.node_level + " n_used " + bt.entries_used + " " + + bt.left_sibling + " " + bt.right_sibling); + } + + if (!link) { + /* If this BTREE is associated with a group (not a dataset), + * then its keys are single "length" value. + */ + for (i = 0; i < bt.entries_used; i += 1) { + bt.keys[i] = {}; + bt.keys[i].key_value = this.getLength(); + bt.keys[i].child_address = this.getOffset(); + if (this.getMetadata("debug")) { + console.log(" BTREE " + i + " key " + + bt.keys[i].key_value + " adr " + + bt.keys[i].child_address); + } + } + } else { + var j; + + /* If this BTREE is a "chunked raw data node" associated + * with a dataset, then its keys are complex, consisting + * of the chunk size in bytes, a filter mask, and a set of + * offsets matching the dimensionality of the chunk layout. + * The chunk size stores the actual stored length of the + * data, so it may not equal the uncompressed chunk size. + */ + var chunks = []; + + for (i = 0; i < bt.entries_used; i += 1) { + bt.keys[i] = {}; + chunks[i] = {}; + chunks[i].chunk_size = this.getU32(); + chunks[i].filter_mask = this.getU32(); + chunks[i].chunk_offsets = []; + for (j = 0; j < link.dims.length + 1; j += 1) { + chunks[i].chunk_offsets.push(this.getU64()); + } + bt.keys[i].child_address = this.getOffset(); + if (i < bt.entries_used) { + if (this.getMetadata("debug")) { + console.log(" BTREE " + i + + " chunk_size " + chunks[i].chunk_size + + " filter_mask " + chunks[i].filter_mask + + " addr " + bt.keys[i].child_address); + } + } + } + chunks[i] = {}; + chunks[i].chunk_size = this.getU32(); + chunks[i].filter_mask = this.getU32(); + chunks[i].chunk_offsets = []; + for (j = 0; j < link.dims.length + 1; j += 1) { + chunks[i].chunk_offsets.push(this.getU64()); + } + + /* If we're at a leaf node, we have data to deal with. + * We might have to uncompress! + */ + if (bt.node_level === 0) { + var length; + var offset; + var sp; + var dp; + + for (i = 0; i < bt.entries_used; i += 1) { + length = chunks[i].chunk_size; + offset = bt.keys[i].child_address; + + if (link.inflate) { + sp = new Uint8Array(abuf, offset, length); + dp = index.inflate(sp); + switch (link.type) { + case this._type_enum.INT8: + dp = new Int8Array(dp.buffer); + break; + case this._type_enum.UINT8: + dp = new Uint8Array(dp.buffer); + break; + case this._type_enum.INT16: + dp = new Int16Array(dp.buffer); + break; + case this._type_enum.UINT16: + dp = new Uint16Array(dp.buffer); + break; + case this._type_enum.INT32: + dp = new Int32Array(dp.buffer); + break; + case this._type_enum.UINT32: + dp = new Uint32Array(dp.buffer); + break; + case this._type_enum.FLT: + dp = new Float32Array(dp.buffer); + break; + case this._type_enum.DBL: + dp = new Float64Array(dp.buffer); + break; + default: + throw new Error('Unknown type code ' + link.type); + } + if (link.array.length - link.n_filled < dp.length) { + dp = dp.subarray(0, link.array.length - link.n_filled); + } + link.array.set(dp, link.n_filled); + link.n_filled += dp.length; + if (this.getMetadata("debug")) { + console.log(link.name + " " + sp.length + " " + dp.length + " " + link.n_filled + "/" + link.array.length); + } + } + else { + /* no need to inflate data. */ + dp = this.getArray(link.type, length, offset); + link.array.set(dp, link.n_filled); + link.n_filled += dp.length; + } + } + } else { + for (i = 0; i < bt.entries_used; i += 1) { + this.seek(bt.keys[i].child_address); + this.hdf5V1BtreeNode(link); + } + } + } + return bt; + } + + + /** + * [PRIVATE] + */ + hdf5GroupSymbolTable(lh, link) { + if (!this.checkSignature("SNOD")) { + throw new Error('Bad or missing SNOD signature'); + } + var ver = this.getU8(); + this.skip(1); + var n_sym = this.getU16(); + if (this.getMetadata("debug")) { + console.log("this.hdf5GroupSymbolTable V" + ver + " #" + n_sym + + " '" + link.name + "'"); + } + var i; + var link_name_offset; + var ohdr_address; + var cache_type; + var child; + var spp; + + for (i = 0; i < 2 * this._superblk.gln_k; i += 1) { + link_name_offset = this.getOffset(); + ohdr_address = this.getOffset(); + cache_type = this.getU32(); + this.skip(20); + + if (i < n_sym) { + child = this.createLink(); + child.hdr_offset = ohdr_address; + if (lh) { + spp = this.tell(); + /* The link name is a zero-terminated string + * starting at the link_name_off relative to + * the beginning of the data segment of the local + * heap. + */ + this.seek(lh.lh_dseg_off + link_name_offset); + child.name = this.getString(lh.lh_dseg_len); + this.seek(spp); + } + if (this.getMetadata("debug")) { + console.log(" " + i + " O " + link_name_offset + " A " + + ohdr_address + " T " + cache_type + " '" + + child.name + "'"); + } + link.children.push(child); + } + } + } + + + /** + * [PRIVATE] + * + * Read a v1 local heap header. These define relatively small + * regions used primarily for storing symbol names associated with + * a symbol table message. + */ + hdf5LocalHeap() { + var lh = {}; + if (!this.checkSignature("HEAP")) { + throw new Error('Bad or missing HEAP signature'); + } + lh.lh_ver = this.getU8(); + this.skip(3); + lh.lh_dseg_len = this.getLength(); + lh.lh_flst_len = this.getLength(); + lh.lh_dseg_off = this.getOffset(); + if (this.getMetadata("debug")) { + console.log("LHEAP V" + lh.lh_ver + " " + lh.lh_dseg_len + " " + + lh.lh_flst_len + " " + lh.lh_dseg_off); + } + return lh; + } + + + /** + * [PRIVATE] + * + * Process a "dataspace" message. Dataspaces define the + * dimensionality of a dataset or attribute. They define the + * number of dimensions (rank) and the current length of each + * dimension. It is possible to specify a "maximum" length that is + * greater than or equal to the current length, but MINC doesn't + * rely on that feature so these values are ignored. Finally it + * is also possible to specify a "permutation index" that alters + * storage order of the dataset, but again, MINC doesn't rely on + * this feature, so the values are ignored. + */ + hdf5MsgDataspace(sz, link) { + var cb; + var ver = this.getU8(); + var n_dim = this.getU8(); + var flag = this.getU8(); + if (ver <= 1) { + this.skip(5); + } else { + this.skip(1); + } + + var n_items = 1; + var dlen = []; + var i; + for (i = 0; i < n_dim; i += 1) { + dlen[i] = this.getLength(); + n_items *= dlen[i]; + } + + cb = (n_dim * this._superblk.lensz) + ((ver <= 1) ? 8 : 4); + + var dmax = []; + if ((flag & 1) !== 0) { + cb += n_dim * this._superblk.lensz; + for (i = 0; i < n_dim; i += 1) { + dmax[i] = this.getLength(); + } + } + + var dind = []; + if ((flag & 2) !== 0) { + cb += n_dim * this._superblk.lensz; + for (i = 0; i < n_dim; i += 1) { + dind[i] = this.getLength(); + } + } + var msg = "this.hdf5MsgDataspace V" + ver + " N" + n_dim + " F" + flag; + if (this.getMetadata("debug")) { + if (n_dim !== 0) { + msg += "[" + dlen.join(', ') + "]"; + } + console.log(msg); + } + if (cb < sz) { + this.skip(sz - cb); + } + if (link) { + link.dims = dlen; + } + return n_items; + } + + + /** + * [PRIVATE] + * + * + * link info messages may contain a fractal heap address where we + * can find additional link messages for this object. This + * happens, for example, when there are lots of links in a + * particular group. + */ + hdf5MsgLinkInfo(link) { + var that = this; + + var ver = this.getU8(); + var flags = this.getU8(); + if ((flags & 1) !== 0) { + this.getU64(); // max. creation index (IGNORE). + } + var fh_address = this.getOffset(); // fractal heap address + var bt_address = this.getOffset(); // v2 btree for name index + if ((flags & 2) !== 0) { + this.getOffset(); // creation order index (IGNORE). + } + if (this.getMetadata("debug")) { + console.log("this.hdf5MsgLinkInfo V" + ver + " F" + flags + + " FH " + fh_address + " BT " + bt_address); + } + var spp = this.tell(); + if (fh_address < this._superblk.eof_addr) { + this.seek(fh_address); + /* If there is a valid fractal heap address in the link info message, that + * means the fractal heap is a collection of link messages. We can ignore + * the btree address because we can get the names from the link messages. + */ + var fh = this.hdf5FractalHeapHeader(); + var n_msg = 0; + this.hdf5FractalHeapEnumerate( fh, function(row, address, block_offset, block_length) { + var end_address = address + block_length; + while (n_msg < fh.heap_nobj && that.tell() < end_address) { + that.hdf5MsgLink(link); + n_msg += 1; + } + return true; // continue with enumeration. + }); + } + this.seek(spp); + } + + + /** + * [PRIVATE] + */ + dt_class_name(cls) { + var names = [ + "Fixed-Point", "Floating-Point", "Time", "String", + "BitField", "Opaque", "Compound", "Reference", + "Enumerated", "Variable-Length", "Array" + ]; + + if (cls < names.length) { + return names[cls]; + } + throw new Error('Unknown datatype class: ' + cls); + } + + + /** + * [PRIVATE] + * + * Process a "datatype" message. These messages specify the data + * type of a single element within a dataset or attribute. Data + * types are extremely flexible, HDF5 supports a range of options + * for bit widths and organization atomic types. We support only + * fixed, float, and string atomic types, and those only for + * certain restricted (but common) cases. At this point we + * provide no support for more exotic types such as bit field, + * enumerated, array, opaque, compound, time, reference, + * variable-length, etc. + * + * TODO: should support enumerated types, possibly a few others. + */ + hdf5MsgDatatype(sz) { + var type = {}; + var cb = 8; + var msg = ""; + var bit_offs; + var bit_prec; + var exp_loc; + var exp_sz; + var mnt_loc; + var mnt_sz; + var exp_bias; + + var cv = this.getU8(); + var ver = cv >> 4; + var cls = cv & 15; + var bf = []; + var i; + for (i = 0; i < 3; i += 1) { + bf[i] = this.getU8(); + } + var dt_size = this.getU32(); + + if (this.getMetadata("debug")) { + console.log("this.hdf5MsgDatatype V" + ver + " C" + cls + + " " + this.dt_class_name(cls) + + " " + bf[0] + "." + bf[1] + "." + bf[2] + + " " + dt_size); + } + + switch (cls) { + case 0: /* Fixed (integer): bit 0 for byte order, bit 3 for signed */ + bit_offs = this.getU16(); + bit_prec = this.getU16(); + switch (dt_size) { + case 4: + type.typ_type = (bf[0] & 8) ? this._type_enum.INT32 : this._type_enum.UINT32; + break; + case 2: + type.typ_type = (bf[0] & 8) ? this._type_enum.INT16 : this._type_enum.UINT16; + break; + case 1: + type.typ_type = (bf[0] & 8) ? this._type_enum.INT8 : this._type_enum.UINT8; + break; + default: + throw new Error('Unknown type size ' + dt_size); + } + type.typ_length = dt_size; + cb += 4; + if (this.getMetadata("debug")) { + console.log(' (' + bit_offs + ' ' + bit_prec + ')'); + } + break; + case 1: /* Float: uses bits 0,6 for byte order */ + msg = ""; + if (this.getMetadata("debug")) { + switch (bf[0] & 0x41) { + case 0: + msg += "LE "; + break; + case 1: + msg += "BE "; + break; + case 0x41: + msg += "VX "; + break; + default: + throw new Error('Reserved fp byte order: ' + bf[0]); + } + } + bit_offs = this.getU16(); + bit_prec = this.getU16(); + exp_loc = this.getU8(); + exp_sz = this.getU8(); + mnt_loc = this.getU8(); + mnt_sz = this.getU8(); + exp_bias = this.getU32(); + if (this.getMetadata("debug")) { + msg += (bit_offs + " " + bit_prec + " " + exp_loc + " " + exp_sz + + " " + mnt_loc + " " + mnt_sz + " " + exp_bias); + } + /* See if it's one of the formats we recognize. + IEEE 64-bit or IEEE 32-bit are the only two we handle. + */ + if (bit_prec === 64 && bit_offs === 0 && + exp_loc === 52 && exp_sz === 11 && + mnt_loc === 0 && mnt_sz === 52 && + exp_bias === 1023 && dt_size === 8) { + type.typ_type = this._type_enum.DBL; + } else if (bit_prec === 32 && bit_offs === 0 && + exp_loc === 23 && exp_sz === 8 && + mnt_loc === 0 && mnt_sz === 23 && + exp_bias === 127 && dt_size === 4) { + type.typ_type = this._type_enum.FLT; + } else { + throw new Error("Unsupported floating-point type"); + } + if (this.getMetadata("debug")) { + console.log(msg); + } + type.typ_length = dt_size; + cb += 12; + break; + + case 3: // string + /* bits 0-3 = 0: null terminate, 1: null pad, 2: space pad */ + /* bits 4-7 = 0: ASCII, 1: UTF-8 */ + type.typ_type = this._type_enum.STR; + type.typ_length = dt_size; + break; + + default: + throw new Error('Unimplemented HDF5 data class ' + cls); + } + if (sz > cb) { + this.skip(sz - cb); + } + return type; + } + + + /** + * [PRIVATE] + * + * Process a "layout" message. These messages specify the location and organization + * of data in a dataset. The organization can be either compact, contiguous, or + * chunked. Compact data is stored in the message as a contiguous block. Contiguous + * data is stored elsewhere in the file in a single chunk. Chunked data is stored within + * a V1 Btree as a series of possibly filtered (e.g. compressed) chunks. + */ + hdf5MsgLayout(link) { + var msg = ""; + + var ver = this.getU8(); + var cls; + var n_dim; + var cdsz; + var dim = []; + var i; + var dtadr; + var dtsz; + var elsz; + + var n_items = 1; + if (ver === 1 || ver === 2) { + n_dim = this.getU8(); + cls = this.getU8(); + this.skip(5); + if (this.getMetadata("debug")) { + msg += "this.hdf5MsgLayout V" + ver + " N" + n_dim + " C" + cls; + } + if (cls === 1 || cls === 2) { // contiguous or chunked + var addr = this.getOffset(); + if (this.getMetadata("debug")) { + msg += " A" + addr; + } + link.data_offset = addr; + } + + for (i = 0; i < n_dim; i += 1) { + dim[i] = this.getU32(); + n_items *= dim[i]; + } + + if (this.getMetadata("debug")) { + msg += "[" + dim.join(', ') + "]"; + } + + if (cls === 2) { // chunked + elsz = this.getU32(); + link.chunk_size = n_items * elsz; + if (this.getMetadata("debug")) { + msg += " E" + elsz; + } + } + if (cls === 0) { // compact + cdsz = this.getU32(); + if (this.getMetadata("debug")) { + msg += "(" + cdsz + ")"; + } + link.data_offset = this.tell(); + link.data_length = cdsz; + } else if (cls === 1) { + link.data_length = n_items; + } + } else if (ver === 3) { + cls = this.getU8(); + msg = "this.hdf5MsgLayout V" + ver + " C" + cls; + + if (cls === 0) { + cdsz = this.getU16(); + if (this.getMetadata("debug")) { + msg += "(" + cdsz + ")"; + } + link.data_offset = this.tell(); + link.data_length = cdsz; + } else if (cls === 1) { + dtadr = this.getOffset(); + dtsz = this.getLength(); + if (this.getMetadata("debug")) { + msg += "(" + dtadr + ", " + dtsz + ")"; + } + link.data_offset = dtadr; + link.data_length = dtsz; + } else if (cls === 2) { + n_dim = this.getU8(); + dtadr = this.getOffset(); + link.data_offset = dtadr; + link.chunk_size = 1; + for (i = 0; i < n_dim - 1; i += 1) { + dim[i] = this.getU32(); + n_items *= dim[i]; + } + if (this.getMetadata("debug")) { + msg += "(N" + n_dim + ", A" + dtadr + " [" + dim.join(',') + "]"; + } + elsz = this.getU32(); + link.chunk_size = n_items * elsz; + if (this.getMetadata("debug")) { + msg += " E" + elsz; + } + } + } else { + throw new Error("Illegal layout version " + ver); + } + if (this.getMetadata("debug")) { + console.log(msg); + } + } + + + /** + * [PRIVATE] + * + * Read a "filter pipeline" message. At the moment we _only_ handle + * deflate/inflate. Anything else will cause us to throw an exception. + */ + hdf5MsgPipeline(link) { + var ver = this.getU8(); + var nflt = this.getU8(); + + var msg = "this.hdf5MsgPipeline V" + ver + " N" + nflt; + if (ver === 1) { + this.skip(6); + } + + if (this.getMetadata("debug")) { + console.log(msg); + } + + var i; + var fiv; + var nlen; + var flags; + var ncdv; + for (i = 0; i < nflt; i += 1) { + fiv = this.getU16(); + if (fiv !== 1) { /* deflate */ + throw new Error("Unimplemented HDF5 filter " + fiv); + } + else { + if (typeof index !== 'object') { + throw new Error('Need pako to inflate data.'); + } + link.inflate = true; + } + if (ver === 1 || fiv > 256) { + nlen = this.getU16(); + } else { + nlen = 0; + } + + flags = this.getU16(); + ncdv = this.getU16(); + if ((ncdv & 1) !== 0) { + ncdv += 1; + } + if (nlen !== 0) { + this.skip(nlen); // ignore name. + } + + this.skip(ncdv * 4); + + if (this.getMetadata("debug")) { + console.log(" " + i + " ID" + fiv + " F" + flags + " " + ncdv); + } + } + } + + + /** + * [PRIVATE] + * + * Process an "attribute" message. This actually defines an attribute that is + * to be associated with a group or dataset (what I generally call a "link" + * in this code. Attributes include a name, a datatype, and a dataspace, followed + * by the actual data. + */ + hdf5MsgAttribute(sz, link) { + var ver = this.getU8(); + var flags = this.getU8(); + var nm_len = this.getU16(); + var dt_len = this.getU16(); + var ds_len = this.getU16(); + var msg = "this.hdf5MsgAttribute V" + ver + " F" + flags + " " + sz + ": "; + + if ((flags & 3) !== 0) { + throw new Error('Shared dataspaces and datatypes are not supported.'); + } + + if (ver === 3) { + var cset = this.getU8(); + if (this.getMetadata("debug")) { + msg += (cset === 0) ? "ASCII" : "UTF-8"; + } + } + if (this.getMetadata("debug")) { + msg += "(" + nm_len + " " + dt_len + " " + ds_len + ")"; + } + if (ver < 3) { + nm_len = Math.floor((nm_len + 7) / 8) * 8; + dt_len = Math.floor((dt_len + 7) / 8) * 8; + ds_len = Math.floor((ds_len + 7) / 8) * 8; + + if (this.getMetadata("debug")) { + msg += "/(" + nm_len + " " + dt_len + " " + ds_len + ")"; + } + } + + var att_name = this.getString(nm_len); + if (this.getMetadata("debug")) { + msg += " Name: " + att_name; + console.log(msg); + } + var val_type = this.hdf5MsgDatatype(dt_len); + var n_items = this.hdf5MsgDataspace(ds_len); + var val_len = 0; + if (sz > 0) { + if (ver < 3) { + val_len = sz - (8 + nm_len + dt_len + ds_len); + } else { + val_len = sz - (9 + nm_len + dt_len + ds_len); + } + } else { + val_len = val_type.typ_length * n_items; + } + if (this.getMetadata("debug")) { + console.log(" attribute data size " + val_len + " " + this.tell()); + } + var att_value; + if (val_type.typ_type === this._type_enum.STR) { + att_value = this.getString(val_len); + } else { + att_value = this.getArray(val_type.typ_type, val_len); + } + link.attributes[att_name] = att_value; + } + + + /** + * [PRIVATE] + * + * Process a "group info" message. We don't actually do anything with these. + */ + hdf5MsgGroupInfo() { + var n_ent = 4; + var n_lnl = 8; + var ver = this.getU8(); + var flags = this.getU8(); + if ((flags & 1) !== 0) { + this.getU16(); // link phase change: max compact value (IGNORE) + this.getU16(); // link phase cange: max dense value (IGNORE) + } + if ((flags & 2) !== 0) { + n_ent = this.getU16(); + n_lnl = this.getU16(); + } + if (this.getMetadata("debug")) { + console.log("this.hdf5MsgGroupInfo V" + ver + " F" + flags + " ENT " + n_ent + " LNL " + n_lnl); + } + } + + + /** + * [PRIVATE] + * + * Process a "link" message. This specifies the name and header location of either a + * group or a dataset within the current group. It is probably also used to implement + * internal links but we don't really support that. + */ + hdf5MsgLink(link) { + var ver = this.getU8(); + var ltype = 0; + if (ver !== 1) { + throw new Error("Bad link message version " + ver); + } + var flags = this.getU8(); + if ((flags & 8) !== 0) { + ltype = this.getU8(); + } + if ((flags & 4) !== 0) { + this.getU64(); // creation order (IGNORE) + } + if ((flags & 16) !== 0) { + this.getU8(); // link name character set (IGNORE) + } + var cb = 1 << (flags & 3); + var lnsz = this.getUXX(cb); + + var child = this.createLink(); + + child.name = this.getString(lnsz); + + if ((flags & 8) === 0) { + child.hdr_offset = this.getOffset(); + } + + if (this.getMetadata("debug")) { + console.log("this.hdf5MsgLink V" + ver + " F" + flags + " T" + ltype + + " NM " + child.name + " OF " + child.hdr_offset); + } + link.children.push(child); + } + + + /** + * [PRIVATE] + * + * The fractal heap direct block contains: + * 1. A signature. + * 2. a byte version. + * 3. an offset pointing to the header (for integrity checking). + * 4. A variably-sized block offset that gives (_I think_) the mininum block offset + * associated with this block. + * 5. Variably-sized data. Block size varies with row number in a slightly tricky + * fashion. Each "row" consists of "table_width" blocks. The first two rows, row 0 and 1, + * have blocks of the "starting block size". Row 2-N have blocks of size 2^(row-1) times + * the starting block size. + */ + hdf5FractalHeapDirectBlock(fh, row, address, callback) { + if (!this.checkSignature("FHDB")) { + throw new Error("Bad or missing FHDB signature"); + } + var ver = this.getU8(); + if (ver !== 0) { + throw new Error('Bad FHDB version: ' + ver); + } + this.getOffset(); // heap header address (IGNORE) + var cb = Math.ceil(fh.max_heapsz / 8.0); + var block_offset = this.getUXX(cb); // block offset + if ((fh.flags & 2) !== 0) { + this.getU32(); // checksum (IGNORE) + } + + if (this.getMetadata("debug")) { + console.log("FHDB V:" + ver + " R:" + row + " O:" + block_offset + " A:" + address); + } + var header_length = 5 + this._superblk.offsz + cb; + if ((fh.flags & 2) !== 0) { + header_length += 4; + } + var block_length; + if (row <= 1) { + block_length = fh.start_blksz; + } + else { + block_length = Math.pow(2, row - 1) * fh.start_blksz; + } + if (callback) { + return callback(row, address, block_offset, block_length); + } + else { + return true; // continue enumeration. + } + } + + + /** + * [PRIVATE] + * + * The fractal heap indirect block contains: + * 1. A signature. + * 2. a byte version + * 3. an offset pointing to the header (for integrity checking). + * 4. a variably-sized block offset that gives (_I think_) the mininum block offset + * associated with children of this block. + * 5. pointers to K direct blocks + * 6. pointers to N indirect blocks + * 7. A checksum. This code completely ignores checksums. + * See calculations of K and N in this.hdf5FractalHeapHeader(). Note that there can also + * be additional information in the header if "filtered" direct blocks are used. I have + * made no attempt to support this. + */ + hdf5FractalHeapIndirectBlock(fh, callback) { + if (!this.checkSignature("FHIB")) { + throw new Error("Bad or missing FHIB signature"); + } + var ver = this.getU8(); + if (ver !== 0) { + throw new Error('Bad FHIB version: ' + ver); + } + this.getOffset(); // heap header address (IGNORE) + var cb = Math.ceil(fh.max_heapsz / 8.0); + var block_offset = this.getUXX(cb); // block offset + + if (this.getMetadata("debug")) { + console.log("FHIB V:" + ver + " O:" + block_offset); + } + var i; + var address; + var db_addrs = []; + for (i = 0; i < fh.K; i += 1) { + address = this.getOffset(); + if (address < this._superblk.eof_addr) { + if (this.getMetadata("debug")) { + console.log("direct block at " + address); + } + db_addrs.push(address); + } + } + + var ib_addrs = []; + for (i = 0; i < fh.N; i += 1) { + address = this.getOffset(); + if (address < this._superblk.eof_addr) { + if (this.getMetadata("debug")) { + console.log("indirect block at " + address); + } + ib_addrs.push(address); + } + } + this.getU32(); // checksum (IGNORE) + + /* Finished reading the indirect block, now go read its children. + */ + for (i = 0; i < db_addrs.length; i++) { + this.seek(db_addrs[i]); + /* TODO: check row calculation! + */ + if (!this.hdf5FractalHeapDirectBlock(fh, i / fh.table_width, db_addrs[i], callback)) { + return false; + } + } + for (i = 0; i < ib_addrs.length; i++) { + this.seek(ib_addrs[i]); + if (!this.hdf5FractalHeapIndirectBlock(fh, callback)) { + return false; + } + } + return true; + } + + + /** + * [PRIVATE] + * + * enumerate over all of the direct blocks in the fractal heap. + */ + hdf5FractalHeapEnumerate(fh, callback) { + this.seek(fh.root_addr); + if (fh.K === 0) { + this.hdf5FractalHeapDirectBlock(fh, 0, fh.root_addr, callback); + } + else { + this.hdf5FractalHeapIndirectBlock(fh, callback); + } + } + + + /** + * [PRIVATE] + */ + hdf5FractalHeapOffset(fh, offset) { + var location; + this.hdf5FractalHeapEnumerate(fh, function(row, address, block_offset, block_length) { + if (offset >= block_offset && offset < block_offset + block_length) { + location = address + (offset - block_offset); + return false; // stop enumeration. + } + return true; // continue enumeration. + }); + return location; + } + + + /** + * [PRIVATE] + * + * Attribute info messages contain pointers to a fractal heap and a v2 btree. + * If these pointers are valid, we must follow them to find more attributes. + * The attributes are indexed by records in the "type 8" btree. These btree + * records + */ + hdf5MsgAttrInfo(link) { + var ver = this.getU8(); + if (ver !== 0) { + throw new Error('Bad attribute information message version: ' + ver); + } + + var flags = this.getU8(); + + if ((flags & 1) !== 0) { + this.getU16(); // maximum creation index (IGNORE) + } + var fh_addr = this.getOffset(); + var bt_addr = this.getOffset(); + if ((flags & 2) !== 0) { + this.getOffset(); // attribute creation order (IGNORE) + } + + if (this.getMetadata("debug")) { + console.log("this.hdf5MsgAttrInfo V" + ver + " F" + flags + " HP " + fh_addr + + " AN " + bt_addr); + } + + var spp = this.tell(); + var fh; // fractal heap header. + if (fh_addr < this._superblk.eof_addr) { + this.seek(fh_addr); + fh = this.hdf5FractalHeapHeader(); + } + if (bt_addr < this._superblk.eof_addr) { + this.seek(bt_addr); + var bh = this.hdf5V2BtreeHeader(); + if (bh.type !== 8) { + throw new Error("Can only handle indexed attributes."); + } + this.seek(bh.root_addr); + if (bh.depth > 0) { + this.hdf5V2BtreeInternalNode(fh, bh.root_nrec, bh.depth, link); + } + else { + this.hdf5V2BtreeLeafNode(fh, bh.root_nrec, link); + } + } + this.seek(spp); + } + + + /** + * [PRIVATE] + * + * Process a single message, given a message header. Assumes that + * the data view offset is pointing to the remainder of the + * message. + * + * V1 and V2 files use different sets of messages to accomplish + * similar things. For example, V1 files tend to use "symbol + * table" messages to describe links within a group, whereas V2 + * files use "link" and "linkinfo" messages. + */ + hdf5ProcessMessage(msg, link) { + var cq_new = {}; + var val_type; + + switch (msg.hm_type) { + case 1: + this.hdf5MsgDataspace(msg.hm_size, link); + break; + case 2: + this.hdf5MsgLinkInfo(link); + break; + case 3: + val_type = this.hdf5MsgDatatype(msg.hm_size); + if (link) { + link.type = val_type.typ_type; + } + break; + case 6: + this.hdf5MsgLink(link); + break; + case 8: + this.hdf5MsgLayout(link); + break; + case 10: + this.hdf5MsgGroupInfo(); + break; + case 11: + this.hdf5MsgPipeline(link); + break; + case 12: + this.hdf5MsgAttribute(msg.hm_size, link); + break; + case 16: + /* Process an object header continuation message. These + * basically just say this header continues with a new segment + * with a given location and length. They can come before the + * end of the current message segment, and multiple + * continuation messages can occur in any particular segment. + * This means we have to enqueue them and shift them off the + * queue when we finish processing the current segment. + */ + cq_new.cq_off = this.getOffset(); + cq_new.cq_len = this.getLength(); + this._continuation_queue.push(cq_new); + if (this.getMetadata("debug")) { + console.log("hdf5MsgObjHdrContinue " + cq_new.cq_off + " " + cq_new.cq_len); + } + break; + case 17: // SymbolTable + link.sym_btree = this.getOffset(); + link.sym_lheap = this.getOffset(); + if (this.getMetadata("debug")) { + console.log("hdf5MsgSymbolTable " + link.sym_btree + " " + link.sym_lheap); + } + break; + case 21: + this.hdf5MsgAttrInfo(link); + break; + case 0: + case 4: + case 5: + case 7: + case 18: + case 19: + case 20: + case 22: + case 24: + this.skip(msg.hm_size); + break; + default: + throw new Error('Unknown message type: ' + msg.hm_type); + } + } + + + /** + * [PRIVATE] + * + * Read a V2 object header. Object headers contain a series of messages that define + * an HDF5 object, primarily a group or a dataset. V2 object headers, and V2 objects + * generally, are much less concerned about alignment than V1 objects. + */ + hdf5V2ObjectHeader(link) { + if (!this.checkSignature("OHDR")) { + throw new Error('Bad or missing OHDR signature'); + } + + var ver = this.getU8(); + var flags = this.getU8(); + + if ((flags & 0x20) !== 0) { + this.getU32(); // access time (IGNORE) + this.getU32(); // modify time (IGNORE) + this.getU32(); // change time (IGNORE) + this.getU32(); // birth time (IGNORE) + } + + if ((flags & 0x10) !== 0) { + this.getU16(); // maximum number of compact attributes (IGNORE) + this.getU16(); // maximum number of dense attributes (IGNORE) + } + + var cb = 1 << (flags & 3); + var ck0_size = this.getUXX(cb); + + var msg_num = 0; + var msg_offs = 0; + var msg_bytes = ck0_size; + + if (this.getMetadata("debug")) { + console.log("this.hdf5V2ObjectHeader V" + ver + " F" + flags + " HS" + ck0_size); + } + + var hmsg; + var cq_head; + var spp; + + while (true) { + while (msg_bytes - msg_offs >= 8) { + hmsg = {}; + hmsg.hm_type = this.getU8(); + hmsg.hm_size = this.getU16(); + hmsg.hm_flags = this.getU8(); + if (this.getMetadata("debug")) { + console.log(" msg" + msg_num + " F" + hmsg.hm_flags + " T " + + hmsg.hm_type + " S " + hmsg.hm_size + + " (" + msg_offs + "/" + msg_bytes + ") " + + this.hdf5GetMsgName(hmsg.hm_type)); + } + if ((flags & 0x04) !== 0) { + hmsg.hm_corder = this.getU16(); + } + spp = this.tell(); + this.hdf5ProcessMessage(hmsg, link); + this.seek(spp + hmsg.hm_size); // this.skip past message. + + msg_offs += hmsg.hm_size + 4; + + msg_num += 1; + } + + if ((msg_bytes - msg_offs) > 4) { + this.skip(msg_bytes - (msg_offs + 4)); + } + + this.getU32(); // checksum (IGNORE) + + if (this._continuation_queue.length !== 0) { + cq_head = this._continuation_queue.shift(); + this.seek(cq_head.cq_off); + msg_bytes = cq_head.cq_len - 4; + msg_offs = 0; + if (this.getMetadata("debug")) { + console.log('continuing with ' + cq_head.cq_len + ' bytes at ' + this.tell()); + } + if (!this.checkSignature("OCHK")) { + throw new Error("Bad v2 object continuation"); + } + } else { + break; + } + } + + link.children.forEach(function (child, link_num) { + that.seek(child.hdr_offset); + if (that.getMetadata("debug")) { + console.log(link_num + " " + child.hdr_offset + " " + child.name); + } + if (this.checkSignature("OHDR")) { + that.seek(child.hdr_offset); + that.hdf5V2ObjectHeader(child); + } + else { + that.seek(child.hdr_offset); + that.hdf5V1ObjectHeader(child); + } + }); + } + + + /** + * [PRIVATE] + */ + loadData(link) { + var that = this; + + if (link.chunk_size !== 0) { + this.seek(link.data_offset); + + var n_bytes = 1; + var i; + for (i = 0; i < link.dims.length; i += 1) { + n_bytes *= link.dims[i]; + } + n_bytes *= this.typeSize(link.type); + if (this.getMetadata("debug")) { + console.log('allocating ' + n_bytes + ' bytes'); + } + var ab = new ArrayBuffer(n_bytes); + link.n_filled = 0; + switch (link.type) { + case this._type_enum.INT8: + link.array = new Int8Array(ab); + break; + case this._type_enum.UINT8: + link.array = new Uint8Array(ab); + break; + case this._type_enum.INT16: + link.array = new Int16Array(ab); + break; + case this._type_enum.UINT16: + link.array = new Uint16Array(ab); + break; + case this._type_enum.INT32: + link.array = new Int32Array(ab); + break; + case this._type_enum.UINT32: + link.array = new Uint32Array(ab); + break; + case this._type_enum.FLT: + link.array = new Float32Array(ab); + break; + case this._type_enum.DBL: + link.array = new Float64Array(ab); + break; + default: + throw new Error('Illegal type: ' + link.type); + } + this.hdf5V1BtreeNode(link); + } else { + if (link.data_offset > 0 && link.data_offset < this._superblk.eof_addr) { + if (this.getMetadata("debug")) { + console.log('loading ' + link.data_length + ' bytes from ' + link.data_offset + ' to ' + link.name); + } + link.array = this.getArray(link.type, link.data_length, + link.data_offset); + } else { + if (this.getMetadata("debug")) { + console.log('data not present for /' + link.name + '/'); + } + } + } + + link.children.forEach(function (child) { + that.loadData(child); + }); + } + + + /** + * [PRIVATE] + * + * Read a v1 object header. Object headers contain a series of + * messages that define an HDF5 object, primarily a group or a + * dataset. The v1 object header, like most of the v1 format, is + * very careful about alignment. Every message must be on an + * 8-byte alignment RELATIVE TO THE START OF THE HEADER. So if the + * header starts on an odd boundary, messages may start on odd + * boundaries as well. No, this doesn't make much sense. + */ + hdf5V1ObjectHeader(link) { + var that = this; + var oh = {}; + this.startAlignment(); + oh.oh_ver = this.getU8(); + this.skip(1); // reserved + oh.oh_n_msgs = this.getU16(); + oh.oh_ref_cnt = this.getU32(); + oh.oh_hdr_sz = this.getU32(); + if (oh.oh_ver !== 1) { + throw new Error("Bad v1 object header version: " + oh.oh_ver); + } + if (this.getMetadata("debug")) { + console.log("this.hdf5V1ObjectHeader V" + oh.oh_ver + + " #M " + oh.oh_n_msgs + + " RC " + oh.oh_ref_cnt + + " HS " + oh.oh_hdr_sz); + } + + var msg_bytes = oh.oh_hdr_sz; + var cq_head; + var msg_num; + var hmsg; + var spp; + + for (msg_num = 0; msg_num < oh.oh_n_msgs; msg_num += 1) { + if (msg_bytes <= 8) { + if (this._continuation_queue.length !== 0) { + cq_head = this._continuation_queue.shift(); + this.seek(cq_head.cq_off); + msg_bytes = cq_head.cq_len; + if (this.getMetadata("debug")) { + console.log('continuing with ' + msg_bytes + ' bytes at ' + this.tell()); + } + this.startAlignment(); + } else { + break; + } + } + + this.checkAlignment(); + + hmsg = {}; + hmsg.hm_type = this.getU16(); + hmsg.hm_size = this.getU16(); + hmsg.hm_flags = this.getU8(); + + if ((hmsg.hm_size % 8) !== 0) { + throw new Error('Size is not 8-byte aligned: ' + hmsg.hm_size); + } + this.skip(3); // this.skip reserved + msg_bytes -= (8 + hmsg.hm_size); + if (this.getMetadata("debug")) { + console.log(" msg" + msg_num + + " F " + hmsg.hm_flags + + " T " + hmsg.hm_type + + " S " + hmsg.hm_size + + "(" + msg_bytes + ") " + this.hdf5GetMsgName(hmsg.hm_type)); + } + + spp = this.tell(); + this.hdf5ProcessMessage(hmsg, link); + this.seek(spp + hmsg.hm_size); // this.skip whole message. + } + + if (link.sym_btree !== 0 && link.sym_lheap !== 0) { + this.seek(link.sym_btree); + var bt = this.hdf5V1BtreeNode(); + this.seek(link.sym_lheap); + var lh = this.hdf5LocalHeap(); + var i; + for (i = 0; i < bt.entries_used; i += 1) { + this.seek(bt.keys[i].child_address); + if (this.checkSignature("SNOD")) { + this.seek(bt.keys[i].child_address); + this.hdf5GroupSymbolTable(lh, link); + } else { + this.seek(bt.keys[i].child_address); + this.hdf5V1ObjectHeader(link); + } + } + + link.children.forEach(function (child) { + that.seek(child.hdr_offset); + that.hdf5V1ObjectHeader(child); + }); + } + } + + +//------------------------------------------------------------------------------ +// FROM hdf5_tools.js + + getTypeMatchMinc(typeEnumVal){ + return this._type_matching[typeEnumVal - 1]; + } + + + + defined(x) { + return typeof x !== 'undefined'; + } + + + typeName(x) { + if (! this.defined(x)) { + return "undefined"; + } + return x.constructor.name; + } + + + + typeSize(typ) { + if (typ >= this._type_enum.INT8 && typ < this.type_sizes.length) { + return this.type_sizes[typ]; + } + throw new Error('Unknown type ' + typ); + } + + + typeIsFloat(typ) { + return (typ >= this._type_enum.FLT && typ <=this._type_enum.DBL); + } + + + /* + * The remaining code after this point is not truly HDF5 specific - + * it's mostly about converting the MINC file into the form + * BrainBrowser is able to use. Therefore it is used for both HDF5 + * and NetCDF files. + */ + + /* + * Join does not seem to be defined on the typed arrays in + * javascript, so I've re-implemented it here, sadly. + */ + join(array, string) { + var result = ""; + if (array && array.length) { + var i; + for (i = 0; i < array.length - 1; i += 1) { + result += array[i]; + result += string; + } + result += array[i]; + } + return result; + } + + /* + * Recursively print out the structure and contents of the file. + * Primarily useful for debugging. + */ + printStructure(link, level) { + var that = this; + + var i; + var msg = ""; + for (i = 0; i < level * 2; i += 1) { + msg += " "; + } + msg += link.name + (link.children.length ? "/" : ""); + if (link.type > 0) { + msg += ' ' + this.typeName(link.array); + if (link.dims.length) { + msg += '[' + link.dims.join(', ') + ']'; + } + if (link.array) { + msg += ":" + link.array.length; + } else { + msg += " NULL"; + } + } + console.log(msg); + + Object.keys(link.attributes).forEach(function (name) { + var value = link.attributes[name]; + + msg = ""; + for (i = 0; i < level * 2 + 1; i += 1) { + msg += " "; + } + msg += link.name + ':' + name + " " + + that.typeName(value) + "[" + value.length + "] "; + if (typeof value === "string") { + msg += JSON.stringify(value); + } else { + msg += "{" + that.join(value.slice(0, 16), ', '); + if (value.length > 16) { + msg += ", ..."; + } + msg += "}"; + } + console.log(msg); + }); + + link.children.forEach(function (child) { + that.printStructure(child, level + 1); + }); + } + + /* Find a dataset with a given name, by recursively searching through + * the links. Groups will have 'type' fields of -1, since they contain + * no data. + * TODO (maybe): Use associative array for children? + */ + findDataset(link, name, level) { + var that = this; + var result; + if (link && link.name === name && link.type > 0) { + result = link; + } else { + link.children.find( function( child ) { + result = that.findDataset(child, name, level + 1); + return that.defined(result); + }); + } + return result; + } + + /* Find an attribute with a given name. + */ + findAttribute(link, name, level) { + var that = this; + var result = link.attributes[name]; + if (result) + return result; + + link.children.find( function (child ) { + result = that.findAttribute( child, name, level + 1); + return that.defined(result); + }); + return result; + } + + /** + * @doc function + * @name hdf5.this.scaleVoxels + * @param {object} image The link object corresponding to the image data. + * @param {object} image_min The link object corresponding to the image-min + * data. + * @param {object} image_max The link object corresponding to the image-max + * data. + * @param {object} valid_range An array of exactly two items corresponding + * to the minimum and maximum valid _raw_ voxel values. + * @param {boolean} debug True if we should print debugging information. + * @returns A new ArrayBuffer containing the rescaled data. + * @description + * Convert the MINC data from voxel to real range. This returns a + * new buffer that contains the "real" voxel values. It does less + * work for floating-point volumes, since they don't need scaling. + * + * For debugging/testing purposes, also gathers basic voxel statistics, + * for comparison against mincstats. + */ + scaleVoxels(image, image_min, image_max, valid_range, debug) { + /* + var new_abuf = new ArrayBuffer(image.array.length * + Float32Array.BYTES_PER_ELEMENT); + var new_data = new Float32Array(new_abuf); + + */ + + // 1D array to store the voxel data, + // not initialized yet because it depends on the hdf5 type. + var new_abuf = null; + var new_data = null; + + // we could simply use image.type, but written types are easier to read... + switch (this.getTypeMatchMinc(image.type)) { + case 'int8': + new_abuf = new ArrayBuffer(image.array.length * Int8Array.BYTES_PER_ELEMENT); + new_data = new Int8Array(new_abuf); + break; + + case 'int16': + new_abuf = new ArrayBuffer(image.array.length * Int16Array.BYTES_PER_ELEMENT); + new_data = new Int16Array(new_abuf); + break; + + case 'int32': + new_abuf = new ArrayBuffer(image.array.length * Int32Array.BYTES_PER_ELEMENT); + new_data = new Int32Array(new_abuf); + break; + + case 'float32': + new_abuf = new ArrayBuffer(image.array.length * Float32Array.BYTES_PER_ELEMENT); + new_data = new Float32Array(new_abuf); + break; + + case 'float64': + new_abuf = new ArrayBuffer(image.array.length * Float64Array.BYTES_PER_ELEMENT); + new_data = new Float64Array(new_abuf); + break; + + case 'uint8': + new_abuf = new ArrayBuffer(image.array.length * Uint8Array.BYTES_PER_ELEMENT); + new_data = new Uint8Array(new_abuf); + break; + + case 'uint16': + new_abuf = new ArrayBuffer(image.array.length * Uint16Array.BYTES_PER_ELEMENT); + new_data = new Uint16Array(new_abuf); + break; + + case 'uint32': + new_abuf = new ArrayBuffer(image.array.length * Uint32Array.BYTES_PER_ELEMENT); + new_data = new Uint32Array(new_abuf); + break; + + default: + var error_message = "Unsupported data type: " + header.datatype; + console.log({ message: error_message } ); + //BrainBrowser.events.triggerEvent("error", { message: error_message } ); + throw new Error(error_message); + + } + + + var n_slice_dims = image.dims.length - image_min.dims.length; + + if (n_slice_dims < 1) { + throw new Error("Too few slice dimensions: " + image.dims.length + + " " + image_min.dims.length); + } + var n_slice_elements = 1; + var i; + for (i = image_min.dims.length; i < image.dims.length; i += 1) { + n_slice_elements *= image.dims[i]; + } + if (debug) { + console.log(n_slice_elements + " voxels in slice."); + } + var s = 0; + var c = 0; + var x = -Number.MAX_VALUE; + var n = Number.MAX_VALUE; + var im = image.array; + var im_max = image_max.array; + var im_min = image_min.array; + if (debug) { + console.log("valid range is " + valid_range[0] + " to " + valid_range[1]); + } + + var vrange; + var rrange; + var vmin = valid_range[0]; + var rmin; + var j; + var v; + var is_float = this.typeIsFloat(image.type); + for (i = 0; i < image_min.array.length; i += 1) { + if (debug) { + console.log(i + " " + im_min[i] + " " + im_max[i] + " " + + im[i * n_slice_elements]); + } + if (is_float) { + /* For floating-point volumes there is no scaling to be performed. + * We do scan the data and make sure voxels are within the valid + * range, and collect our statistics. + */ + for (j = 0; j < n_slice_elements; j += 1) { + v = im[c]; + if (v < valid_range[0] || v > valid_range[1]) { + new_data[c] = 0.0; + } + else { + new_data[c] = v; + s += v; + if (v > x) { + x = v; + } + if (v < n) { + n = v; + } + } + c += 1; + } + } + else { + /* For integer volumes we have to scale each slice according to image-min, + * image-max, and valid_range. + */ + vrange = (valid_range[1] - valid_range[0]); + rrange = (im_max[i] - im_min[i]); + rmin = im_min[i]; + + /* + console.log(n_slice_elements); + console.log(vrange); + console.log(rrange); + console.log(rmin); + console.log("-----------------"); + */ + + + for (j = 0; j < n_slice_elements; j += 1) { + + // v normalization to avoid "flickering". + // v is scaled to the range [0, im_max[i]] + // (possibly uint16 if the original per-slice min-max was not scaled up/down) + v = (im[c] - vmin) / vrange * rrange + rmin; + + // we scale up/down to match the type of the target array + v = v / im_max[i] * valid_range[1]; + + + new_data[c] = v; + s += v; + c += 1; + if (v > x) { + x = v; + } + if (v < n) { + n = v; + } + + } + + } + } + + if (debug) { + console.log("Min: " + n); + console.log("Max: " + x); + console.log("Sum: " + s); + console.log("Mean: " + s / c); + } + + return new_abuf; + } + + /** + * @doc function + * @name hdf5.this.isRgbVolume + * @param {object} header The header object representing the structure + * of the MINC file. + * @param {object} image The typed array object used to represent the + * image data. + * @returns {boolean} True if this is an RGB volume. + * @description + * A MINC volume is an RGB volume if all three are true: + * 1. The voxel type is unsigned byte. + * 2. It has a vector_dimension in the last (fastest-varying) position. + * 3. The vector dimension has length 3. + */ + isRgbVolume(header, image) { + var order = header.order; + return (image.array.constructor.name === 'Uint8Array' && + order.length > 0 && + order[order.length - 1] === "vector_dimension" && + header.vector_dimension.space_length === 3); + } + + /** + * @doc function + * @name hdf5.this.rgbVoxels + * @param {object} image The 'link' object created using createLink(), + * that corresponds to the image within the HDF5 or NetCDF file. + * @returns {object} A new ArrayBuffer that contains the original RGB + * data augmented with alpha values. + * @description + * This function copies the RGB voxels to the destination buffer. + * Essentially we just convert from 24 to 32 bits per voxel. This + * is another MINC-specific function. + */ + rgbVoxels(image) { + var im = image.array; + var n = im.length; + var new_abuf = new ArrayBuffer(n / 3 * 4); + var new_byte = new Uint8Array(new_abuf); + var i, j = 0; + for (i = 0; i < n; i += 3) { + new_byte[j+0] = im[i+0]; + new_byte[j+1] = im[i+1]; + new_byte[j+2] = im[i+2]; + new_byte[j+3] = 255; + j += 4; + } + return new_abuf; + } + + + //---------------------------------------------------------------------------- + // FROM minc_reader.js + parseHeader(header_text) { + var header; + var error_message; + + try{ + header = JSON.parse(header_text); + } catch(error) { + error_message = "server did not respond with valid JSON" + "\n" + + "Response was: \n" + header_text; + + console.log( { message: error_message }); + + // BrainBrowser.events.triggerEvent("error", { message: error_message }); + throw new Error(error_message); + } + + if(header.order.length === 4) { + header.order = header.order.slice(1); + } + + header.datatype = header.datatype || "uint8"; + + header.xspace.space_length = parseFloat(header.xspace.space_length); + header.yspace.space_length = parseFloat(header.yspace.space_length); + header.zspace.space_length = parseFloat(header.zspace.space_length); + + header.xspace.start = parseFloat(header.xspace.start); + header.yspace.start = parseFloat(header.yspace.start); + header.zspace.start = parseFloat(header.zspace.start); + + header.xspace.step = parseFloat(header.xspace.step); + header.yspace.step = parseFloat(header.yspace.step); + header.zspace.step = parseFloat(header.zspace.step); + + header.xspace.direction_cosines = header.xspace.direction_cosines || [1, 0, 0]; + header.yspace.direction_cosines = header.yspace.direction_cosines || [0, 1, 0]; + header.zspace.direction_cosines = header.zspace.direction_cosines || [0, 0, 1]; + + header.xspace.direction_cosines = header.xspace.direction_cosines.map(parseFloat); + header.yspace.direction_cosines = header.yspace.direction_cosines.map(parseFloat); + header.zspace.direction_cosines = header.zspace.direction_cosines.map(parseFloat); + + /* Incrementation offsets for each dimension of the volume. + * Note that this somewhat format-specific, so it does not + * belong in the generic "createVolume()" code. + */ + header[header.order[0]].offset = header[header.order[1]].space_length * header[header.order[2]].space_length; + header[header.order[1]].offset = header[header.order[2]].space_length; + header[header.order[2]].offset = 1; + + if(header.time) { + header.time.space_length = parseFloat(header.time.space_length); + header.time.start = parseFloat(header.time.start); + header.time.step = parseFloat(header.time.step); + header.time.offset = header.xspace.space_length * header.yspace.space_length * header.zspace.space_length; + } + + return header; + } + + +/* + createMincVolume(header, raw_data){ + var volume = createVolume(header, this.createMincData(header, raw_data)); + volume.type = "minc"; + + volume.saveOriginAndTransform(header); + volume.intensity_min = header.voxel_min; + volume.intensity_max = header.voxel_max; + + return volume; + + } +*/ + + + /* + initialize the large 1D array of data depending on the type found. + Rearange the original ArrayBuffer into a typed array. + args: + header: obj - header of the data + raw_data: ArrayBuffer - sub object given by hdf5Loader + */ + createMincData(header, raw_data){ + + var native_data = null; + + switch (header.datatype) { + case 'int8': + native_data = new Int8Array(raw_data); + break; + case 'int16': + native_data = new Int16Array(raw_data); + break; + case 'int32': + native_data = new Int32Array(raw_data); + break; + case 'float32': + native_data = new Float32Array(raw_data); + break; + case 'float64': + native_data = new Float64Array(raw_data); + break; + case 'uint8': + native_data = new Uint8Array(raw_data); + break; + case 'uint16': + native_data = new Uint16Array(raw_data); + break; + case 'uint32': + case 'rgb8': + native_data = new Uint32Array(raw_data); + break; + default: + var error_message = "Unsupported data type: " + header.datatype; + console.log({ message: error_message } ); + //BrainBrowser.events.triggerEvent("error", { message: error_message } ); + throw new Error(error_message); + } + + return native_data; + } + + + + + //---------------------------------------------------------------------------- + + _run(){ + var that = this; + + var inputBuffer = this._getInput(0); + + if(!inputBuffer){ + console.warn("Minc2Decoder requires an ArrayBuffer as input \"0\". Unable to continue."); + return; + } + + this._dv = new DataView(inputBuffer); + + + /* Patch in the missing function to get 64-bit integers. + * Note: this won't really quite work b/c Javascript doesn't + * have support for 64-bit integers. + */ + this._dv.getUint64 = function (off, little_endian) { + var l4 = that._dv.getUint32(off + 0, little_endian); + var u4 = that._dv.getUint32(off + 4, little_endian); + if (little_endian) { + return (u4 << 32) + l4; + } else { + return (l4 << 32) + u4; + } + }; + + + var root = this.createLink(); + + try{ + this._superblk = this.hdf5Superblock(); + }catch(e){ + //console.error(e); + console.warn("The input file is not a Minc2 file."); + return; + } + + + this.seek(this._superblk.root_addr); + + if (this._superblk.sbver <= 1) { + this.hdf5V1ObjectHeader(root); + } else { + this.hdf5V2ObjectHeader(root); + } + + this.loadData(root); + + + + + + if (this.getMetadata("debug")) { + this.printStructure(root, 0); + } + + /* The rest of this code is MINC-specific, so like some of the + * functions above, it can migrate into minc.js once things have + * stabilized. + * + * This code is responsible for collecting up the various pieces + * of important data and metadata, and reorganizing them into the + * form the volume viewer can handle. + */ + var image = this.findDataset(root, "image"); + if (!this.defined(image)) { + throw new Error("Can't find image dataset."); + } + + var valid_range = this.findAttribute(image, "valid_range", 0); + /* If no valid_range is found, we substitute our own. */ + if (!this.defined(valid_range)) { + var min_val; + var max_val; + switch (image.type) { + case this._type_enum.INT8: + min_val = -(1 << 7); + max_val = (1 << 7) - 1; + break; + case this._type_enum.UINT8: + min_val = 0; + max_val = (1 << 8) - 1; + break; + case this._type_enum.INT16: + min_val = -(1 << 15); + max_val = (1 << 15) - 1; + break; + case this._type_enum.UINT16: + min_val = 0; + max_val = (1 << 16) - 1; + break; + case this._type_enum.INT32: + min_val = -(1 << 31); + max_val = (1 << 31) - 1; + break; + case this._type_enum.UINT32: + min_val = 0; + max_val = (1 << 32) - 1; + break; + } + valid_range = Float32Array.of(min_val, max_val); + } + + + var image_min = this.findDataset(root, "image-min"); + if (!this.defined(image_min)) { + image_min = { + array: Float32Array.of(0), + dims: [] + }; + } + + var image_max = this.findDataset(root, "image-max"); + if (!this.defined(image_max)) { + image_max = { + array: Float32Array.of(1), + dims: [] + }; + } + + + /* Create the header expected by the existing brainbrowser code. + */ + var header = {}; + var tmp = this.findAttribute(image, "dimorder", 0); + if (typeof tmp !== 'string') { + throw new Error("Can't find dimension order."); + } + header.order = tmp.split(','); + + header.order.forEach(function(dimname) { + var dim = that.findDataset(root, dimname); + if (!that.defined(dim)) { + throw new Error("Can't find dimension variable " + dimname); + } + + header[dimname] = {}; + + tmp = that.findAttribute(dim, "step", 0); + if (!that.defined(tmp)) { + tmp = Float32Array.of(1); + } + header[dimname].step = tmp[0]; + + tmp = that.findAttribute(dim, "start", 0); + if (!that.defined(tmp)) { + tmp = Float32Array.of(0); + } + header[dimname].start = tmp[0]; + + tmp = that.findAttribute(dim, "length", 0); + if (!that.defined(tmp)) { + throw new Error("Can't find length for " + dimname); + } + header[dimname].space_length = tmp[0]; - if(ncppSrc == 4){ - // copying the data into the canvas array (clamped uint8) - originalImageDataArray.forEach( function(value, index){ - if(!useAlphaBand && index%4 == 3){ - canvasImageDataArray[index] = 255; - }else{ - canvasImageDataArray[index] = value; + tmp = that.findAttribute(dim, "direction_cosines", 0); + if (that.defined(tmp)) { + // why is the bizarre call to slice needed?? it seems to work, though! + header[dimname].direction_cosines = Array.prototype.slice.call(tmp); + } + else { + if (dimname === "xspace") { + header[dimname].direction_cosines = [1, 0, 0]; + } else if (dimname === "yspace") { + header[dimname].direction_cosines = [0, 1, 0]; + } else if (dimname === "zspace") { + header[dimname].direction_cosines = [0, 0, 1]; } - }); + } + }); - }else if(ncppSrc == 1){ - originalImageDataArray.forEach( function(value, index){ - canvasImageDataArray[index*4] = value; - canvasImageDataArray[index*4 + 1] = value; - canvasImageDataArray[index*4 + 2] = value; - canvasImageDataArray[index*4 + 3] = 255; - }); + var new_abuf; + if (this.isRgbVolume(header, image)) { + header.order.pop(); + header.datatype = 'rgb8'; + new_abuf = this.rgbVoxels(image); } + else { - this._ctx.putImageData(canvasImageData, 0, 0); + //header.datatype = 'float32'; + header.datatype = this.getTypeMatchMinc(image.type); + + new_abuf = this.scaleVoxels(image, image_min, image_max, valid_range, this.getMetadata("debug")); + } + var minc_header = this.parseHeader( JSON.stringify(header) ); + var dataArray = this.createMincData(minc_header, new_abuf); + + // add the output to this filter + this._addOutput(MniVolume); + var mniVol = this.getOutput(); + mniVol.setData(dataArray, minc_header); + mniVol.setMetadata("format", "minc2"); } -} + + +} /* END of class Hdf5Decoder */ /* -* Author Jonathan Lurie - http://me.jonahanlurie.fr -* License MIT +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* Robert D. Vincent +* +* License MIT * Link https://github.com/jonathanlurie/pixpipejs * Lab MCIN - Montreal Neurological Institute */ -/** -* An instance of UrlImageReader takes an image URL as input and -* returns an Image2D as output. Use the regular `addInput()` and `getOuput()` -* with no argument for that. -* Reading a file from URL takes an AJAX request, which is asynchronous. For this -* reason, what happens next, once the Image2D is created must take place in the -* callback defined by the event .on("imageLoaded", function(){ ... }). -* Usage: examples/urlToImage2D.html -* -* UrlImageReader can also load multiple images and call the "imageLoaded" event -* only when all of them are loaded. -* Usage: examples/urlToImage2D_multiple.html -* -* -* @example -* var url2ImgFilter = new pixpipe.UrlImageReader( ... ); -* url2ImgFilter.addInput( "images/sd.jpg" ); -* url2ImgFilter.update(); -*/ -class UrlImageReader extends Filter { +class NiftiDecoder extends Filter { - /** - * @param {function} callback - function to call when the image is loaded. - * The _this_ object will be in argument of this callback. - */ - constructor( callback ){ + constructor(){ super(); - this._loadedCounter = 0; - this._addOutput( Image2D, 0 ); + this.setMetadata("debug", false); } /** - * Overload the function + * [PRIVATE] */ - _run(){ - var that = this; - var inputCategories = this.getInputCategories(); + parseNifti1Header(raw_data) { + var header = { + order: ["zspace", "yspace", "xspace"], + xspace: {}, + yspace: {}, + zspace: {} + }; + var error_message = null; + var dview = new DataView(raw_data, 0, 348); + var bytes = new Uint8Array(raw_data, 0, 348); + var littleEndian = true; + + var sizeof_hdr = dview.getUint32(0, true); + if (sizeof_hdr === 0x0000015c) { + littleEndian = true; + } else if (sizeof_hdr === 0x5c010000) { + littleEndian = false; + } else { + error_message = "This does not look like a NIfTI-1 file."; + } - inputCategories.forEach( function(category){ - that._addOutput( Image2D, category ); - that._loadImage( category ); - }); - } + var ndims = dview.getUint16(40, littleEndian); + if (ndims < 3 || ndims > 4) { + error_message = "Cannot handle " + ndims + "-dimensional images yet."; + } + var magic = String.fromCharCode.apply(null, bytes.subarray(344, 348)); + if (magic !== "n+1\0") { + error_message = "Bad magic number: '" + magic + "'"; + } - /** - * [PRIVATE] - * Loading task for a single category (aka file, in this case) - */ - _loadImage( inputCategory ){ - var that = this; + if (error_message) { + //throw new Error(error_message); + console.warn("The input file is not a NIfTI file."); + return null; + } - var img = new Image(); - img.src = this._getInput(inputCategory); + header.xspace.space_length = dview.getUint16(42, littleEndian); + header.yspace.space_length = dview.getUint16(44, littleEndian); + header.zspace.space_length = dview.getUint16(46, littleEndian); + var tlength = dview.getUint16(48, littleEndian); - img.onload = function() { - var tmpCanvas = document.createElement("canvas"); - tmpCanvas.width = img.width; - tmpCanvas.height = img.height; - var canvasContext = tmpCanvas.getContext('2d'); - canvasContext.drawImage(img, 0, 0); + var datatype = dview.getUint16(70, littleEndian); + var bitpix = dview.getUint16(72, littleEndian); - try{ - var imageData = canvasContext.getImageData(0, 0, tmpCanvas.width, tmpCanvas.height); - var dataArray = imageData.data; - var img2D = that.getOutput( inputCategory ); - img2D.setData( dataArray, img.width, img.height); + var xstep = dview.getFloat32(80, littleEndian); + var ystep = dview.getFloat32(84, littleEndian); + var zstep = dview.getFloat32(88, littleEndian); + var tstep = dview.getFloat32(92, littleEndian); - that._loadedCounter ++; + var vox_offset = dview.getFloat32(108, littleEndian); + if (vox_offset < 352) { + vox_offset = 352; + } - // call the loaded callback only when all images are loaded - if(that._loadedCounter == that.getNumberOfInputs() && "imageLoaded" in that._events){ - that._events.imageLoaded( that ); - } + var scl_slope = dview.getFloat32(112, littleEndian); + var scl_inter = dview.getFloat32(116, littleEndian); + + var qform_code = dview.getUint16(252, littleEndian); + var sform_code = dview.getUint16(254, littleEndian); + + var transform = [ + [1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1] + ]; + + if (tlength >= 1) { + header.time = {}; + header.time.space_length = tlength; + header.time.step = tstep; + header.time.start = 0; + header.time.name = "time"; + header.order = ["time", "zspace", "yspace", "xspace"]; + } - }catch(e){ - console.error(e); - } + /* Record the number of bytes per voxel, and note whether we need + * to swap bytes in the voxel data. + */ + header.bytes_per_voxel = bitpix / 8; + header.must_swap_data = !littleEndian && header.bytes_per_voxel > 1; + + if (sform_code > 0) { + /* The "Sform", if present, defines an affine transform which is + * generally assumed to correspond to some standard coordinate + * space (e.g. Talairach). + */ + transform[0][0] = dview.getFloat32(280, littleEndian); + transform[0][1] = dview.getFloat32(284, littleEndian); + transform[0][2] = dview.getFloat32(288, littleEndian); + transform[0][3] = dview.getFloat32(292, littleEndian); + transform[1][0] = dview.getFloat32(296, littleEndian); + transform[1][1] = dview.getFloat32(300, littleEndian); + transform[1][2] = dview.getFloat32(304, littleEndian); + transform[1][3] = dview.getFloat32(308, littleEndian); + transform[2][0] = dview.getFloat32(312, littleEndian); + transform[2][1] = dview.getFloat32(316, littleEndian); + transform[2][2] = dview.getFloat32(320, littleEndian); + transform[2][3] = dview.getFloat32(324, littleEndian); + } + else if (qform_code > 0) { + /* The "Qform", if present, defines a quaternion which specifies + * a less general transformation, often to scanner space. + */ + var quatern_b = dview.getFloat32(256, littleEndian); + var quatern_c = dview.getFloat32(260, littleEndian); + var quatern_d = dview.getFloat32(264, littleEndian); + var qoffset_x = dview.getFloat32(268, littleEndian); + var qoffset_y = dview.getFloat32(272, littleEndian); + var qoffset_z = dview.getFloat32(276, littleEndian); + var qfac = (dview.getFloat32(76, littleEndian) < 0) ? -1.0 : 1.0; + + transform = this.niftiQuaternToMat44(quatern_b, quatern_c, quatern_d, + qoffset_x, qoffset_y, qoffset_z, + xstep, ystep, zstep, qfac); + } + else { + transform[0][0] = xstep; + transform[1][1] = ystep; + transform[2][2] = zstep; + } - }; + MniVolume.transformToMinc(transform, header); + + header.datatype = datatype; + header.vox_offset = vox_offset; + header.scl_slope = scl_slope; + header.scl_inter = scl_inter; + return header; } -} /* END of class UrlImageReader */ + /** + * [PRIVATE] + * This function is a direct translation of the identical function + * found in the standard NIfTI-1 library (nifti1_io.c). + */ + niftiQuaternToMat44( qb, qc, qd, + qx, qy, qz, + dx, dy, dz, qfac ) + { + var m = [ // 4x4 transform + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 1] + ]; + var b = qb; + var c = qc; + var d = qd; + var a, xd, yd, zd; + + // compute a parameter from b,c,d + + a = 1.0 - (b * b + c * c + d * d); + if ( a < 1.e-7 ) { // special case + a = 1.0 / Math.sqrt(b * b + c * c + d * d); + b *= a; // normalize (b,c,d) vector + c *= a; + d *= a; + a = 0.0; // a = 0 ==> 180 degree rotation + } else { + a = Math.sqrt(a); // angle = 2*arccos(a) + } -/* -* Author Jonathan Lurie - http://me.jonahanlurie.fr -* License MIT -* Link https://github.com/jonathanlurie/pixpipejs -* Lab MCIN - Montreal Neurological Institute -*/ + // load rotation matrix, including scaling factors for voxel sizes -/** -* An instance of FileImageReader takes a HTML5 File object as input and -* returns an Image2D as output. The point is mainly to use it with a file dialog. -* Use the regular `addInput()` and `getOuput()` with no argument for that. -* Reading a local file is an asynchronous process. For this -* reason, what happens next, once the Image2D is created must take place in the -* callback defined by the event .on("imageLoaded", function(){ ... }). -* -* -* -* Usage: examples/fileToImage2D.html -* -* @example -* var file2ImgFilter = new pixpipe.file2ImgFilter( ... ); -* file2ImgFilter.addInput( fileInput.files[0] ); -* file2ImgFilter.update(); -*/ -class FileImageReader extends Filter { + xd = (dx > 0.0) ? dx : 1.0; // make sure are positive + yd = (dy > 0.0) ? dy : 1.0; + zd = (dz > 0.0) ? dz : 1.0; - /** - * @param {function} callback - function to call when the image is loaded. - * The _this_ object will be in argument of this callback. - */ - constructor( callback){ - super(); + if ( qfac < 0.0 ) // left handedness? + zd = -zd; - this._allowedTypes = /image.*/; - this._addOutput( Image2D, 0 ); + m[0][0] = (a * a + b * b - c * c - d * d) * xd; + m[0][1] = 2.0 * (b * c - a * d ) * yd; + m[0][2] = 2.0 * (b * d + a * c ) * zd; + m[1][0] = 2.0 * (b * c + a * d ) * xd; + m[1][1] = (a * a + c * c - b * b - d * d) * yd; + m[1][2] = 2.0 * (c * d - a * b ) * zd; + m[2][0] = 2.0 * (b * d - a * c ) * xd; + m[2][1] = 2.0 * (c * d + a * b ) * yd; + m[2][2] = (a * a + d * d - c * c - b * b) * zd; + + // load offsets + m[0][3] = qx; + m[1][3] = qy; + m[2][3] = qz; + + return m; } /** - * Overload the default method because HTML5 File is not a Pixpipe type + * [PRIVATE] */ - hasValidInput(){ - var valid = false; - var file = this._getInput(); + createNifti1Data(header, raw_data) { + var native_data = null; + + if (header.must_swap_data) { + MniVolume.swapn( + new Uint8Array(raw_data, header.vox_offset), + header.bytes_per_voxel + ); + } - if (file && file.type.match( this._allowedTypes )) { - this._isInputValid = true; - }else{ - console.error("The file must be an image (jpg/png). The type " + file.type + " is not compatible with FileImageReader."); + switch (header.datatype) { + case 2: // DT_UNSIGNED_CHAR + // no translation necessary; could optimize this out. + native_data = new Uint8Array(raw_data, header.vox_offset); + break; + case 4: // DT_SIGNED_SHORT + native_data = new Int16Array(raw_data, header.vox_offset); + break; + case 8: // DT_SIGNED_INT + native_data = new Int32Array(raw_data, header.vox_offset); + break; + case 16: // DT_FLOAT + native_data = new Float32Array(raw_data, header.vox_offset); + break; + case 64: // DT_DOUBLE + native_data = new Float64Array(raw_data, header.vox_offset); + break; + // Values above 256 are NIfTI-specific, and rarely used. + case 256: // DT_INT8 + native_data = new Int8Array(raw_data, header.vox_offset); + break; + case 512: // DT_UINT16 + native_data = new Uint16Array(raw_data, header.vox_offset); + break; + case 768: // DT_UINT32 + native_data = new Uint32Array(raw_data, header.vox_offset); + break; + default: + // We don't yet support 64-bit, complex, RGB, and float 128 types. + throw new Error("Unsupported data type: " + header.datatype); } - return valid; - } + var d = 0; // Generic loop counter. + var slope = header.scl_slope; + var inter = header.scl_inter; + // According to the NIfTI specification, a slope value of zero means + // that the data should _not_ be scaled. Otherwise, every voxel is + // transformed according to value = value * slope + inter + // + if (slope !== 0.0) { + var float_data = new Float32Array(native_data.length); - /** - * Run the reading - */ - _run(){ + for (d = 0; d < native_data.length; d++) { + float_data[d] = native_data[d] * slope + inter; + } + native_data = float_data; // Return the new float buffer. + } + + if(header.order.length === 4) { + header.order = header.order.slice(1); + } + + // Incrementation offsets for each dimension of the volume. + header[header.order[0]].offset = header[header.order[1]].space_length * header[header.order[2]].space_length; + header[header.order[1]].offset = header[header.order[2]].space_length; + header[header.order[2]].offset = 1; + + if(header.time) { + header.time.offset = header.xspace.space_length * header.yspace.space_length * header.zspace.space_length; + } + + return native_data; + } - if(! this.hasValidInput) - return + //---------------------------------------------------------------------------- + + _run(){ var that = this; - var file = this._getInput(); - var reader = new FileReader(); + var inputBuffer = this._getInput(0); - reader.onload = function(e) { + if(!inputBuffer){ + console.warn("NiftiDecoder requires an ArrayBuffer as input \"0\". Unable to continue."); + return; + } - var img = new Image(); - img.src = reader.result; - var tmpCanvas = document.createElement("canvas"); - tmpCanvas.width = img.width; - tmpCanvas.height = img.height; - var canvasContext = tmpCanvas.getContext('2d'); - canvasContext.drawImage(img, 0, 0); - var imageData = canvasContext.getImageData(0, 0, tmpCanvas.width, tmpCanvas.height); - var dataArray = imageData.data; + var header = this.parseNifti1Header( inputBuffer ); - var img2D = that.getOutput(); - img2D.setData( dataArray, img.width, img.height); + // abort if header not valid + if(!header) + return; - if("imageLoaded" in that._events){ - that._events.imageLoaded( that ); - } - }; + var dataArray = this.createNifti1Data(header, inputBuffer); - reader.readAsDataURL( file ); - } + // add the output to this filter + this._addOutput(MniVolume); + var mniVol = this.getOutput(); + mniVol.setData(dataArray, header); + mniVol.setMetadata("format", "nifti"); + } -} /* END of class UrlImageReader */ +} /* END class NiftiDecoder */ /* * Author Jonathan Lurie - http://me.jonahanlurie.fr @@ -1313,7 +11900,7 @@ class ForEachPixelImageFilter extends PixelWiseImageFilter { // 1 - init the output var outputImg = this.getOutput(); - console.log(outputImg.uuid); + console.log(outputImg.getUuid); // 2 - tune the output outputImg.setData( @@ -1400,16 +11987,6 @@ class SpectralScaleImageFilter extends ImageToImageFilter { } /* END class SpectralScaleImageFilter */ -var commonjsGlobal = typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {}; - - - - - -function createCommonjsModule(fn, module) { - return module = { exports: {} }, fn(module, module.exports), module.exports; -} - var bundle = createCommonjsModule(function (module, exports) { (function (global, factory) { module.exports = factory(); @@ -2813,25 +13390,142 @@ class ImageBlendExpressionFilter extends ImageToImageFilter { } /* END of class ImageBlendExpressionFilter */ -//export { SpatialConvolutionFilter } from './filter/SpatialConvolutionFilter.js'; +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ + + +/** +* An instance of Image3DToMosaicFilter takes an Image3D as Input and output a +* mosaic composed of each slice. The axis: "xspace", "yspace" or "zspace" can be +* specified with `setMetadata("axis", "xspace")`, the default being xspace. +* The default output image is 4096x4096 but these boundaries can be changed using +* `setMetadata("maxWidth", n)` and `setMetadata("maxHeight", m)`. +* These are boundaries so the size of the output image(s) will possibly be lower +* to not contain unused space. +* If mosaicing the whole given Image3D does not fit in maxWidth*maxHeight, more +* Image2D will be created and accessible through `getOutput(n)`. +* All output image have the same size so that the last one may have dead space. +* +* usage: examples/niftiToMosaic.html +*/ +class Image3DToMosaicFilter extends Filter{ + + constructor(){ + super(); + this._inputValidator[ 0 ] = Image3D.TYPE(); + + // default settings + this.setMetadata("maxWidth", 4096); + this.setMetadata("maxHeight", 4096); + this.setMetadata("axis", "xspace"); + } + + + _run(){ + if(! this.hasValidInput() ){ + return; + } + + var inputImage3D = this._getInput(0); + var spaceInfo = inputImage3D.getMetadata( this.getMetadata("axis") ); + + if(!spaceInfo){ + console.warn("Sampling axis for mosaicing was not poperly set. Has to be 'xspace', 'yspace' or 'zspace'."); + return; + } + + var numOfSlices = spaceInfo.space_length; + var width = spaceInfo.width; + var height = spaceInfo.height; + + // number of image we can fit in the with of an output image + var widthFit = Math.floor( this.getMetadata("maxWidth") / width ); + var heightFit = Math.floor( this.getMetadata("maxHeight") / height ); + + // size of the ouput image(s) + var outputWidth = widthFit * width; + var outputHeight = heightFit * height; + var slicePerOutputIm = widthFit * heightFit; + + // Number of output image(s) necessary to cover the whole Image3D dataset + var outputNecessary = Math.ceil( numOfSlices / slicePerOutputIm ); + // if only one output, maybe it's not filled entirely, so we can make it a bit smaller + if( outputNecessary == 1){ + outputHeight = Math.ceil( numOfSlices / widthFit ) * height; + } + + var outputCounter = 0; + var sliceIndex = 0; + var sliceIndexCurrentOutput = 0; + + var outImage = null; + + + // for each slice + for(var sliceIndex; sliceIndex 0 && options.height > 0){\n this._width = options.width;\n this._height = options.height;\n\n if(\"color\" in options){\n this._componentsPerPixel = options.color.length;\n }\n\n this._data = new Float32Array( this._width * this._height * this._componentsPerPixel );\n\n // init with the given color\n if(\"color\" in options){\n var color = options.color;\n for(var i=0; i=0 && position.x < this._width &&\n \"y\" in position && position.y >=0 && position.y < this._height &&\n color.length == this._componentsPerPixel)\n {\n\n var pos1D = this.get1dIndexFrom2dPosition( position );\n\n for(var i=0; i=0 && position.x < this._width &&\n \"y\" in position && position.y >=0 && position.y < this._height)\n {\n var pos1D = this.get1dIndexFrom2dPosition( position );\n var color = this._data.slice(pos1D, pos1D + this._componentsPerPixel);\n return color;\n\n }else{\n console.warn(\"The requested position is outside the image.\");\n return null;\n }\n }\n\n\n /**\n * @return {Number} the width of the Image2D\n */\n getWidth(){\n return this._width;\n }\n\n\n /**\n * @return {Number} the height of the Image2D\n */\n getHeight(){\n return this._height;\n }\n\n\n /**\n * @return {Number} the number of components per pixel\n */\n getComponentsPerPixel(){\n return this._componentsPerPixel;\n }\n\n\n /**\n * @return {Float32Array} the original data, dont mess up with this one.\n * in case of doubt, use getDataCopy()\n */\n getData(){\n //return this._data.slice(); // return a copy\n return this._data; // return the actual array, editable!\n }\n\n\n /**\n * @return {Float32Array} a deep copy of the data\n */\n getDataCopy(){\n return this._data.slice();\n }\n\n\n /**\n * Compute the (x, y) position from a position in a 1D array.\n * This has nothing to do with the number of components per pixel.\n * @param {Number} i - the index of a pixel.\n * @return {Object} coordinate as {x, y}\n */\n get2dPositionFrom1dIndex( i ){\n return {\n x: i % this._width,\n y: Math.floor(i / this._width)\n }\n }\n\n\n /**\n * Compute the 1D index within the data buffer from a 2D position {x, y}.\n * This has nothing to do with the number of components per pixel.\n * @param {Object} position - 2D coord like {x, y}\n * @return {Number} the 1D position within the buffer\n */\n get1dIndexFrom2dPosition( position ){\n return (position.x + position.y*this._width);\n }\n\n\n\n\n // TODO: warn the pipeline if metadata changed or pixel value changed\n // --> do NOT update the pipeline at every modif because if we change a lot\n // of pixel values... (wait to call update() on the pipeline.)\n\n\n} /* END of class Image2D */\n\nexport { Image2D }\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\nimport { Filter } from './Filter.js';\nimport { Image2D } from './Image2D.js';\n\n/**\n* ImageToImageFilter is not to be used as-is but rather as a base class for any\n* filter that input a single Image2D and output a single Image2D.\n* This class does not overload the update() method.\n*/\nclass ImageToImageFilter extends Filter {\n\n constructor(){\n super();\n this._inputValidator[ 0 ] = Image2D.TYPE();\n\n // will be a copy of the input Image2D buffer\n this._inputBuffer = null;\n }\n\n\n /**\n * Check if all input image have the same size.\n * @return {Boolean} true is same size, false if not.\n */\n hasSameSizeInput(){\n var that = this;\n var inputCategories = Object.keys( this._input );\n var sameSize = true;\n\n var widths = [];\n var heights = [];\n\n inputCategories.forEach( function(key){\n widths.push( that._getInput( key ).getWidth() );\n heights.push( that._getInput( key ).getHeight() );\n });\n\n // if all input have the same size\n if(widths.length){\n widths.sort();\n heights.sort();\n sameSize = (widths[ 0 ] == widths[ widths.length -1 ] ) &&\n (heights[ 0 ] == heights[ heights.length -1 ] );\n\n if( !sameSize ){\n console.warn(\"Input image do not all have the same size. Filter not valid\");\n }\n }\n\n return sameSize;\n }\n\n\n /**\n * Check if all the inputs have the same number of component per pixel.\n * @return {Boolean} true if the ncpp are the same for all input image\n */\n hasSameNcppInput(){\n var inputCategories = Object.keys( this._input );\n\n // if no input, return false\n if(!inputCategories.length)\n return false;\n\n var ncpp = this._getInput( inputCategories[0] ).getComponentsPerPixel();\n\n for(var i=0; i 1) {\n n2 = nstack.pop();\n n1 = nstack.pop();\n f = binaryOps[item.value];\n item = new Instruction(INUMBER, f(n1.value, n2.value));\n nstack.push(item);\n } else if (type === IOP3 && nstack.length > 2) {\n n3 = nstack.pop();\n n2 = nstack.pop();\n n1 = nstack.pop();\n if (item.value === '?') {\n nstack.push(n1.value ? n2.value : n3.value);\n } else {\n f = ternaryOps[item.value];\n item = new Instruction(INUMBER, f(n1.value, n2.value, n3.value));\n nstack.push(item);\n }\n } else if (type === IOP1 && nstack.length > 0) {\n n1 = nstack.pop();\n f = unaryOps[item.value];\n item = new Instruction(INUMBER, f(n1.value));\n nstack.push(item);\n } else if (type === IEXPR) {\n while (nstack.length > 0) {\n newexpression.push(nstack.shift());\n }\n newexpression.push(new Instruction(IEXPR, simplify(item.value, unaryOps, binaryOps, ternaryOps, values)));\n } else if (type === IMEMBER && nstack.length > 0) {\n n1 = nstack.pop();\n nstack.push(new Instruction(INUMBER, n1.value[item.value]));\n } else {\n while (nstack.length > 0) {\n newexpression.push(nstack.shift());\n }\n newexpression.push(item);\n }\n }\n while (nstack.length > 0) {\n newexpression.push(nstack.shift());\n }\n return newexpression;\n}\n\nExpression.prototype.simplify = function (values) {\n values = values || {};\n return new Expression(simplify(this.tokens, this.unaryOps, this.binaryOps, this.ternaryOps, values), this.parser);\n};\n\nfunction substitute(tokens, variable, expr) {\n var newexpression = [];\n for (var i = 0, L = tokens.length; i < L; i++) {\n var item = tokens[i];\n var type = item.type;\n if (type === IVAR && item.value === variable) {\n for (var j = 0; j < expr.tokens.length; j++) {\n var expritem = expr.tokens[j];\n var replitem;\n if (expritem.type === IOP1) {\n replitem = unaryInstruction(expritem.value);\n } else if (expritem.type === IOP2) {\n replitem = binaryInstruction(expritem.value);\n } else if (expritem.type === IOP3) {\n replitem = ternaryInstruction(expritem.value);\n } else {\n replitem = new Instruction(expritem.type, expritem.value);\n }\n newexpression.push(replitem);\n }\n } else if (type === IEXPR) {\n newexpression.push(new Instruction(IEXPR, substitute(item.value, variable, expr)));\n } else {\n newexpression.push(item);\n }\n }\n return newexpression;\n}\n\nExpression.prototype.substitute = function (variable, expr) {\n if (!(expr instanceof Expression)) {\n expr = this.parser.parse(String(expr));\n }\n\n return new Expression(substitute(this.tokens, variable, expr), this.parser);\n};\n\nfunction evaluate(tokens, expr, values) {\n var nstack = [];\n var n1, n2, n3;\n var f;\n for (var i = 0, L = tokens.length; i < L; i++) {\n var item = tokens[i];\n var type = item.type;\n if (type === INUMBER) {\n nstack.push(item.value);\n } else if (type === IOP2) {\n n2 = nstack.pop();\n n1 = nstack.pop();\n f = expr.binaryOps[item.value];\n nstack.push(f(n1, n2));\n } else if (type === IOP3) {\n n3 = nstack.pop();\n n2 = nstack.pop();\n n1 = nstack.pop();\n if (item.value === '?') {\n nstack.push(evaluate(n1 ? n2 : n3, expr, values));\n } else {\n f = expr.ternaryOps[item.value];\n nstack.push(f(n1, n2, n3));\n }\n } else if (type === IVAR) {\n if (item.value in expr.functions) {\n nstack.push(expr.functions[item.value]);\n } else {\n var v = values[item.value];\n if (v !== undefined) {\n nstack.push(v);\n } else {\n throw new Error('undefined variable: ' + item.value);\n }\n }\n } else if (type === IOP1) {\n n1 = nstack.pop();\n f = expr.unaryOps[item.value];\n nstack.push(f(n1));\n } else if (type === IFUNCALL) {\n var argCount = item.value;\n var args = [];\n while (argCount-- > 0) {\n args.unshift(nstack.pop());\n }\n f = nstack.pop();\n if (f.apply && f.call) {\n nstack.push(f.apply(undefined, args));\n } else {\n throw new Error(f + ' is not a function');\n }\n } else if (type === IEXPR) {\n nstack.push(item.value);\n } else if (type === IMEMBER) {\n n1 = nstack.pop();\n nstack.push(n1[item.value]);\n } else {\n throw new Error('invalid Expression');\n }\n }\n if (nstack.length > 1) {\n throw new Error('invalid Expression (parity)');\n }\n return nstack[0];\n}\n\nExpression.prototype.evaluate = function (values) {\n values = values || {};\n return evaluate(this.tokens, this, values);\n};\n\nfunction expressionToString(tokens, toJS) {\n var nstack = [];\n var n1, n2, n3;\n var f;\n for (var i = 0, L = tokens.length; i < L; i++) {\n var item = tokens[i];\n var type = item.type;\n if (type === INUMBER) {\n if (typeof item.value === 'number' && item.value < 0) {\n nstack.push('(' + item.value + ')');\n } else {\n nstack.push(escapeValue(item.value));\n }\n } else if (type === IOP2) {\n n2 = nstack.pop();\n n1 = nstack.pop();\n f = item.value;\n if (toJS) {\n if (f === '^') {\n nstack.push('Math.pow(' + n1 + ', ' + n2 + ')');\n } else if (f === 'and') {\n nstack.push('(!!' + n1 + ' && !!' + n2 + ')');\n } else if (f === 'or') {\n nstack.push('(!!' + n1 + ' || !!' + n2 + ')');\n } else if (f === '||') {\n nstack.push('(String(' + n1 + ') + String(' + n2 + '))');\n } else if (f === '==') {\n nstack.push('(' + n1 + ' === ' + n2 + ')');\n } else if (f === '!=') {\n nstack.push('(' + n1 + ' !== ' + n2 + ')');\n } else {\n nstack.push('(' + n1 + ' ' + f + ' ' + n2 + ')');\n }\n } else {\n nstack.push('(' + n1 + ' ' + f + ' ' + n2 + ')');\n }\n } else if (type === IOP3) {\n n3 = nstack.pop();\n n2 = nstack.pop();\n n1 = nstack.pop();\n f = item.value;\n if (f === '?') {\n nstack.push('(' + n1 + ' ? ' + n2 + ' : ' + n3 + ')');\n } else {\n throw new Error('invalid Expression');\n }\n } else if (type === IVAR) {\n nstack.push(item.value);\n } else if (type === IOP1) {\n n1 = nstack.pop();\n f = item.value;\n if (f === '-' || f === '+') {\n nstack.push('(' + f + n1 + ')');\n } else if (toJS) {\n if (f === 'not') {\n nstack.push('(' + '!' + n1 + ')');\n } else if (f === '!') {\n nstack.push('fac(' + n1 + ')');\n } else {\n nstack.push(f + '(' + n1 + ')');\n }\n } else if (f === '!') {\n nstack.push('(' + n1 + '!)');\n } else {\n nstack.push('(' + f + ' ' + n1 + ')');\n }\n } else if (type === IFUNCALL) {\n var argCount = item.value;\n var args = [];\n while (argCount-- > 0) {\n args.unshift(nstack.pop());\n }\n f = nstack.pop();\n nstack.push(f + '(' + args.join(', ') + ')');\n } else if (type === IMEMBER) {\n n1 = nstack.pop();\n nstack.push(n1 + '.' + item.value);\n } else if (type === IEXPR) {\n nstack.push('(' + expressionToString(item.value, toJS) + ')');\n } else {\n throw new Error('invalid Expression');\n }\n }\n if (nstack.length > 1) {\n throw new Error('invalid Expression (parity)');\n }\n return nstack[0];\n}\n\nExpression.prototype.toString = function () {\n return expressionToString(this.tokens, false);\n};\n\nfunction getSymbols(tokens, symbols) {\n for (var i = 0, L = tokens.length; i < L; i++) {\n var item = tokens[i];\n if (item.type === IVAR && (indexOf(symbols, item.value) === -1)) {\n symbols.push(item.value);\n } else if (item.type === IEXPR) {\n getSymbols(item.value, symbols);\n }\n }\n}\n\nExpression.prototype.symbols = function () {\n var vars = [];\n getSymbols(this.tokens, vars);\n return vars;\n};\n\nExpression.prototype.variables = function () {\n var vars = [];\n getSymbols(this.tokens, vars);\n var functions = this.functions;\n return vars.filter(function (name) {\n return !(name in functions);\n });\n};\n\nExpression.prototype.toJSFunction = function (param, variables) {\n var expr = this;\n var f = new Function(param, 'with(this.functions) with (this.ternaryOps) with (this.binaryOps) with (this.unaryOps) { return ' + expressionToString(this.simplify(variables).tokens, true) + '; }'); // eslint-disable-line no-new-func\n return function () {\n return f.apply(expr, arguments);\n };\n};\n\nfunction add(a, b) {\n return Number(a) + Number(b);\n}\nfunction sub(a, b) {\n return a - b;\n}\nfunction mul(a, b) {\n return a * b;\n}\nfunction div(a, b) {\n return a / b;\n}\nfunction mod(a, b) {\n return a % b;\n}\nfunction concat(a, b) {\n return '' + a + b;\n}\nfunction equal(a, b) {\n return a === b;\n}\nfunction notEqual(a, b) {\n return a !== b;\n}\nfunction greaterThan(a, b) {\n return a > b;\n}\nfunction lessThan(a, b) {\n return a < b;\n}\nfunction greaterThanEqual(a, b) {\n return a >= b;\n}\nfunction lessThanEqual(a, b) {\n return a <= b;\n}\nfunction andOperator(a, b) {\n return Boolean(a && b);\n}\nfunction orOperator(a, b) {\n return Boolean(a || b);\n}\nfunction sinh(a) {\n return ((Math.exp(a) - Math.exp(-a)) / 2);\n}\nfunction cosh(a) {\n return ((Math.exp(a) + Math.exp(-a)) / 2);\n}\nfunction tanh(a) {\n if (a === Infinity) return 1;\n if (a === -Infinity) return -1;\n return (Math.exp(a) - Math.exp(-a)) / (Math.exp(a) + Math.exp(-a));\n}\nfunction asinh(a) {\n if (a === -Infinity) return a;\n return Math.log(a + Math.sqrt(a * a + 1));\n}\nfunction acosh(a) {\n return Math.log(a + Math.sqrt(a * a - 1));\n}\nfunction atanh(a) {\n return (Math.log((1 + a) / (1 - a)) / 2);\n}\nfunction log10(a) {\n return Math.log(a) * Math.LOG10E;\n}\nfunction neg(a) {\n return -a;\n}\nfunction not(a) {\n return !a;\n}\nfunction trunc(a) {\n return a < 0 ? Math.ceil(a) : Math.floor(a);\n}\nfunction random(a) {\n return Math.random() * (a || 1);\n}\nfunction factorial(a) { // a!\n return gamma(a + 1);\n}\nfunction stringLength(s) {\n return String(s).length;\n}\n\nfunction hypot() {\n var sum = 0;\n var larg = 0;\n for (var i = 0, L = arguments.length; i < L; i++) {\n var arg = Math.abs(arguments[i]);\n var div;\n if (larg < arg) {\n div = larg / arg;\n sum = sum * div * div + 1;\n larg = arg;\n } else if (arg > 0) {\n div = arg / larg;\n sum += div * div;\n } else {\n sum += arg;\n }\n }\n return larg === Infinity ? Infinity : larg * Math.sqrt(sum);\n}\n\nfunction condition(cond, yep, nope) {\n return cond ? yep : nope;\n}\n\nfunction isInteger(value) {\n return isFinite(value) && (value === Math.round(value));\n}\n\nvar GAMMA_G = 4.7421875;\nvar GAMMA_P = [\n 0.99999999999999709182,\n 57.156235665862923517, -59.597960355475491248,\n 14.136097974741747174, -0.49191381609762019978,\n 0.33994649984811888699e-4,\n 0.46523628927048575665e-4, -0.98374475304879564677e-4,\n 0.15808870322491248884e-3, -0.21026444172410488319e-3,\n 0.21743961811521264320e-3, -0.16431810653676389022e-3,\n 0.84418223983852743293e-4, -0.26190838401581408670e-4,\n 0.36899182659531622704e-5\n];\n\n// Gamma function from math.js\nfunction gamma(n) {\n var t, x;\n\n if (isInteger(n)) {\n if (n <= 0) {\n return isFinite(n) ? Infinity : NaN;\n }\n\n if (n > 171) {\n return Infinity; // Will overflow\n }\n\n var value = n - 2;\n var res = n - 1;\n while (value > 1) {\n res *= value;\n value--;\n }\n\n if (res === 0) {\n res = 1; // 0! is per definition 1\n }\n\n return res;\n }\n\n if (n < 0.5) {\n return Math.PI / (Math.sin(Math.PI * n) * gamma(1 - n));\n }\n\n if (n >= 171.35) {\n return Infinity; // will overflow\n }\n\n if (n > 85.0) { // Extended Stirling Approx\n var twoN = n * n;\n var threeN = twoN * n;\n var fourN = threeN * n;\n var fiveN = fourN * n;\n return Math.sqrt(2 * Math.PI / n) * Math.pow((n / Math.E), n) *\n (1 + 1 / (12 * n) + 1 / (288 * twoN) - 139 / (51840 * threeN) -\n 571 / (2488320 * fourN) + 163879 / (209018880 * fiveN) +\n 5246819 / (75246796800 * fiveN * n));\n }\n\n --n;\n x = GAMMA_P[0];\n for (var i = 1; i < GAMMA_P.length; ++i) {\n x += GAMMA_P[i] / (n + i);\n }\n\n t = n + GAMMA_G + 0.5;\n return Math.sqrt(2 * Math.PI) * Math.pow(t, n + 0.5) * Math.exp(-t) * x;\n}\n\nvar TEOF = 'TEOF';\nvar TOP = 'TOP';\nvar TNUMBER = 'TNUMBER';\nvar TSTRING = 'TSTRING';\nvar TPAREN = 'TPAREN';\nvar TCOMMA = 'TCOMMA';\nvar TNAME = 'TNAME';\n\nfunction Token(type, value, line, column) {\n this.type = type;\n this.value = value;\n this.line = line;\n this.column = column;\n}\n\nToken.prototype.toString = function () {\n return this.type + ': ' + this.value;\n};\n\nfunction TokenStream(expression, unaryOps, binaryOps, ternaryOps, consts) {\n this.pos = 0;\n this.line = 0;\n this.column = 0;\n this.current = null;\n this.unaryOps = unaryOps;\n this.binaryOps = binaryOps;\n this.ternaryOps = ternaryOps;\n this.consts = consts;\n this.expression = expression;\n this.savedPosition = 0;\n this.savedCurrent = null;\n this.savedLine = 0;\n this.savedColumn = 0;\n}\n\nTokenStream.prototype.newToken = function (type, value, line, column) {\n return new Token(type, value, line != null ? line : this.line, column != null ? column : this.column);\n};\n\nTokenStream.prototype.save = function () {\n this.savedPosition = this.pos;\n this.savedCurrent = this.current;\n this.savedLine = this.line;\n this.savedColumn = this.column;\n};\n\nTokenStream.prototype.restore = function () {\n this.pos = this.savedPosition;\n this.current = this.savedCurrent;\n this.line = this.savedLine;\n this.column = this.savedColumn;\n};\n\nTokenStream.prototype.next = function () {\n if (this.pos >= this.expression.length) {\n return this.newToken(TEOF, 'EOF');\n }\n\n if (this.isWhitespace() || this.isComment()) {\n return this.next();\n } else if (this.isNumber() ||\n this.isOperator() ||\n this.isString() ||\n this.isParen() ||\n this.isComma() ||\n this.isNamedOp() ||\n this.isConst() ||\n this.isName()) {\n return this.current;\n } else {\n this.parseError('Unknown character \"' + this.expression.charAt(this.pos) + '\"');\n }\n};\n\nTokenStream.prototype.isString = function () {\n var r = false;\n var startLine = this.line;\n var startColumn = this.column;\n var startPos = this.pos;\n var quote = this.expression.charAt(startPos);\n\n if (quote === '\\'' || quote === '\"') {\n this.pos++;\n this.column++;\n var index = this.expression.indexOf(quote, startPos + 1);\n while (index >= 0 && this.pos < this.expression.length) {\n this.pos = index + 1;\n if (this.expression.charAt(index - 1) !== '\\\\') {\n var rawString = this.expression.substring(startPos + 1, index);\n this.current = this.newToken(TSTRING, this.unescape(rawString), startLine, startColumn);\n var newLine = rawString.indexOf('\\n');\n var lastNewline = -1;\n while (newLine >= 0) {\n this.line++;\n this.column = 0;\n lastNewline = newLine;\n newLine = rawString.indexOf('\\n', newLine + 1);\n }\n this.column += rawString.length - lastNewline;\n r = true;\n break;\n }\n index = this.expression.indexOf(quote, index + 1);\n }\n }\n return r;\n};\n\nTokenStream.prototype.isParen = function () {\n var char = this.expression.charAt(this.pos);\n if (char === '(' || char === ')') {\n this.current = this.newToken(TPAREN, char);\n this.pos++;\n this.column++;\n return true;\n }\n return false;\n};\n\nTokenStream.prototype.isComma = function () {\n var char = this.expression.charAt(this.pos);\n if (char === ',') {\n this.current = this.newToken(TCOMMA, ',');\n this.pos++;\n this.column++;\n return true;\n }\n return false;\n};\n\nTokenStream.prototype.isConst = function () {\n var startPos = this.pos;\n var i = startPos;\n for (; i < this.expression.length; i++) {\n var c = this.expression.charAt(i);\n if (c.toUpperCase() === c.toLowerCase()) {\n if (i === this.pos || (c !== '_' && c !== '.' && (c < '0' || c > '9'))) {\n break;\n }\n }\n }\n if (i > startPos) {\n var str = this.expression.substring(startPos, i);\n if (str in this.consts) {\n this.current = this.newToken(TNUMBER, this.consts[str]);\n this.pos += str.length;\n this.column += str.length;\n return true;\n }\n }\n return false;\n};\n\nTokenStream.prototype.isNamedOp = function () {\n var startPos = this.pos;\n var i = startPos;\n for (; i < this.expression.length; i++) {\n var c = this.expression.charAt(i);\n if (c.toUpperCase() === c.toLowerCase()) {\n if (i === this.pos || (c !== '_' && (c < '0' || c > '9'))) {\n break;\n }\n }\n }\n if (i > startPos) {\n var str = this.expression.substring(startPos, i);\n if (str in this.binaryOps || str in this.unaryOps || str in this.ternaryOps) {\n this.current = this.newToken(TOP, str);\n this.pos += str.length;\n this.column += str.length;\n return true;\n }\n }\n return false;\n};\n\nTokenStream.prototype.isName = function () {\n var startPos = this.pos;\n var i = startPos;\n for (; i < this.expression.length; i++) {\n var c = this.expression.charAt(i);\n if (c.toUpperCase() === c.toLowerCase()) {\n if (i === this.pos || (c !== '_' && (c < '0' || c > '9'))) {\n break;\n }\n }\n }\n if (i > startPos) {\n var str = this.expression.substring(startPos, i);\n this.current = this.newToken(TNAME, str);\n this.pos += str.length;\n this.column += str.length;\n return true;\n }\n return false;\n};\n\nTokenStream.prototype.isWhitespace = function () {\n var r = false;\n var char = this.expression.charAt(this.pos);\n while (char === ' ' || char === '\\t' || char === '\\n' || char === '\\r') {\n r = true;\n this.pos++;\n this.column++;\n if (char === '\\n') {\n this.line++;\n this.column = 0;\n }\n if (this.pos >= this.expression.length) {\n break;\n }\n char = this.expression.charAt(this.pos);\n }\n return r;\n};\n\nvar codePointPattern = /^[0-9a-f]{4}$/i;\n\nTokenStream.prototype.unescape = function (v) {\n var index = v.indexOf('\\\\');\n if (index < 0) {\n return v;\n }\n\n var buffer = v.substring(0, index);\n while (index >= 0) {\n var c = v.charAt(++index);\n switch (c) {\n case '\\'':\n buffer += '\\'';\n break;\n case '\"':\n buffer += '\"';\n break;\n case '\\\\':\n buffer += '\\\\';\n break;\n case '/':\n buffer += '/';\n break;\n case 'b':\n buffer += '\\b';\n break;\n case 'f':\n buffer += '\\f';\n break;\n case 'n':\n buffer += '\\n';\n break;\n case 'r':\n buffer += '\\r';\n break;\n case 't':\n buffer += '\\t';\n break;\n case 'u':\n // interpret the following 4 characters as the hex of the unicode code point\n var codePoint = v.substring(index + 1, index + 5);\n if (!codePointPattern.test(codePoint)) {\n this.parseError('Illegal escape sequence: \\\\u' + codePoint);\n }\n buffer += String.fromCharCode(parseInt(codePoint, 16));\n index += 4;\n break;\n default:\n throw this.parseError('Illegal escape sequence: \"\\\\' + c + '\"');\n }\n ++index;\n var backslash = v.indexOf('\\\\', index);\n buffer += v.substring(index, backslash < 0 ? v.length : backslash);\n index = backslash;\n }\n\n return buffer;\n};\n\nTokenStream.prototype.isComment = function () {\n var char = this.expression.charAt(this.pos);\n if (char === '/' && this.expression.charAt(this.pos + 1) === '*') {\n var startPos = this.pos;\n this.pos = this.expression.indexOf('*/', this.pos) + 2;\n if (this.pos === 1) {\n this.pos = this.expression.length;\n }\n var comment = this.expression.substring(startPos, this.pos);\n var newline = comment.indexOf('\\n');\n while (newline >= 0) {\n this.line++;\n this.column = comment.length - newline;\n newline = comment.indexOf('\\n', newline + 1);\n }\n return true;\n }\n return false;\n};\n\nTokenStream.prototype.isNumber = function () {\n var valid = false;\n var pos = this.pos;\n var startPos = pos;\n var resetPos = pos;\n var column = this.column;\n var resetColumn = column;\n var foundDot = false;\n var foundDigits = false;\n var char;\n\n while (pos < this.expression.length) {\n char = this.expression.charAt(pos);\n if ((char >= '0' && char <= '9') || (!foundDot && char === '.')) {\n if (char === '.') {\n foundDot = true;\n } else {\n foundDigits = true;\n }\n pos++;\n column++;\n valid = foundDigits;\n } else {\n break;\n }\n }\n\n if (valid) {\n resetPos = pos;\n resetColumn = column;\n }\n\n if (char === 'e' || char === 'E') {\n pos++;\n column++;\n var acceptSign = true;\n var validExponent = false;\n while (pos < this.expression.length) {\n char = this.expression.charAt(pos);\n if (acceptSign && (char === '+' || char === '-')) {\n acceptSign = false;\n } else if (char >= '0' && char <= '9') {\n validExponent = true;\n acceptSign = false;\n } else {\n break;\n }\n pos++;\n column++;\n }\n\n if (!validExponent) {\n pos = resetPos;\n column = resetColumn;\n }\n }\n\n if (valid) {\n this.current = this.newToken(TNUMBER, parseFloat(this.expression.substring(startPos, pos)));\n this.pos = pos;\n this.column = column;\n } else {\n this.pos = resetPos;\n this.column = resetColumn;\n }\n return valid;\n};\n\nTokenStream.prototype.isOperator = function () {\n var char = this.expression.charAt(this.pos);\n\n if (char === '+' || char === '-' || char === '*' || char === '/' || char === '%' || char === '^' || char === '?' || char === ':' || char === '.') {\n this.current = this.newToken(TOP, char);\n } else if (char === '∙' || char === '•') {\n this.current = this.newToken(TOP, '*');\n } else if (char === '>') {\n if (this.expression.charAt(this.pos + 1) === '=') {\n this.current = this.newToken(TOP, '>=');\n this.pos++;\n this.column++;\n } else {\n this.current = this.newToken(TOP, '>');\n }\n } else if (char === '<') {\n if (this.expression.charAt(this.pos + 1) === '=') {\n this.current = this.newToken(TOP, '<=');\n this.pos++;\n this.column++;\n } else {\n this.current = this.newToken(TOP, '<');\n }\n } else if (char === '|') {\n if (this.expression.charAt(this.pos + 1) === '|') {\n this.current = this.newToken(TOP, '||');\n this.pos++;\n this.column++;\n } else {\n return false;\n }\n } else if (char === '=') {\n if (this.expression.charAt(this.pos + 1) === '=') {\n this.current = this.newToken(TOP, '==');\n this.pos++;\n this.column++;\n } else {\n return false;\n }\n } else if (char === '!') {\n if (this.expression.charAt(this.pos + 1) === '=') {\n this.current = this.newToken(TOP, '!=');\n this.pos++;\n this.column++;\n } else {\n this.current = this.newToken(TOP, char);\n }\n } else {\n return false;\n }\n this.pos++;\n this.column++;\n return true;\n};\n\nTokenStream.prototype.parseError = function (msg) {\n throw new Error('parse error [' + (this.line + 1) + ':' + (this.column + 1) + ']: ' + msg);\n};\n\nvar unaryInstructionCache = {};\nfunction unaryInstruction(value) {\n var inst = unaryInstructionCache[value];\n if (!inst) {\n inst = unaryInstructionCache[value] = new Instruction(IOP1, value);\n }\n return inst;\n}\n\nvar binaryInstructionCache = {};\nfunction binaryInstruction(value) {\n var inst = binaryInstructionCache[value];\n if (!inst) {\n inst = binaryInstructionCache[value] = new Instruction(IOP2, value);\n }\n return inst;\n}\n\nvar ternaryInstructionCache = {};\nfunction ternaryInstruction(value) {\n var inst = ternaryInstructionCache[value];\n if (!inst) {\n inst = ternaryInstructionCache[value] = new Instruction(IOP3, value);\n }\n return inst;\n}\n\nfunction ParserState(parser, tokenStream) {\n this.parser = parser;\n this.tokens = tokenStream;\n this.current = null;\n this.nextToken = null;\n this.next();\n this.savedCurrent = null;\n this.savedNextToken = null;\n}\n\nParserState.prototype.next = function () {\n this.current = this.nextToken;\n return (this.nextToken = this.tokens.next());\n};\n\nParserState.prototype.tokenMatches = function (token, value) {\n if (typeof value === 'undefined') {\n return true;\n } else if (Array.isArray(value)) {\n return indexOf(value, token.value) >= 0;\n } else if (typeof value === 'function') {\n return value(token);\n } else {\n return token.value === value;\n }\n};\n\nParserState.prototype.save = function () {\n this.savedCurrent = this.current;\n this.savedNextToken = this.nextToken;\n this.tokens.save();\n};\n\nParserState.prototype.restore = function () {\n this.tokens.restore();\n this.current = this.savedCurrent;\n this.nextToken = this.savedNextToken;\n};\n\nParserState.prototype.accept = function (type, value) {\n if (this.nextToken.type === type && this.tokenMatches(this.nextToken, value)) {\n this.next();\n return true;\n }\n return false;\n};\n\nParserState.prototype.expect = function (type, value) {\n if (!this.accept(type, value)) {\n throw new Error('parse error [' + this.tokens.line + ':' + this.tokens.column + ']: Expected ' + (value || type));\n }\n};\n\nParserState.prototype.parseAtom = function (instr) {\n if (this.accept(TNAME)) {\n instr.push(new Instruction(IVAR, this.current.value));\n } else if (this.accept(TNUMBER)) {\n instr.push(new Instruction(INUMBER, this.current.value));\n } else if (this.accept(TSTRING)) {\n instr.push(new Instruction(INUMBER, this.current.value));\n } else if (this.accept(TPAREN, '(')) {\n this.parseExpression(instr);\n this.expect(TPAREN, ')');\n } else {\n throw new Error('unexpected ' + this.nextToken);\n }\n};\n\nParserState.prototype.parseExpression = function (instr) {\n this.parseConditionalExpression(instr);\n};\n\nParserState.prototype.parseConditionalExpression = function (instr) {\n this.parseOrExpression(instr);\n while (this.accept(TOP, '?')) {\n var trueBranch = [];\n var falseBranch = [];\n this.parseConditionalExpression(trueBranch);\n this.expect(TOP, ':');\n this.parseConditionalExpression(falseBranch);\n instr.push(new Instruction(IEXPR, trueBranch));\n instr.push(new Instruction(IEXPR, falseBranch));\n instr.push(ternaryInstruction('?'));\n }\n};\n\nParserState.prototype.parseOrExpression = function (instr) {\n this.parseAndExpression(instr);\n while (this.accept(TOP, 'or')) {\n this.parseAndExpression(instr);\n instr.push(binaryInstruction('or'));\n }\n};\n\nParserState.prototype.parseAndExpression = function (instr) {\n this.parseComparison(instr);\n while (this.accept(TOP, 'and')) {\n this.parseComparison(instr);\n instr.push(binaryInstruction('and'));\n }\n};\n\nParserState.prototype.parseComparison = function (instr) {\n this.parseAddSub(instr);\n while (this.accept(TOP, ['==', '!=', '<', '<=', '>=', '>'])) {\n var op = this.current;\n this.parseAddSub(instr);\n instr.push(binaryInstruction(op.value));\n }\n};\n\nParserState.prototype.parseAddSub = function (instr) {\n this.parseTerm(instr);\n while (this.accept(TOP, ['+', '-', '||'])) {\n var op = this.current;\n this.parseTerm(instr);\n instr.push(binaryInstruction(op.value));\n }\n};\n\nParserState.prototype.parseTerm = function (instr) {\n this.parseFactor(instr);\n while (this.accept(TOP, ['*', '/', '%'])) {\n var op = this.current;\n this.parseFactor(instr);\n instr.push(binaryInstruction(op.value));\n }\n};\n\nParserState.prototype.parseFactor = function (instr) {\n var unaryOps = this.tokens.unaryOps;\n function isPrefixOperator(token) {\n return token.value in unaryOps;\n }\n\n this.save();\n if (this.accept(TOP, isPrefixOperator)) {\n if ((this.current.value !== '-' && this.current.value !== '+' && this.nextToken.type === TPAREN && this.nextToken.value === '(')) {\n this.restore();\n this.parseExponential(instr);\n } else {\n var op = this.current;\n this.parseFactor(instr);\n instr.push(unaryInstruction(op.value));\n }\n } else {\n this.parseExponential(instr);\n }\n};\n\nParserState.prototype.parseExponential = function (instr) {\n this.parsePostfixExpression(instr);\n while (this.accept(TOP, '^')) {\n this.parseFactor(instr);\n instr.push(binaryInstruction('^'));\n }\n};\n\nParserState.prototype.parsePostfixExpression = function (instr) {\n this.parseFunctionCall(instr);\n while (this.accept(TOP, '!')) {\n instr.push(unaryInstruction('!'));\n }\n};\n\nParserState.prototype.parseFunctionCall = function (instr) {\n var unaryOps = this.tokens.unaryOps;\n function isPrefixOperator(token) {\n return token.value in unaryOps;\n }\n\n if (this.accept(TOP, isPrefixOperator)) {\n var op = this.current;\n this.parseAtom(instr);\n instr.push(unaryInstruction(op.value));\n } else {\n this.parseMemberExpression(instr);\n while (this.accept(TPAREN, '(')) {\n if (this.accept(TPAREN, ')')) {\n instr.push(new Instruction(IFUNCALL, 0));\n } else {\n var argCount = this.parseArgumentList(instr);\n instr.push(new Instruction(IFUNCALL, argCount));\n }\n }\n }\n};\n\nParserState.prototype.parseArgumentList = function (instr) {\n var argCount = 0;\n\n while (!this.accept(TPAREN, ')')) {\n this.parseExpression(instr);\n ++argCount;\n while (this.accept(TCOMMA)) {\n this.parseExpression(instr);\n ++argCount;\n }\n }\n\n return argCount;\n};\n\nParserState.prototype.parseMemberExpression = function (instr) {\n this.parseAtom(instr);\n while (this.accept(TOP, '.')) {\n this.expect(TNAME);\n instr.push(new Instruction(IMEMBER, this.current.value));\n }\n};\n\nfunction Parser() {\n this.unaryOps = {\n sin: Math.sin,\n cos: Math.cos,\n tan: Math.tan,\n asin: Math.asin,\n acos: Math.acos,\n atan: Math.atan,\n sinh: Math.sinh || sinh,\n cosh: Math.cosh || cosh,\n tanh: Math.tanh || tanh,\n asinh: Math.asinh || asinh,\n acosh: Math.acosh || acosh,\n atanh: Math.atanh || atanh,\n sqrt: Math.sqrt,\n log: Math.log,\n ln: Math.log,\n lg: Math.log10 || log10,\n log10: Math.log10 || log10,\n abs: Math.abs,\n ceil: Math.ceil,\n floor: Math.floor,\n round: Math.round,\n trunc: Math.trunc || trunc,\n '-': neg,\n '+': Number,\n exp: Math.exp,\n not: not,\n length: stringLength,\n '!': factorial\n };\n\n this.binaryOps = {\n '+': add,\n '-': sub,\n '*': mul,\n '/': div,\n '%': mod,\n '^': Math.pow,\n '||': concat,\n '==': equal,\n '!=': notEqual,\n '>': greaterThan,\n '<': lessThan,\n '>=': greaterThanEqual,\n '<=': lessThanEqual,\n and: andOperator,\n or: orOperator\n };\n\n this.ternaryOps = {\n '?': condition\n };\n\n this.functions = {\n random: random,\n fac: factorial,\n min: Math.min,\n max: Math.max,\n hypot: Math.hypot || hypot,\n pyt: Math.hypot || hypot, // backward compat\n pow: Math.pow,\n atan2: Math.atan2,\n 'if': condition,\n gamma: gamma\n };\n\n this.consts = {\n E: Math.E,\n PI: Math.PI,\n 'true': true,\n 'false': false\n };\n}\n\nParser.parse = function (expr) {\n return new Parser().parse(expr);\n};\n\nParser.evaluate = function (expr, variables) {\n return Parser.parse(expr).evaluate(variables);\n};\n\nParser.prototype = {\n parse: function (expr) {\n var instr = [];\n var parserState = new ParserState(this, new TokenStream(expr, this.unaryOps, this.binaryOps, this.ternaryOps, this.consts));\n parserState.parseExpression(instr);\n parserState.expect(TEOF, 'EOF');\n\n return new Expression(instr, this);\n },\n\n evaluate: function (expr, variables) {\n return this.parse(expr).evaluate(variables);\n }\n};\n\nvar parser = {\n Parser: Parser,\n Expression: Expression\n};\n\nreturn parser;\n\n})));\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\n\nimport Parser from 'expr-eval'\nimport { Image2D } from '../core/Image2D.js';\nimport { ImageToImageFilter } from '../core/ImageToImageFilter.js';\n\n\n/**\n* An instance of ImageBlendExpressionFilter takes Image2D inputs, as many as\n* we need as long as they have the same size and the same number of components\n* per pixel.\n* This filter blends images pixel values using a literal expression. This expression\n* should be set using `setMetadata( \"expresssion\", \"A * B\" )` , where `A` and `B`\n* are the categories set in input.\n*\n* Using a blending expression is the aesiest way to test a blending but it is a\n* pretty slow process since the expresion has to be evaluated for every process.\n* To speed-up your process, it is recomended to develop a new filter that does\n* exactly (and only) the blending method you want.\n*\n* usage: examples/imageBlending.html\n* usage: examples/imageBlending2.html\n* usage: examples/forEachPixelGradientBlend.html\n*\n*/\nclass ImageBlendExpressionFilter extends ImageToImageFilter {\n\n constructor(){\n super();\n this._addOutput( Image2D );\n }\n\n\n\n _run(){\n\n // the metadata was not set\n if(!this.hasMetadata(\"expression\")){\n console.warn(\"A filter of type ImageBlendExpressionFilter requires a blending expression.\\nUse 'setMetadata(\\\"expression\\\", \\\"...\\\")' to set it.\" );\n return;\n }\n\n if( !this.hasSameNcppInput() || !this.hasSameSizeInput() ){\n return;\n }\n\n if(!this.getNumberOfInputs()){\n console.warn(\"A filter of type ImageBlendExpressionFilter requires at least one inpupt.\");\n return;\n }\n\n var inputCategories = this.getInputCategories();\n var firstInput = this._getInput( inputCategories[0] );\n var outputBuffer = firstInput.getDataCopy();\n var parser = new Parser.Parser();\n var expr = parser.parse( this.getMetadata(\"expression\") );\n\n for(var i=0; i 0 && options.height > 0){\n this.setMetadata(\"width\", options.width);\n this.setMetadata(\"height\", options.height);\n\n if(\"color\" in options){\n this.setMetadata(\"ncpp\", options.color.length );\n }\n\n this._data = new Float32Array( options.width * options.height * this.getMetadata(\"ncpp\") );\n var ncpp = this.getMetadata(\"ncpp\");\n\n // init with the given color\n if(\"color\" in options){\n var color = options.color;\n for(var i=0; i=0 && position.x < this.getMetadata(\"width\") &&\n \"y\" in position && position.y >=0 && position.y < this.getMetadata(\"height\") &&\n color.length == ncpp)\n {\n\n var pos1D = this.get1dIndexFrom2dPosition( position ) * ncpp;\n\n for(var i=0; i=0 && position.x < this.getMetadata(\"width\") &&\n \"y\" in position && position.y >=0 && position.y < this.getMetadata(\"height\"))\n {\n var pos1D = this.get1dIndexFrom2dPosition( position ) * this.getMetadata(\"ncpp\");\n var color = this._data.slice(pos1D, pos1D + this.getMetadata(\"ncpp\"));\n return color;\n\n }else{\n console.warn(\"The requested position is outside the image.\");\n return null;\n }\n }\n\n\n /**\n * @return {Number} the width of the Image2D\n */\n getWidth(){\n return this.getMetadata(\"width\");\n }\n\n\n /**\n * @return {Number} the height of the Image2D\n */\n getHeight(){\n return this.getMetadata(\"height\");\n }\n\n\n /**\n * @return {Number} the number of components per pixel\n */\n getComponentsPerPixel(){\n return this.getMetadata(\"ncpp\");\n }\n\n\n /**\n * @return {Float32Array} the original data, dont mess up with this one.\n * in case of doubt, use getDataCopy()\n */\n getData(){\n //return this._data.slice(); // return a copy\n return this._data; // return the actual array, editable!\n }\n\n\n /**\n * @return {Float32Array} a deep copy of the data\n */\n getDataCopy(){\n return this._data.slice();\n }\n\n\n /**\n * Compute the (x, y) position from a position in a 1D array.\n * This has nothing to do with the number of components per pixel.\n * @param {Number} i - the index of a pixel.\n * @return {Object} coordinate as {x, y}\n */\n get2dPositionFrom1dIndex( i ){\n return {\n x: i % this.getMetadata(\"width\"),\n y: Math.floor(i / this.getMetadata(\"width\"))\n }\n }\n\n\n /**\n * Compute the 1D index within the data buffer from a 2D position {x, y}.\n * This has nothing to do with the number of components per pixel.\n * @param {Object} position - 2D coord like {x, y}\n * @return {Number} the 1D position within the buffer\n */\n get1dIndexFrom2dPosition( position ){\n return (position.x + position.y*this.getMetadata(\"width\"));\n }\n\n\n\n\n // TODO: warn the pipeline if metadata changed or pixel value changed\n // --> do NOT update the pipeline at every modif because if we change a lot\n // of pixel values... (wait to call update() on the pipeline.)\n\n\n} /* END of class Image2D */\n\nexport { Image2D }\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\nimport { PipelineElement } from './PipelineElement.js';\nimport { Image2D } from './Image2D.js';\n\n/**\n* Image3D class is one of the few base element of Pixpipejs.\n* It is always considered to be 4 channels (RGBA) and stored as a Float32Array\n* typed array.\n*/\nclass Image3D extends PipelineElement{\n\n\n /**\n * Constructor of an Image3D instance. If no options, no array is allocated.\n * @param {Object} options - may contain the following:\n * - options.xSize {Number} space length along x axis\n * - options.ySize {Number} space length along y axis\n * - option.zSize {Number} space length along z axis\n * - options.ncpp {Number} number of components per pixel. Default = 1\n * - options.order {Array} dimensionality order. default = [\"zspace\", \"yspace\", \"xspace\"]\n */\n constructor( options=null ){\n super();\n this._type = Image3D.TYPE();\n\n // a rgba stored in a Float32Array (typed array)\n this._data = null;\n\n // number of component per pixel, for color OR time series\n this.setMetadata(\"ncpp\", 1);\n\n // dimensionality order\n if(options && \"order\" in options){\n this.setMetadata(\"order\", options.order);\n }else{\n this.setMetadata(\"order\", [\"zspace\", \"yspace\", \"xspace\"]);\n }\n\n var xspace = {\n offset: 1,\n step: 1\n }\n\n var yspace = {\n step: 1\n }\n\n var zspace = {\n step: 1\n }\n\n this.setMetadata(\"xspace\", xspace);\n this.setMetadata(\"yspace\", yspace);\n this.setMetadata(\"zspace\", zspace);\n\n // replacing default value for ncpp\n if(options && \"ncpp\" in options){\n this.setMetadata(\"ncpp\", options.ncpp);\n }\n\n // allocate the array if size is specified\n if(options && \"xSize\" in options && \"ySize\" in options && \"zSize\" in options){\n\n if( options.xSize > 0 && options.ySize > 0 && options.zSize > 0 ){\n xspace.space_length = options.xSize;\n yspace.space_length = options.ySize;\n zspace.space_length = options.zSize;\n\n yspace.offset = xspace.space_length;\n zspace.offset = xspace.space_length * yspace.space_length;\n\n this._data = new Float32Array( options.xSize * options.ySize * options.zSize * this.getMetadata(\"ncpp\") );\n this._data.fill(0);\n\n this._scanDataRange();\n this._finishHeader();\n }\n }\n }\n\n\n /**\n * Hardcode the datatype\n */\n static TYPE(){\n return \"Image3D\";\n }\n\n\n /**\n * @return {Image3D} a deep copy instance of this Image3D\n */\n clone(){\n var cpImg = new Image3D();\n\n cpImg.setData(\n this._data,\n this.getMetadata(\"xspace\").space_length,\n this.getMetadata(\"yspace\").space_length,\n this.getMetadata(\"zspace\").space_length,\n {\n ncpp: this.getMetadata(\"ncpp\"),\n order: this.getMetadata(\"order\").slice(),\n deepCopy: true,\n }\n );\n\n cpImg.copyMetadataFrom( this );\n\n return cpImg;\n }\n\n\n /**\n * Set the data to this Image3D.\n * @param {Float32Array} array - 1D array of raw data stored as RGBARGBA...\n * @param {Number} xSize - length along x dimension of the Image3D\n * @param {Number} ySize - length along y dimension of the Image3D\n * @param {Number} zSize - length along z dimension of the Image3D\n * @param {Number} ncpp - number of components per pixel (default: 4)\n * @param {Boolean} deepCopy - if true, a copy of the data is given, if false we jsut give the pointer\n * @param {Object} options, among them:\n * - ncpp {Number} number of components per pixel. Default = 1\n * - order {Array} dimensionality order. Default = [\"zspace\", \"yspace\", \"xspace\"]\n * - deepCopy {Boolean} copy the whole array if true, or just the pointer if false. Default = false\n *\n */\n setData( array, xSize, ySize, zSize, options){\n var ncpp = 1;\n\n // number of components per pixel\n if(options && \"ncpp\" in options){\n ncpp = options.ncpp;\n }\n\n if( array.length != xSize*ySize*zSize*ncpp){\n console.warn(\"The array size does not match the width and height. Cannot init the Image3D.\");\n return;\n }\n\n // number of components per pixel\n if(options && \"ncpp\" in options){\n this.setMetadata(\"ncpp\", options.ncpp);\n }\n\n // dimensionality order\n if(options && \"order\" in options){\n this.setMetadata(\"order\", options.order);\n }\n\n // deep of shallow copy\n if(options && \"deepCopy\" in options && options.deepCopy){\n this._data = array.slice();\n }else{\n this._data = array;\n }\n\n var xspace = this.getMetadata(\"xspace\");\n var yspace = this.getMetadata(\"yspace\");\n var zspace = this.getMetadata(\"zspace\");\n\n xspace.space_length = xSize;\n yspace.space_length = ySize;\n zspace.space_length = zSize;\n\n yspace.offset = xspace.space_length;\n zspace.offset = xspace.space_length * yspace.space_length;\n\n this._scanDataRange();\n this._finishHeader();\n }\n\n\n /**\n * [PRIVATE]\n * Creates common fields all headers must contain.\n */\n _finishHeader() {\n var xspace = this.getMetadata(\"xspace\");\n var yspace = this.getMetadata(\"yspace\");\n var zspace = this.getMetadata(\"zspace\");\n\n xspace.name = \"xspace\";\n yspace.name = \"yspace\";\n zspace.name = \"zspace\";\n\n xspace.width_space = JSON.parse( JSON.stringify( yspace ) );//yspace;\n xspace.width = yspace.space_length;\n xspace.height_space = JSON.parse( JSON.stringify( zspace ) );//zspace;\n xspace.height = zspace.space_length;\n\n yspace.width_space = JSON.parse( JSON.stringify( xspace ) );//xspace;\n yspace.width = xspace.space_length;\n yspace.height_space = JSON.parse( JSON.stringify( zspace ) );//zspace;\n yspace.height = zspace.space_length;\n\n zspace.width_space = JSON.parse( JSON.stringify( xspace ) );//xspace;\n zspace.width = xspace.space_length;\n zspace.height_space = JSON.parse( JSON.stringify( yspace ) );//yspace;\n zspace.height = yspace.space_length;\n }\n\n\n /**\n * [PRIVATE]\n * Look for min and max on the dataset and add them to the header metadata\n */\n _scanDataRange(){\n var min = +Infinity;\n var max = -Infinity;\n\n this._data.forEach( function(value){\n min = Math.min(min, value);\n max = Math.max(max, value);\n })\n\n this.setMetadata(\"voxel_min\", min);\n this.setMetadata(\"voxel_max\", max);\n }\n\n\n /**\n * Modify the color of a given pixel.\n * @param {Object} position - 3D position in the form {x, y, z}\n * @param {Array} color - color, must have the same number of components per pixel than the image\n */\n setPixel( position, color ){\n // TODO: to implement using order offset\n }\n\n\n /**\n * @param {Object} position - 3D position like {x, y, z}\n * @return {Array} the color of the given pixel.\n */\n getPixel( position ){\n // TODO: to implement using order offset\n }\n\n\n /**\n * @param {String} space - \"xspace\", \"yspace\" or \"zspace\"\n * @return {Number} the size of the Image3D along the given space\n */\n getSize( space ){\n if( this.hasMetadata( space )){\n return this.getMetadata( space ).space_length;\n }else{\n console.warn(\"The space must be \\\"xspace\\\", \\\"yspace\\\" or \\\"zspace\\\".\");\n return null;\n }\n }\n\n\n /**\n * @return {Float32Array} the original data, dont mess up with this one.\n * in case of doubt, use getDataCopy()\n */\n getData(){\n //return this._data.slice(); // return a copy\n return this._data; // return the actual array, editable!\n }\n\n\n /**\n * @return {Float32Array} a deep copy of the data\n */\n getDataCopy(){\n return this._data.slice();\n }\n\n\n /**\n * Compute the 1D index within the data buffer from a 3D position {x, y, z}.\n * This has nothing to do with the number of components per pixel.\n * @param {Object} position - 3D coord like {x, y, z}\n * @return {Number} the 1D position within the buffer\n */\n get1dIndexFrom3dPosition( position ){\n //return (position.x + position.y*this._width);\n //return this._xSize * this._ySize * position.z + this._xSize * position.y + position.x;\n // TODO: to implement using order offset\n }\n\n\n /**\n * [PRIVATE]\n * Return a slice from the minc cube as a 1D typed array,\n * along with some relative data (slice size, step, etc.)\n * args:\n * @param {String} axis - \"xspace\", \"yspace\" or zspace (mandatory)\n * @param {Number} slice_num - index of the slice [0; length-1] (optional, default: length-1)\n * @param {Number} time - index of time (optional, default: 0)\n * TODO: add some method to a slice (get value) because it's a 1D array... and compare with Python\n */\n getSlice(axis, slice_num = 0, time = 0) {\n if( !this.hasMetadata(axis) ){\n console.warn(\"The axis \" + axis + \" does not exist.\");\n return null;\n }\n\n var time_offset = this.hasMetadata(\"time\") ? time * this.getMetadata(\"time\").offset : 0;\n\n var axis_space = this.getMetadata(axis);\n var width_space = axis_space.width_space;\n var height_space = axis_space.height_space;\n\n var width = axis_space.width;\n var height = axis_space.height;\n\n var axis_space_offset = axis_space.offset;\n var width_space_offset = width_space.offset;\n var height_space_offset = height_space.offset;\n\n // Calling the volume data's constructor guarantees that the\n // slice data buffer has the same type as the volume.\n //\n //var slice_data = new this._data.constructor(width * height);\n var slice_data = new this._data.constructor(width * height);\n\n // Rows and colums of the result slice.\n var row, col;\n\n // Indexes into the volume, relative to the slice.\n // NOT xspace, yspace, zspace coordinates!!!\n var x, y, z;\n\n // Linear offsets into volume considering an\n // increasing number of axes: (t) time,\n // (z) z-axis, (y) y-axis, (x) x-axis.\n var tz_offset, tzy_offset, tzyx_offset;\n\n // Whether the dimension steps positively or negatively.\n var x_positive = width_space.step > 0;\n var y_positive = height_space.step > 0;\n var z_positive = axis_space.step > 0;\n\n // iterator for the result slice.\n var i = 0;\n var intensity = 0;\n var intensitySum = 0;\n var min = Infinity;\n var max = -Infinity;\n\n var maxOfVolume = this.getMetadata(\"voxel_max\");\n\n z = z_positive ? slice_num : axis_space.space_length - slice_num - 1;\n if (z >= 0 && z < axis_space.space_length) {\n tz_offset = time_offset + z * axis_space_offset;\n\n for (row = height - 1; row >= 0; row--) {\n y = y_positive ? row : height - row - 1;\n tzy_offset = tz_offset + y * height_space_offset;\n\n for (col = 0; col < width; col++) {\n x = x_positive ? col : width - col - 1;\n tzyx_offset = tzy_offset + x * width_space_offset;\n\n intensity = this._data[tzyx_offset];\n\n min = Math.min(min, intensity);\n max = Math.max(max, intensity);\n intensitySum += intensity;\n\n slice_data[i++] = intensity;\n }\n }\n }\n\n var outputImage = new Image2D();\n outputImage.setData( slice_data, width, height, 1);\n outputImage.setMetadata(\"min\", min);\n outputImage.setMetadata(\"max\", max);\n outputImage.setMetadata(\"avg\", intensitySum / (i-1) );\n return outputImage;\n\n }\n\n\n /**\n * Get the intensity of a given voxel, addressed by dimensionality order.\n * In case of doubt, use getIntensity_xyz instead.\n * @param {Number} i - Position within the biggest dimensionality order\n * @param {Number} j - Position within the in-the-middle dimensionality order\n * @param {Number} k - Position within the smallest dimensionality order\n */\n getIntensity_ijk(i, j, k, time = 0) {\n var order = this.getMetadata(\"order\");\n\n if (i < 0 || i >= this.getMetadata( order[0] ).space_length ||\n j < 0 || j >= this.getMetadata( order[1] ).space_length ||\n k < 0 || k >= this.getMetadata( order[2] ).space_length)\n {\n console.warn(\"getIntensity_ijk position is out of range.\");\n return 0;\n }\n\n var time_offset = this.hasMetadata( \"time\" ) ? time * this.getMetadata( \"time\" ).offset : 0;\n\n var xyzt_offset = (\n i * this.getMetadata( order[0] ).offset +\n j * this.getMetadata( order[1] ).offset +\n k * this.getMetadata( order[2] ).offset +\n time_offset);\n\n return this._data[xyzt_offset];\n }\n\n\n /**\n * Get the intensity of a given voxel, addressed by dimension names.\n * @param {Number} x - position within xspace\n * @param {Number} y - position within yspace\n * @param {Number} z - position within zspace\n * @param {Number} time - position in time (optional)\n */\n getIntensity_xyz(x, y, z, time = 0) {\n var order = this.getMetadata(\"order\");\n\n if (x < 0 || x >= this.getMetadata( \"xspace\" ).space_length ||\n y < 0 || y >= this.getMetadata( \"yspace\" ).space_length ||\n z < 0 || z >= this.getMetadata( \"zspace\" ).space_length)\n {\n console.warn(\"getIntensity_xyz position is out of range.\");\n return 0;\n }\n\n var time_offset = this.hasMetadata( \"time\" ) ? time * this.getMetadata( \"time\" ).offset : 0;\n\n var xyzt_offset = (\n x * this.getMetadata( \"xspace\" ).offset +\n y * this.getMetadata( \"yspace\" ).offset +\n z * this.getMetadata( \"zspace\" ).offset +\n time_offset);\n\n return this._data[xyzt_offset];\n }\n\n\n} /* END of class Image3D */\n\nexport { Image3D }\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\nimport { Filter } from './Filter.js';\nimport { Image2D } from './Image2D.js';\n\n/**\n* ImageToImageFilter is not to be used as-is but rather as a base class for any\n* filter that input a single Image2D and output a single Image2D.\n* This class does not overload the update() method.\n*/\nclass ImageToImageFilter extends Filter {\n\n constructor(){\n super();\n this._inputValidator[ 0 ] = Image2D.TYPE();\n\n // will be a copy of the input Image2D buffer\n this._inputBuffer = null;\n }\n\n\n /**\n * Check if all input image have the same size.\n * @return {Boolean} true is same size, false if not.\n */\n hasSameSizeInput(){\n var that = this;\n var inputCategories = Object.keys( this._input );\n var sameSize = true;\n\n var widths = [];\n var heights = [];\n\n inputCategories.forEach( function(key){\n widths.push( that._getInput( key ).getWidth() );\n heights.push( that._getInput( key ).getHeight() );\n });\n\n // if all input have the same size\n if(widths.length){\n widths.sort();\n heights.sort();\n sameSize = (widths[ 0 ] == widths[ widths.length -1 ] ) &&\n (heights[ 0 ] == heights[ heights.length -1 ] );\n\n if( !sameSize ){\n console.warn(\"Input image do not all have the same size. Filter not valid\");\n }\n }\n\n return sameSize;\n }\n\n\n /**\n * Check if all the inputs have the same number of component per pixel.\n * @return {Boolean} true if the ncpp are the same for all input image\n */\n hasSameNcppInput(){\n var inputCategories = Object.keys( this._input );\n\n // if no input, return false\n if(!inputCategories.length)\n return false;\n\n var ncpp = this._getInput( inputCategories[0] ).getComponentsPerPixel();\n\n for(var i=0; i lo_offset) {\n var tmp = byte_data[d + hi_offset];\n byte_data[d + hi_offset] = byte_data[d + lo_offset];\n byte_data[d + lo_offset] = tmp;\n hi_offset--;\n lo_offset++;\n }\n }\n }\n\n\n /**\n * Initialize a MniVolume with the data and the header.\n * @param {Array} data - TypedArray containing the data\n */\n setData( data, header ){\n var that = this;\n this._data = data;\n\n this.setMetadata( \"position\", {} );\n this.setMetadata( \"current_time\", 0 );\n\n // copying header into metadata\n var headerKeys = Object.keys(header);\n headerKeys.forEach( function(key){\n that.setMetadata( key, header[key] );\n })\n\n // find min/max\n this._scanDataRange();\n\n // set W2v matrix\n this._saveOriginAndTransform();\n\n // adding some fields to metadata header\n this._finishHeader()\n\n console.log(this._metadata);\n }\n\n\n\n\n\n /**\n * [PRIVATE}\n * Calculate the world to voxel transform and save it, so we\n * can access it efficiently. The transform is:\n * cxx / stepx | cxy / stepx | cxz / stepx | (-o.x * cxx - o.y * cxy - o.z * cxz) / stepx\n * cyx / stepy | cyy / stepy | cyz / stepy | (-o.x * cyx - o.y * cyy - o.z * cyz) / stepy\n * czx / stepz | czy / stepz | czz / stepz | (-o.x * czx - o.y * czy - o.z * czz) / stepz\n * 0 | 0 | 0 | 1\n *\n * Origin equation taken from (http://www.bic.mni.mcgill.ca/software/minc/minc2_format/node4.html)\n */\n _saveOriginAndTransform() {\n\n var xspace = this.getMetadata(\"xspace\");\n var yspace = this.getMetadata(\"yspace\");\n var zspace = this.getMetadata(\"zspace\");\n\n var startx = xspace.start;\n var starty = yspace.start;\n var startz = zspace.start;\n var cx = xspace.direction_cosines;\n var cy = yspace.direction_cosines;\n var cz = zspace.direction_cosines;\n var stepx = xspace.step;\n var stepy = yspace.step;\n var stepz = zspace.step;\n\n // voxel_origin\n var o = {\n x: startx * cx[0] + starty * cy[0] + startz * cz[0],\n y: startx * cx[1] + starty * cy[1] + startz * cz[1],\n z: startx * cx[2] + starty * cy[2] + startz * cz[2]\n };\n\n this.setMetadata(\"voxel_origin\", o);\n\n var tx = (-o.x * cx[0] - o.y * cx[1] - o.z * cx[2]) / stepx;\n var ty = (-o.x * cy[0] - o.y * cy[1] - o.z * cy[2]) / stepy;\n var tz = (-o.x * cz[0] - o.y * cz[1] - o.z * cz[2]) / stepz;\n\n var w2v = [\n [cx[0] / stepx, cx[1] / stepx, cx[2] / stepx, tx],\n [cy[0] / stepy, cy[1] / stepy, cy[2] / stepy, ty],\n [cz[0] / stepz, cz[1] / stepz, cz[2] / stepz, tz]\n ];\n\n this.setMetadata(\"w2v\", w2v);\n }\n\n\n\n\n\n\n\n\n\n\n\n} /* END of class Image3D */\n\nexport { MniVolume }\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\nimport { Image2D } from '../core/Image2D.js';\nimport { Filter } from '../core/Filter.js';\n\n/**\n* CanvasImageWriter is a filter to output an instance of Image into a\n* HTML5 canvas element.\n* The metadata \"parentDivID\" has to be set using `setMetadata(\"parentDivID\", \"whatever\")`\n* The metadata \"alpha\", if true, enable transparency. Default: false.\n* If the input Image2D has values not in [0, 255], you can remap/stretch using\n* setMetadata(\"min\", xxx ) default: 0\n* setMetadata(\"max\", xxx ) default: 255\n*\n* usage: examples/imageToCanvasFilter.html\n*\n* @example\n// create an image\n* var myImage = new pixpipe.Image2D({width: 100, height: 250, color: [255, 128, 64, 255]})\n*\n* // create a filter to write the image into a canvas\n* var imageToCanvasFilter = new pixpipe.CanvasImageWriter( \"myDiv\" );\n* imageToCanvasFilter.addInput( myImage );\n* imageToCanvasFilter.update();\n*/\nclass CanvasImageWriter extends Filter{\n\n /**\n * @param {String} parentDivID - dom id of the future canvas' parent.\n * (most likely the ID of a div)\n */\n constructor(){\n // call Filter constructor\n super();\n\n this._inputValidator[ 0 ] = Image2D.TYPE();\n this.setMetadata(\"alpha\", false);\n this.setMetadata(\"min\", 0);\n this.setMetadata(\"max\", 255);\n this.setMetadata(\"reset\", true);\n\n\n // so that we can flush the content\n this._canvas = null;\n this._ctx = null;\n }\n\n\n /**\n * [PRIVATE]\n * Initialize a new canvas object\n */\n _init(){\n\n var parentElem = document.getElementById( this.getMetadata(\"parentDivID\") );\n\n if(! parentElem ){\n return false;\n }\n\n // reset content\n if(this.getMetadata(\"reset\")){\n while (parentElem.firstChild) {\n parentElem.removeChild(parentElem.firstChild);\n }\n }\n\n // creating a canvas element\n this._canvas = document.createElement(\"canvas\");\n this._canvas.style = \"image-rendering: pixelated;\";\n this._ctx = this._canvas.getContext('2d');\n\n // not sure this is useful since the style is \"pixelated\"\n // (does not seem to well super well with Firefox)\n this._ctx.imageSmoothingEnabled = true;\n this._ctx.mozImageSmoothingEnabled = false;\n this._ctx.webkitImageSmoothingEnabled = false;\n this._ctx.ctxmsImageSmoothingEnabled = false;\n\n document.getElementById(this.getMetadata(\"parentDivID\")).appendChild(this._canvas);\n\n return true;\n }\n\n\n /**\n * Overwrite the generic (empty) method.\n */\n _run(){\n var that = this;\n\n // abort if invalid input\n if(!this.hasValidInput() )\n return;\n\n var image = this._input[0];\n var ncppSrc = image.getComponentsPerPixel();\n\n // only Image2d with 1 or 4 bands can be displayed\n if( ncppSrc != 1 && ncppSrc != 4){\n console.warn(\"Cannot write Image in canvas if contains other than 1 or 4 bands.\");\n return;\n }\n\n if(!this.getMetadata(\"parentDivID\")){\n console.error(\"The parent DIV ID to place the canvas element was not specified. Unable to display anything.\");\n return;\n }\n\n // build a new canvas\n if( !this._init() ){\n console.warn(\"The parent div was not specified or does not exist.\");\n return;\n }\n var useAlphaBand = this.getMetadata(\"alpha\");\n\n // resizing the canvas\n this._canvas.width = image.getWidth();\n this._canvas.height = image.getHeight();\n\n var canvasImageData = this._ctx.getImageData(0, 0, this._canvas.width, this._canvas.height);\n var canvasImageDataArray = canvasImageData.data;\n\n // getting Image object data\n var originalImageDataArray = image.getData();\n\n // input image is RGBA\n if(ncppSrc == 4){\n // copying the data into the canvas array (clamped uint8)\n originalImageDataArray.forEach( function(value, index){\n if(!useAlphaBand && index%4 == 3){\n canvasImageDataArray[index] = 255;\n }else{\n canvasImageDataArray[index] = that._stretchMinMax(value);\n }\n });\n\n // input image is mono chanel\n }else if(ncppSrc == 1){\n originalImageDataArray.forEach( function(value, index){\n var index1D = index*4;\n var stretchedValue = that._stretchMinMax(value);\n canvasImageDataArray[index1D] = stretchedValue;\n canvasImageDataArray[index1D + 1] = stretchedValue;\n canvasImageDataArray[index1D + 2] = stretchedValue;\n canvasImageDataArray[index1D + 3] = 255;\n });\n\n // input image is RGB\n }else if(ncppSrc == 3){\n console.warn(\"From RGB Image2D to RGBA canvas, not sure of this implementation.\");\n var destCounter = 0;\n originalImageDataArray.forEach( function(value, index){\n // adding the Alpha chanel\n if( index%4 == 3){\n canvasImageDataArray[destCounter] = 255;\n destCounter++;\n }\n\n // regular RGB\n canvasImageDataArray[destCounter] = that._stretchMinMax(value);\n destCounter ++;\n });\n }\n\n this._ctx.putImageData(canvasImageData, 0, 0);\n\n }\n\n\n /**\n * [PRIVATE]\n * remap the intensity between getMetadata(\"min\") and getMetadata(\"max\")\n * @param {Number} intensity - input pixel value\n * @return {Number} the adjusted number\n */\n _stretchMinMax( intensity ){\n var min = this.getMetadata(\"min\");\n var max = this.getMetadata(\"max\");\n\n if(min == 0 && max == 255){\n return intensity;\n }\n\n return ( (intensity - min) / (max - min) ) * 255;\n }\n\n}\n\nexport { CanvasImageWriter }\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\nimport { Image2D } from '../core/Image2D.js';\nimport { Filter } from '../core/Filter.js';\n\n\n/**\n* An instance of UrlImageReader takes an image URL as input and\n* returns an Image2D as output. Use the regular `addInput()` and `getOuput()`\n* with no argument for that.\n* Reading a file from URL takes an AJAX request, which is asynchronous. For this\n* reason, what happens next, once the Image2D is created must take place in the\n* callback defined by the event .on(\"ready\", function(){ ... }).\n* Usage: examples/urlToImage2D.html\n*\n* UrlImageReader can also load multiple images and call the \"ready\" event\n* only when all of them are loaded.\n* Usage: examples/urlToImage2D_multiple.html\n*\n*\n* @example\n* var url2ImgFilter = new pixpipe.UrlImageReader( ... );\n* url2ImgFilter.addInput( \"images/sd.jpg\" );\n* url2ImgFilter.update();\n*/\nclass UrlImageReader extends Filter {\n\n /**\n * @param {function} callback - function to call when the image is loaded.\n * The _this_ object will be in argument of this callback.\n */\n constructor( callback ){\n super();\n this._loadedCounter = 0;\n this._addOutput( Image2D, 0 );\n }\n\n\n /**\n * Overload the function\n */\n _run(){\n var that = this;\n var inputCategories = this.getInputCategories();\n\n inputCategories.forEach( function(category){\n that._addOutput( Image2D, category );\n that._loadImage( category );\n })\n }\n\n\n /**\n * [PRIVATE]\n * Loading task for a single category (aka file, in this case)\n */\n _loadImage( inputCategory ){\n var that = this;\n\n var img = new Image();\n img.src = this._getInput(inputCategory);\n\n img.onload = function() {\n var tmpCanvas = document.createElement(\"canvas\");\n tmpCanvas.width = img.width;\n tmpCanvas.height = img.height;\n var canvasContext = tmpCanvas.getContext('2d');\n canvasContext.drawImage(img, 0, 0);\n\n try{\n var imageData = canvasContext.getImageData(0, 0, tmpCanvas.width, tmpCanvas.height);\n var dataArray = imageData.data;\n var img2D = that.getOutput( inputCategory );\n img2D.setData( dataArray, img.width, img.height);\n\n that._loadedCounter ++;\n\n // call the loaded callback only when all images are loaded\n if(that._loadedCounter == that.getNumberOfInputs() && \"ready\" in that._events){\n that._events.ready( that )\n }\n\n }catch(e){\n console.error(e);\n }\n\n };\n\n }\n\n\n} /* END of class UrlImageReader */\n\nexport { UrlImageReader }\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\nimport { Image2D } from '../core/Image2D.js';\nimport { Filter } from '../core/Filter.js';\n\n/**\n* An instance of FileImageReader takes a HTML5 File object as input and\n* returns an Image2D as output. The point is mainly to use it with a file dialog.\n* Use the regular `addInput()` and `getOuput()` with no argument for that.\n* Reading a local file is an asynchronous process. For this\n* reason, what happens next, once the Image2D is created must take place in the\n* callback defined by the event .on(\"ready\", function(){ ... }).\n*\n*\n*\n* Usage: examples/fileToImage2D.html\n*\n* @example\n* var file2ImgFilter = new pixpipe.file2ImgFilter( ... );\n* file2ImgFilter.addInput( fileInput.files[0] );\n* file2ImgFilter.update();\n*/\nclass FileImageReader extends Filter {\n\n constructor(){\n super();\n\n this._allowedTypes = /image.*/;\n this._addOutput( Image2D, 0 );\n }\n\n\n /**\n * Overload the default method because HTML5 File is not a Pixpipe type\n */\n hasValidInput(){\n var valid = false;\n var file = this._getInput();\n\n if (file && file.type.match( this._allowedTypes )) {\n this._isInputValid = true;\n }else{\n console.error(\"The file must be an image (jpg/png). The type \" + file.type + \" is not compatible with FileImageReader.\");\n }\n\n return valid;\n }\n\n\n /**\n * Run the reading\n */\n _run(){\n\n if(! this.hasValidInput)\n return\n\n var that = this;\n var file = this._getInput();\n\t\tvar reader = new FileReader();\n\n\t\treader.onload = function(e) {\n\n\t\t\tvar img = new Image();\n\t\t\timg.src = reader.result;\n var tmpCanvas = document.createElement(\"canvas\");\n tmpCanvas.width = img.width;\n tmpCanvas.height = img.height;\n var canvasContext = tmpCanvas.getContext('2d');\n canvasContext.drawImage(img, 0, 0);\n var imageData = canvasContext.getImageData(0, 0, tmpCanvas.width, tmpCanvas.height);\n var dataArray = imageData.data;\n\n var img2D = that.getOutput();\n img2D.setData( dataArray, img.width, img.height);\n\n if(\"ready\" in that._events){\n that._events.ready( that )\n }\n\t\t}\n\n\t\treader.readAsDataURL( file );\n }\n\n\n\n} /* END of class UrlImageReader */\n\nexport { FileImageReader }\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\nimport { Filter } from '../core/Filter.js';\n\n\n/**\n* Takes the File inputs from a HTML input of type \"file\" (aka. a file dialog), and reads it as a ArrayBuffer.\n* Every File given in input should be added separately using `addInput( file[i], 'uniqueID' )`.\n* The event \"ready\" must be set up ( using .on(\"ready\", function(){}) ) and will\n* be triggered when all the files given in input are translated into ArrayBuffers.\n* Once ready, all the outputs are accecible using the same uniqueID with the\n* method `getOutput(\"uniqueID\")`\n*\n* usage: examples/fileToArrayBuffer.html\n*/\nclass FileToArrayBufferReader extends Filter {\n\n constructor(){\n super();\n this._outputCounter = 0;\n }\n\n\n _run(){\n var that = this;\n this._outputCounter = 0;\n var inputCategories = this.getInputCategories();\n\n inputCategories.forEach( function(category){\n that._loadFile( category );\n })\n }\n\n\n /**\n * [PRIVATE]\n * Perform the loading for the input of the given category\n * @param {String} category - input category\n */\n _loadFile( category ){\n var that = this;\n var reader = new FileReader();\n\n reader.onloadend = function(event) {\n var result = event.target.result;\n that._output[ category ] = result;\n that._fileLoadCount();\n }\n\n reader.onerror = function() {\n this._output[ category ] = null;\n that._fileLoadCount();\n console.warn( \"error reading file from category \" + category );\n //throw new Error(error_message);\n };\n\n reader.readAsArrayBuffer( this._getInput(category) );\n }\n\n\n /**\n * [PRIVATE]\n * Launch the \"ready\" event if all files are loaded\n */\n _fileLoadCount(){\n var that = this;\n this._outputCounter ++;\n\n if( this._outputCounter == this.getNumberOfInputs() ){\n that._events.ready( this );\n }\n }\n\n} /* END of class FileToArrayBufferReader */\n\n\nexport { FileToArrayBufferReader }\n","'use strict';\n\n\nvar TYPED_OK = (typeof Uint8Array !== 'undefined') &&\n (typeof Uint16Array !== 'undefined') &&\n (typeof Int32Array !== 'undefined');\n\n\nexports.assign = function (obj /*from1, from2, from3, ...*/) {\n var sources = Array.prototype.slice.call(arguments, 1);\n while (sources.length) {\n var source = sources.shift();\n if (!source) { continue; }\n\n if (typeof source !== 'object') {\n throw new TypeError(source + 'must be non-object');\n }\n\n for (var p in source) {\n if (source.hasOwnProperty(p)) {\n obj[p] = source[p];\n }\n }\n }\n\n return obj;\n};\n\n\n// reduce buffer size, avoiding mem copy\nexports.shrinkBuf = function (buf, size) {\n if (buf.length === size) { return buf; }\n if (buf.subarray) { return buf.subarray(0, size); }\n buf.length = size;\n return buf;\n};\n\n\nvar fnTyped = {\n arraySet: function (dest, src, src_offs, len, dest_offs) {\n if (src.subarray && dest.subarray) {\n dest.set(src.subarray(src_offs, src_offs + len), dest_offs);\n return;\n }\n // Fallback to ordinary array\n for (var i = 0; i < len; i++) {\n dest[dest_offs + i] = src[src_offs + i];\n }\n },\n // Join array of chunks to single array.\n flattenChunks: function (chunks) {\n var i, l, len, pos, chunk, result;\n\n // calculate data length\n len = 0;\n for (i = 0, l = chunks.length; i < l; i++) {\n len += chunks[i].length;\n }\n\n // join chunks\n result = new Uint8Array(len);\n pos = 0;\n for (i = 0, l = chunks.length; i < l; i++) {\n chunk = chunks[i];\n result.set(chunk, pos);\n pos += chunk.length;\n }\n\n return result;\n }\n};\n\nvar fnUntyped = {\n arraySet: function (dest, src, src_offs, len, dest_offs) {\n for (var i = 0; i < len; i++) {\n dest[dest_offs + i] = src[src_offs + i];\n }\n },\n // Join array of chunks to single array.\n flattenChunks: function (chunks) {\n return [].concat.apply([], chunks);\n }\n};\n\n\n// Enable/Disable typed arrays use, for testing\n//\nexports.setTyped = function (on) {\n if (on) {\n exports.Buf8 = Uint8Array;\n exports.Buf16 = Uint16Array;\n exports.Buf32 = Int32Array;\n exports.assign(exports, fnTyped);\n } else {\n exports.Buf8 = Array;\n exports.Buf16 = Array;\n exports.Buf32 = Array;\n exports.assign(exports, fnUntyped);\n }\n};\n\nexports.setTyped(TYPED_OK);\n","'use strict';\n\n\nvar utils = require('../utils/common');\n\n/* Public constants ==========================================================*/\n/* ===========================================================================*/\n\n\n//var Z_FILTERED = 1;\n//var Z_HUFFMAN_ONLY = 2;\n//var Z_RLE = 3;\nvar Z_FIXED = 4;\n//var Z_DEFAULT_STRATEGY = 0;\n\n/* Possible values of the data_type field (though see inflate()) */\nvar Z_BINARY = 0;\nvar Z_TEXT = 1;\n//var Z_ASCII = 1; // = Z_TEXT\nvar Z_UNKNOWN = 2;\n\n/*============================================================================*/\n\n\nfunction zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }\n\n// From zutil.h\n\nvar STORED_BLOCK = 0;\nvar STATIC_TREES = 1;\nvar DYN_TREES = 2;\n/* The three kinds of block type */\n\nvar MIN_MATCH = 3;\nvar MAX_MATCH = 258;\n/* The minimum and maximum match lengths */\n\n// From deflate.h\n/* ===========================================================================\n * Internal compression state.\n */\n\nvar LENGTH_CODES = 29;\n/* number of length codes, not counting the special END_BLOCK code */\n\nvar LITERALS = 256;\n/* number of literal bytes 0..255 */\n\nvar L_CODES = LITERALS + 1 + LENGTH_CODES;\n/* number of Literal or Length codes, including the END_BLOCK code */\n\nvar D_CODES = 30;\n/* number of distance codes */\n\nvar BL_CODES = 19;\n/* number of codes used to transfer the bit lengths */\n\nvar HEAP_SIZE = 2 * L_CODES + 1;\n/* maximum heap size */\n\nvar MAX_BITS = 15;\n/* All codes must not exceed MAX_BITS bits */\n\nvar Buf_size = 16;\n/* size of bit buffer in bi_buf */\n\n\n/* ===========================================================================\n * Constants\n */\n\nvar MAX_BL_BITS = 7;\n/* Bit length codes must not exceed MAX_BL_BITS bits */\n\nvar END_BLOCK = 256;\n/* end of block literal code */\n\nvar REP_3_6 = 16;\n/* repeat previous bit length 3-6 times (2 bits of repeat count) */\n\nvar REPZ_3_10 = 17;\n/* repeat a zero length 3-10 times (3 bits of repeat count) */\n\nvar REPZ_11_138 = 18;\n/* repeat a zero length 11-138 times (7 bits of repeat count) */\n\n/* eslint-disable comma-spacing,array-bracket-spacing */\nvar extra_lbits = /* extra bits for each length code */\n [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0];\n\nvar extra_dbits = /* extra bits for each distance code */\n [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13];\n\nvar extra_blbits = /* extra bits for each bit length code */\n [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7];\n\nvar bl_order =\n [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15];\n/* eslint-enable comma-spacing,array-bracket-spacing */\n\n/* The lengths of the bit length codes are sent in order of decreasing\n * probability, to avoid transmitting the lengths for unused bit length codes.\n */\n\n/* ===========================================================================\n * Local data. These are initialized only once.\n */\n\n// We pre-fill arrays with 0 to avoid uninitialized gaps\n\nvar DIST_CODE_LEN = 512; /* see definition of array dist_code below */\n\n// !!!! Use flat array insdead of structure, Freq = i*2, Len = i*2+1\nvar static_ltree = new Array((L_CODES + 2) * 2);\nzero(static_ltree);\n/* The static literal tree. Since the bit lengths are imposed, there is no\n * need for the L_CODES extra codes used during heap construction. However\n * The codes 286 and 287 are needed to build a canonical tree (see _tr_init\n * below).\n */\n\nvar static_dtree = new Array(D_CODES * 2);\nzero(static_dtree);\n/* The static distance tree. (Actually a trivial tree since all codes use\n * 5 bits.)\n */\n\nvar _dist_code = new Array(DIST_CODE_LEN);\nzero(_dist_code);\n/* Distance codes. The first 256 values correspond to the distances\n * 3 .. 258, the last 256 values correspond to the top 8 bits of\n * the 15 bit distances.\n */\n\nvar _length_code = new Array(MAX_MATCH - MIN_MATCH + 1);\nzero(_length_code);\n/* length code for each normalized match length (0 == MIN_MATCH) */\n\nvar base_length = new Array(LENGTH_CODES);\nzero(base_length);\n/* First normalized length for each code (0 = MIN_MATCH) */\n\nvar base_dist = new Array(D_CODES);\nzero(base_dist);\n/* First normalized distance for each code (0 = distance of 1) */\n\n\nfunction StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {\n\n this.static_tree = static_tree; /* static tree or NULL */\n this.extra_bits = extra_bits; /* extra bits for each code or NULL */\n this.extra_base = extra_base; /* base index for extra_bits */\n this.elems = elems; /* max number of elements in the tree */\n this.max_length = max_length; /* max bit length for the codes */\n\n // show if `static_tree` has data or dummy - needed for monomorphic objects\n this.has_stree = static_tree && static_tree.length;\n}\n\n\nvar static_l_desc;\nvar static_d_desc;\nvar static_bl_desc;\n\n\nfunction TreeDesc(dyn_tree, stat_desc) {\n this.dyn_tree = dyn_tree; /* the dynamic tree */\n this.max_code = 0; /* largest code with non zero frequency */\n this.stat_desc = stat_desc; /* the corresponding static tree */\n}\n\n\n\nfunction d_code(dist) {\n return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];\n}\n\n\n/* ===========================================================================\n * Output a short LSB first on the stream.\n * IN assertion: there is enough room in pendingBuf.\n */\nfunction put_short(s, w) {\n// put_byte(s, (uch)((w) & 0xff));\n// put_byte(s, (uch)((ush)(w) >> 8));\n s.pending_buf[s.pending++] = (w) & 0xff;\n s.pending_buf[s.pending++] = (w >>> 8) & 0xff;\n}\n\n\n/* ===========================================================================\n * Send a value on a given number of bits.\n * IN assertion: length <= 16 and value fits in length bits.\n */\nfunction send_bits(s, value, length) {\n if (s.bi_valid > (Buf_size - length)) {\n s.bi_buf |= (value << s.bi_valid) & 0xffff;\n put_short(s, s.bi_buf);\n s.bi_buf = value >> (Buf_size - s.bi_valid);\n s.bi_valid += length - Buf_size;\n } else {\n s.bi_buf |= (value << s.bi_valid) & 0xffff;\n s.bi_valid += length;\n }\n}\n\n\nfunction send_code(s, c, tree) {\n send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);\n}\n\n\n/* ===========================================================================\n * Reverse the first len bits of a code, using straightforward code (a faster\n * method would use a table)\n * IN assertion: 1 <= len <= 15\n */\nfunction bi_reverse(code, len) {\n var res = 0;\n do {\n res |= code & 1;\n code >>>= 1;\n res <<= 1;\n } while (--len > 0);\n return res >>> 1;\n}\n\n\n/* ===========================================================================\n * Flush the bit buffer, keeping at most 7 bits in it.\n */\nfunction bi_flush(s) {\n if (s.bi_valid === 16) {\n put_short(s, s.bi_buf);\n s.bi_buf = 0;\n s.bi_valid = 0;\n\n } else if (s.bi_valid >= 8) {\n s.pending_buf[s.pending++] = s.bi_buf & 0xff;\n s.bi_buf >>= 8;\n s.bi_valid -= 8;\n }\n}\n\n\n/* ===========================================================================\n * Compute the optimal bit lengths for a tree and update the total bit length\n * for the current block.\n * IN assertion: the fields freq and dad are set, heap[heap_max] and\n * above are the tree nodes sorted by increasing frequency.\n * OUT assertions: the field len is set to the optimal bit length, the\n * array bl_count contains the frequencies for each bit length.\n * The length opt_len is updated; static_len is also updated if stree is\n * not null.\n */\nfunction gen_bitlen(s, desc)\n// deflate_state *s;\n// tree_desc *desc; /* the tree descriptor */\n{\n var tree = desc.dyn_tree;\n var max_code = desc.max_code;\n var stree = desc.stat_desc.static_tree;\n var has_stree = desc.stat_desc.has_stree;\n var extra = desc.stat_desc.extra_bits;\n var base = desc.stat_desc.extra_base;\n var max_length = desc.stat_desc.max_length;\n var h; /* heap index */\n var n, m; /* iterate over the tree elements */\n var bits; /* bit length */\n var xbits; /* extra bits */\n var f; /* frequency */\n var overflow = 0; /* number of elements with bit length too large */\n\n for (bits = 0; bits <= MAX_BITS; bits++) {\n s.bl_count[bits] = 0;\n }\n\n /* In a first pass, compute the optimal bit lengths (which may\n * overflow in the case of the bit length tree).\n */\n tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */\n\n for (h = s.heap_max + 1; h < HEAP_SIZE; h++) {\n n = s.heap[h];\n bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;\n if (bits > max_length) {\n bits = max_length;\n overflow++;\n }\n tree[n * 2 + 1]/*.Len*/ = bits;\n /* We overwrite tree[n].Dad which is no longer needed */\n\n if (n > max_code) { continue; } /* not a leaf node */\n\n s.bl_count[bits]++;\n xbits = 0;\n if (n >= base) {\n xbits = extra[n - base];\n }\n f = tree[n * 2]/*.Freq*/;\n s.opt_len += f * (bits + xbits);\n if (has_stree) {\n s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);\n }\n }\n if (overflow === 0) { return; }\n\n // Trace((stderr,\"\\nbit length overflow\\n\"));\n /* This happens for example on obj2 and pic of the Calgary corpus */\n\n /* Find the first bit length which could increase: */\n do {\n bits = max_length - 1;\n while (s.bl_count[bits] === 0) { bits--; }\n s.bl_count[bits]--; /* move one leaf down the tree */\n s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */\n s.bl_count[max_length]--;\n /* The brother of the overflow item also moves one step up,\n * but this does not affect bl_count[max_length]\n */\n overflow -= 2;\n } while (overflow > 0);\n\n /* Now recompute all bit lengths, scanning in increasing frequency.\n * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all\n * lengths instead of fixing only the wrong ones. This idea is taken\n * from 'ar' written by Haruhiko Okumura.)\n */\n for (bits = max_length; bits !== 0; bits--) {\n n = s.bl_count[bits];\n while (n !== 0) {\n m = s.heap[--h];\n if (m > max_code) { continue; }\n if (tree[m * 2 + 1]/*.Len*/ !== bits) {\n // Trace((stderr,\"code %d bits %d->%d\\n\", m, tree[m].Len, bits));\n s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;\n tree[m * 2 + 1]/*.Len*/ = bits;\n }\n n--;\n }\n }\n}\n\n\n/* ===========================================================================\n * Generate the codes for a given tree and bit counts (which need not be\n * optimal).\n * IN assertion: the array bl_count contains the bit length statistics for\n * the given tree and the field len is set for all tree elements.\n * OUT assertion: the field code is set for all tree elements of non\n * zero code length.\n */\nfunction gen_codes(tree, max_code, bl_count)\n// ct_data *tree; /* the tree to decorate */\n// int max_code; /* largest code with non zero frequency */\n// ushf *bl_count; /* number of codes at each bit length */\n{\n var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */\n var code = 0; /* running code value */\n var bits; /* bit index */\n var n; /* code index */\n\n /* The distribution counts are first used to generate the code values\n * without bit reversal.\n */\n for (bits = 1; bits <= MAX_BITS; bits++) {\n next_code[bits] = code = (code + bl_count[bits - 1]) << 1;\n }\n /* Check that the bit counts in bl_count are consistent. The last code\n * must be all ones.\n */\n //Assert (code + bl_count[MAX_BITS]-1 == (1< length code (0..28) */\n length = 0;\n for (code = 0; code < LENGTH_CODES - 1; code++) {\n base_length[code] = length;\n for (n = 0; n < (1 << extra_lbits[code]); n++) {\n _length_code[length++] = code;\n }\n }\n //Assert (length == 256, \"tr_static_init: length != 256\");\n /* Note that the length 255 (match length 258) can be represented\n * in two different ways: code 284 + 5 bits or code 285, so we\n * overwrite length_code[255] to use the best encoding:\n */\n _length_code[length - 1] = code;\n\n /* Initialize the mapping dist (0..32K) -> dist code (0..29) */\n dist = 0;\n for (code = 0; code < 16; code++) {\n base_dist[code] = dist;\n for (n = 0; n < (1 << extra_dbits[code]); n++) {\n _dist_code[dist++] = code;\n }\n }\n //Assert (dist == 256, \"tr_static_init: dist != 256\");\n dist >>= 7; /* from now on, all distances are divided by 128 */\n for (; code < D_CODES; code++) {\n base_dist[code] = dist << 7;\n for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {\n _dist_code[256 + dist++] = code;\n }\n }\n //Assert (dist == 256, \"tr_static_init: 256+dist != 512\");\n\n /* Construct the codes of the static literal tree */\n for (bits = 0; bits <= MAX_BITS; bits++) {\n bl_count[bits] = 0;\n }\n\n n = 0;\n while (n <= 143) {\n static_ltree[n * 2 + 1]/*.Len*/ = 8;\n n++;\n bl_count[8]++;\n }\n while (n <= 255) {\n static_ltree[n * 2 + 1]/*.Len*/ = 9;\n n++;\n bl_count[9]++;\n }\n while (n <= 279) {\n static_ltree[n * 2 + 1]/*.Len*/ = 7;\n n++;\n bl_count[7]++;\n }\n while (n <= 287) {\n static_ltree[n * 2 + 1]/*.Len*/ = 8;\n n++;\n bl_count[8]++;\n }\n /* Codes 286 and 287 do not exist, but we must include them in the\n * tree construction to get a canonical Huffman tree (longest code\n * all ones)\n */\n gen_codes(static_ltree, L_CODES + 1, bl_count);\n\n /* The static distance tree is trivial: */\n for (n = 0; n < D_CODES; n++) {\n static_dtree[n * 2 + 1]/*.Len*/ = 5;\n static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);\n }\n\n // Now data ready and we can init static trees\n static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);\n static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS);\n static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS);\n\n //static_init_done = true;\n}\n\n\n/* ===========================================================================\n * Initialize a new block.\n */\nfunction init_block(s) {\n var n; /* iterates over tree elements */\n\n /* Initialize the trees. */\n for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }\n for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }\n for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }\n\n s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;\n s.opt_len = s.static_len = 0;\n s.last_lit = s.matches = 0;\n}\n\n\n/* ===========================================================================\n * Flush the bit buffer and align the output on a byte boundary\n */\nfunction bi_windup(s)\n{\n if (s.bi_valid > 8) {\n put_short(s, s.bi_buf);\n } else if (s.bi_valid > 0) {\n //put_byte(s, (Byte)s->bi_buf);\n s.pending_buf[s.pending++] = s.bi_buf;\n }\n s.bi_buf = 0;\n s.bi_valid = 0;\n}\n\n/* ===========================================================================\n * Copy a stored block, storing first the length and its\n * one's complement if requested.\n */\nfunction copy_block(s, buf, len, header)\n//DeflateState *s;\n//charf *buf; /* the input data */\n//unsigned len; /* its length */\n//int header; /* true if block header must be written */\n{\n bi_windup(s); /* align on byte boundary */\n\n if (header) {\n put_short(s, len);\n put_short(s, ~len);\n }\n// while (len--) {\n// put_byte(s, *buf++);\n// }\n utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);\n s.pending += len;\n}\n\n/* ===========================================================================\n * Compares to subtrees, using the tree depth as tie breaker when\n * the subtrees have equal frequency. This minimizes the worst case length.\n */\nfunction smaller(tree, n, m, depth) {\n var _n2 = n * 2;\n var _m2 = m * 2;\n return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||\n (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));\n}\n\n/* ===========================================================================\n * Restore the heap property by moving down the tree starting at node k,\n * exchanging a node with the smallest of its two sons if necessary, stopping\n * when the heap property is re-established (each father smaller than its\n * two sons).\n */\nfunction pqdownheap(s, tree, k)\n// deflate_state *s;\n// ct_data *tree; /* the tree to restore */\n// int k; /* node to move down */\n{\n var v = s.heap[k];\n var j = k << 1; /* left son of k */\n while (j <= s.heap_len) {\n /* Set j to the smallest of the two sons: */\n if (j < s.heap_len &&\n smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {\n j++;\n }\n /* Exit if v is smaller than both sons */\n if (smaller(tree, v, s.heap[j], s.depth)) { break; }\n\n /* Exchange v with the smallest son */\n s.heap[k] = s.heap[j];\n k = j;\n\n /* And continue down the tree, setting j to the left son of k */\n j <<= 1;\n }\n s.heap[k] = v;\n}\n\n\n// inlined manually\n// var SMALLEST = 1;\n\n/* ===========================================================================\n * Send the block data compressed using the given Huffman trees\n */\nfunction compress_block(s, ltree, dtree)\n// deflate_state *s;\n// const ct_data *ltree; /* literal tree */\n// const ct_data *dtree; /* distance tree */\n{\n var dist; /* distance of matched string */\n var lc; /* match length or unmatched char (if dist == 0) */\n var lx = 0; /* running index in l_buf */\n var code; /* the code to send */\n var extra; /* number of extra bits to send */\n\n if (s.last_lit !== 0) {\n do {\n dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);\n lc = s.pending_buf[s.l_buf + lx];\n lx++;\n\n if (dist === 0) {\n send_code(s, lc, ltree); /* send a literal byte */\n //Tracecv(isgraph(lc), (stderr,\" '%c' \", lc));\n } else {\n /* Here, lc is the match length - MIN_MATCH */\n code = _length_code[lc];\n send_code(s, code + LITERALS + 1, ltree); /* send the length code */\n extra = extra_lbits[code];\n if (extra !== 0) {\n lc -= base_length[code];\n send_bits(s, lc, extra); /* send the extra length bits */\n }\n dist--; /* dist is now the match distance - 1 */\n code = d_code(dist);\n //Assert (code < D_CODES, \"bad d_code\");\n\n send_code(s, code, dtree); /* send the distance code */\n extra = extra_dbits[code];\n if (extra !== 0) {\n dist -= base_dist[code];\n send_bits(s, dist, extra); /* send the extra distance bits */\n }\n } /* literal or match pair ? */\n\n /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */\n //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,\n // \"pendingBuf overflow\");\n\n } while (lx < s.last_lit);\n }\n\n send_code(s, END_BLOCK, ltree);\n}\n\n\n/* ===========================================================================\n * Construct one Huffman tree and assigns the code bit strings and lengths.\n * Update the total bit length for the current block.\n * IN assertion: the field freq is set for all tree elements.\n * OUT assertions: the fields len and code are set to the optimal bit length\n * and corresponding code. The length opt_len is updated; static_len is\n * also updated if stree is not null. The field max_code is set.\n */\nfunction build_tree(s, desc)\n// deflate_state *s;\n// tree_desc *desc; /* the tree descriptor */\n{\n var tree = desc.dyn_tree;\n var stree = desc.stat_desc.static_tree;\n var has_stree = desc.stat_desc.has_stree;\n var elems = desc.stat_desc.elems;\n var n, m; /* iterate over heap elements */\n var max_code = -1; /* largest code with non zero frequency */\n var node; /* new node being created */\n\n /* Construct the initial heap, with least frequent element in\n * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].\n * heap[0] is not used.\n */\n s.heap_len = 0;\n s.heap_max = HEAP_SIZE;\n\n for (n = 0; n < elems; n++) {\n if (tree[n * 2]/*.Freq*/ !== 0) {\n s.heap[++s.heap_len] = max_code = n;\n s.depth[n] = 0;\n\n } else {\n tree[n * 2 + 1]/*.Len*/ = 0;\n }\n }\n\n /* The pkzip format requires that at least one distance code exists,\n * and that at least one bit should be sent even if there is only one\n * possible code. So to avoid special checks later on we force at least\n * two codes of non zero frequency.\n */\n while (s.heap_len < 2) {\n node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);\n tree[node * 2]/*.Freq*/ = 1;\n s.depth[node] = 0;\n s.opt_len--;\n\n if (has_stree) {\n s.static_len -= stree[node * 2 + 1]/*.Len*/;\n }\n /* node is 0 or 1 so it does not have extra bits */\n }\n desc.max_code = max_code;\n\n /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,\n * establish sub-heaps of increasing lengths:\n */\n for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }\n\n /* Construct the Huffman tree by repeatedly combining the least two\n * frequent nodes.\n */\n node = elems; /* next internal node of the tree */\n do {\n //pqremove(s, tree, n); /* n = node of least frequency */\n /*** pqremove ***/\n n = s.heap[1/*SMALLEST*/];\n s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];\n pqdownheap(s, tree, 1/*SMALLEST*/);\n /***/\n\n m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */\n\n s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */\n s.heap[--s.heap_max] = m;\n\n /* Create a new node father of n and m */\n tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;\n s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;\n tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;\n\n /* and insert the new node in the heap */\n s.heap[1/*SMALLEST*/] = node++;\n pqdownheap(s, tree, 1/*SMALLEST*/);\n\n } while (s.heap_len >= 2);\n\n s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];\n\n /* At this point, the fields freq and dad are set. We can now\n * generate the bit lengths.\n */\n gen_bitlen(s, desc);\n\n /* The field len is now set, we can generate the bit codes */\n gen_codes(tree, max_code, s.bl_count);\n}\n\n\n/* ===========================================================================\n * Scan a literal or distance tree to determine the frequencies of the codes\n * in the bit length tree.\n */\nfunction scan_tree(s, tree, max_code)\n// deflate_state *s;\n// ct_data *tree; /* the tree to be scanned */\n// int max_code; /* and its largest code of non zero frequency */\n{\n var n; /* iterates over all tree elements */\n var prevlen = -1; /* last emitted length */\n var curlen; /* length of current code */\n\n var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */\n\n var count = 0; /* repeat count of the current code */\n var max_count = 7; /* max repeat count */\n var min_count = 4; /* min repeat count */\n\n if (nextlen === 0) {\n max_count = 138;\n min_count = 3;\n }\n tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */\n\n for (n = 0; n <= max_code; n++) {\n curlen = nextlen;\n nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;\n\n if (++count < max_count && curlen === nextlen) {\n continue;\n\n } else if (count < min_count) {\n s.bl_tree[curlen * 2]/*.Freq*/ += count;\n\n } else if (curlen !== 0) {\n\n if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }\n s.bl_tree[REP_3_6 * 2]/*.Freq*/++;\n\n } else if (count <= 10) {\n s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;\n\n } else {\n s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;\n }\n\n count = 0;\n prevlen = curlen;\n\n if (nextlen === 0) {\n max_count = 138;\n min_count = 3;\n\n } else if (curlen === nextlen) {\n max_count = 6;\n min_count = 3;\n\n } else {\n max_count = 7;\n min_count = 4;\n }\n }\n}\n\n\n/* ===========================================================================\n * Send a literal or distance tree in compressed form, using the codes in\n * bl_tree.\n */\nfunction send_tree(s, tree, max_code)\n// deflate_state *s;\n// ct_data *tree; /* the tree to be scanned */\n// int max_code; /* and its largest code of non zero frequency */\n{\n var n; /* iterates over all tree elements */\n var prevlen = -1; /* last emitted length */\n var curlen; /* length of current code */\n\n var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */\n\n var count = 0; /* repeat count of the current code */\n var max_count = 7; /* max repeat count */\n var min_count = 4; /* min repeat count */\n\n /* tree[max_code+1].Len = -1; */ /* guard already set */\n if (nextlen === 0) {\n max_count = 138;\n min_count = 3;\n }\n\n for (n = 0; n <= max_code; n++) {\n curlen = nextlen;\n nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;\n\n if (++count < max_count && curlen === nextlen) {\n continue;\n\n } else if (count < min_count) {\n do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);\n\n } else if (curlen !== 0) {\n if (curlen !== prevlen) {\n send_code(s, curlen, s.bl_tree);\n count--;\n }\n //Assert(count >= 3 && count <= 6, \" 3_6?\");\n send_code(s, REP_3_6, s.bl_tree);\n send_bits(s, count - 3, 2);\n\n } else if (count <= 10) {\n send_code(s, REPZ_3_10, s.bl_tree);\n send_bits(s, count - 3, 3);\n\n } else {\n send_code(s, REPZ_11_138, s.bl_tree);\n send_bits(s, count - 11, 7);\n }\n\n count = 0;\n prevlen = curlen;\n if (nextlen === 0) {\n max_count = 138;\n min_count = 3;\n\n } else if (curlen === nextlen) {\n max_count = 6;\n min_count = 3;\n\n } else {\n max_count = 7;\n min_count = 4;\n }\n }\n}\n\n\n/* ===========================================================================\n * Construct the Huffman tree for the bit lengths and return the index in\n * bl_order of the last bit length code to send.\n */\nfunction build_bl_tree(s) {\n var max_blindex; /* index of last bit length code of non zero freq */\n\n /* Determine the bit length frequencies for literal and distance trees */\n scan_tree(s, s.dyn_ltree, s.l_desc.max_code);\n scan_tree(s, s.dyn_dtree, s.d_desc.max_code);\n\n /* Build the bit length tree: */\n build_tree(s, s.bl_desc);\n /* opt_len now includes the length of the tree representations, except\n * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.\n */\n\n /* Determine the number of bit length codes to send. The pkzip format\n * requires that at least 4 bit length codes be sent. (appnote.txt says\n * 3 but the actual value used is 4.)\n */\n for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {\n if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {\n break;\n }\n }\n /* Update opt_len to include the bit length tree and counts */\n s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;\n //Tracev((stderr, \"\\ndyn trees: dyn %ld, stat %ld\",\n // s->opt_len, s->static_len));\n\n return max_blindex;\n}\n\n\n/* ===========================================================================\n * Send the header for a block using dynamic Huffman trees: the counts, the\n * lengths of the bit length codes, the literal tree and the distance tree.\n * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.\n */\nfunction send_all_trees(s, lcodes, dcodes, blcodes)\n// deflate_state *s;\n// int lcodes, dcodes, blcodes; /* number of codes for each tree */\n{\n var rank; /* index in bl_order */\n\n //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, \"not enough codes\");\n //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,\n // \"too many codes\");\n //Tracev((stderr, \"\\nbl counts: \"));\n send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */\n send_bits(s, dcodes - 1, 5);\n send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */\n for (rank = 0; rank < blcodes; rank++) {\n //Tracev((stderr, \"\\nbl code %2d \", bl_order[rank]));\n send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);\n }\n //Tracev((stderr, \"\\nbl tree: sent %ld\", s->bits_sent));\n\n send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */\n //Tracev((stderr, \"\\nlit tree: sent %ld\", s->bits_sent));\n\n send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */\n //Tracev((stderr, \"\\ndist tree: sent %ld\", s->bits_sent));\n}\n\n\n/* ===========================================================================\n * Check if the data type is TEXT or BINARY, using the following algorithm:\n * - TEXT if the two conditions below are satisfied:\n * a) There are no non-portable control characters belonging to the\n * \"black list\" (0..6, 14..25, 28..31).\n * b) There is at least one printable character belonging to the\n * \"white list\" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).\n * - BINARY otherwise.\n * - The following partially-portable control characters form a\n * \"gray list\" that is ignored in this detection algorithm:\n * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).\n * IN assertion: the fields Freq of dyn_ltree are set.\n */\nfunction detect_data_type(s) {\n /* black_mask is the bit mask of black-listed bytes\n * set bits 0..6, 14..25, and 28..31\n * 0xf3ffc07f = binary 11110011111111111100000001111111\n */\n var black_mask = 0xf3ffc07f;\n var n;\n\n /* Check for non-textual (\"black-listed\") bytes. */\n for (n = 0; n <= 31; n++, black_mask >>>= 1) {\n if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {\n return Z_BINARY;\n }\n }\n\n /* Check for textual (\"white-listed\") bytes. */\n if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||\n s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {\n return Z_TEXT;\n }\n for (n = 32; n < LITERALS; n++) {\n if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {\n return Z_TEXT;\n }\n }\n\n /* There are no \"black-listed\" or \"white-listed\" bytes:\n * this stream either is empty or has tolerated (\"gray-listed\") bytes only.\n */\n return Z_BINARY;\n}\n\n\nvar static_init_done = false;\n\n/* ===========================================================================\n * Initialize the tree data structures for a new zlib stream.\n */\nfunction _tr_init(s)\n{\n\n if (!static_init_done) {\n tr_static_init();\n static_init_done = true;\n }\n\n s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc);\n s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc);\n s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);\n\n s.bi_buf = 0;\n s.bi_valid = 0;\n\n /* Initialize the first block of the first file: */\n init_block(s);\n}\n\n\n/* ===========================================================================\n * Send a stored block\n */\nfunction _tr_stored_block(s, buf, stored_len, last)\n//DeflateState *s;\n//charf *buf; /* input block */\n//ulg stored_len; /* length of input block */\n//int last; /* one if this is the last block for a file */\n{\n send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */\n copy_block(s, buf, stored_len, true); /* with header */\n}\n\n\n/* ===========================================================================\n * Send one empty static block to give enough lookahead for inflate.\n * This takes 10 bits, of which 7 may remain in the bit buffer.\n */\nfunction _tr_align(s) {\n send_bits(s, STATIC_TREES << 1, 3);\n send_code(s, END_BLOCK, static_ltree);\n bi_flush(s);\n}\n\n\n/* ===========================================================================\n * Determine the best encoding for the current block: dynamic trees, static\n * trees or store, and output the encoded block to the zip file.\n */\nfunction _tr_flush_block(s, buf, stored_len, last)\n//DeflateState *s;\n//charf *buf; /* input block, or NULL if too old */\n//ulg stored_len; /* length of input block */\n//int last; /* one if this is the last block for a file */\n{\n var opt_lenb, static_lenb; /* opt_len and static_len in bytes */\n var max_blindex = 0; /* index of last bit length code of non zero freq */\n\n /* Build the Huffman trees unless a stored block is forced */\n if (s.level > 0) {\n\n /* Check if the file is binary or text */\n if (s.strm.data_type === Z_UNKNOWN) {\n s.strm.data_type = detect_data_type(s);\n }\n\n /* Construct the literal and distance trees */\n build_tree(s, s.l_desc);\n // Tracev((stderr, \"\\nlit data: dyn %ld, stat %ld\", s->opt_len,\n // s->static_len));\n\n build_tree(s, s.d_desc);\n // Tracev((stderr, \"\\ndist data: dyn %ld, stat %ld\", s->opt_len,\n // s->static_len));\n /* At this point, opt_len and static_len are the total bit lengths of\n * the compressed block data, excluding the tree representations.\n */\n\n /* Build the bit length tree for the above two trees, and get the index\n * in bl_order of the last bit length code to send.\n */\n max_blindex = build_bl_tree(s);\n\n /* Determine the best encoding. Compute the block lengths in bytes. */\n opt_lenb = (s.opt_len + 3 + 7) >>> 3;\n static_lenb = (s.static_len + 3 + 7) >>> 3;\n\n // Tracev((stderr, \"\\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u \",\n // opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,\n // s->last_lit));\n\n if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }\n\n } else {\n // Assert(buf != (char*)0, \"lost buf\");\n opt_lenb = static_lenb = stored_len + 5; /* force a stored block */\n }\n\n if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {\n /* 4: two words for the lengths */\n\n /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.\n * Otherwise we can't have processed more than WSIZE input bytes since\n * the last block flush, because compression would have been\n * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to\n * transform a block into a stored block.\n */\n _tr_stored_block(s, buf, stored_len, last);\n\n } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {\n\n send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);\n compress_block(s, static_ltree, static_dtree);\n\n } else {\n send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);\n send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);\n compress_block(s, s.dyn_ltree, s.dyn_dtree);\n }\n // Assert (s->compressed_len == s->bits_sent, \"bad compressed size\");\n /* The above check is made mod 2^32, for files larger than 512 MB\n * and uLong implemented on 32 bits.\n */\n init_block(s);\n\n if (last) {\n bi_windup(s);\n }\n // Tracev((stderr,\"\\ncomprlen %lu(%lu) \", s->compressed_len>>3,\n // s->compressed_len-7*last));\n}\n\n/* ===========================================================================\n * Save the match info and tally the frequency counts. Return true if\n * the current block must be flushed.\n */\nfunction _tr_tally(s, dist, lc)\n// deflate_state *s;\n// unsigned dist; /* distance of matched string */\n// unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */\n{\n //var out_length, in_length, dcode;\n\n s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff;\n s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;\n\n s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;\n s.last_lit++;\n\n if (dist === 0) {\n /* lc is the unmatched char */\n s.dyn_ltree[lc * 2]/*.Freq*/++;\n } else {\n s.matches++;\n /* Here, lc is the match length - MIN_MATCH */\n dist--; /* dist = match distance - 1 */\n //Assert((ush)dist < (ush)MAX_DIST(s) &&\n // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&\n // (ush)d_code(dist) < (ush)D_CODES, \"_tr_tally: bad match\");\n\n s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;\n s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;\n }\n\n// (!) This block is disabled in zlib defailts,\n// don't enable it for binary compatibility\n\n//#ifdef TRUNCATE_BLOCK\n// /* Try to guess if it is profitable to stop the current block here */\n// if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {\n// /* Compute an upper bound for the compressed length */\n// out_length = s.last_lit*8;\n// in_length = s.strstart - s.block_start;\n//\n// for (dcode = 0; dcode < D_CODES; dcode++) {\n// out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);\n// }\n// out_length >>>= 3;\n// //Tracev((stderr,\"\\nlast_lit %u, in %ld, out ~%ld(%ld%%) \",\n// // s->last_lit, in_length, out_length,\n// // 100L - out_length*100L/in_length));\n// if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {\n// return true;\n// }\n// }\n//#endif\n\n return (s.last_lit === s.lit_bufsize - 1);\n /* We avoid equality with lit_bufsize because of wraparound at 64K\n * on 16 bit machines and because stored blocks are restricted to\n * 64K-1 bytes.\n */\n}\n\nexports._tr_init = _tr_init;\nexports._tr_stored_block = _tr_stored_block;\nexports._tr_flush_block = _tr_flush_block;\nexports._tr_tally = _tr_tally;\nexports._tr_align = _tr_align;\n","'use strict';\n\n// Note: adler32 takes 12% for level 0 and 2% for level 6.\n// It doesn't worth to make additional optimizationa as in original.\n// Small size is preferable.\n\nfunction adler32(adler, buf, len, pos) {\n var s1 = (adler & 0xffff) |0,\n s2 = ((adler >>> 16) & 0xffff) |0,\n n = 0;\n\n while (len !== 0) {\n // Set limit ~ twice less than 5552, to keep\n // s2 in 31-bits, because we force signed ints.\n // in other case %= will fail.\n n = len > 2000 ? 2000 : len;\n len -= n;\n\n do {\n s1 = (s1 + buf[pos++]) |0;\n s2 = (s2 + s1) |0;\n } while (--n);\n\n s1 %= 65521;\n s2 %= 65521;\n }\n\n return (s1 | (s2 << 16)) |0;\n}\n\n\nmodule.exports = adler32;\n","'use strict';\n\n// Note: we can't get significant speed boost here.\n// So write code to minimize size - no pregenerated tables\n// and array tools dependencies.\n\n\n// Use ordinary array, since untyped makes no boost here\nfunction makeTable() {\n var c, table = [];\n\n for (var n = 0; n < 256; n++) {\n c = n;\n for (var k = 0; k < 8; k++) {\n c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1));\n }\n table[n] = c;\n }\n\n return table;\n}\n\n// Create table on load. Just 255 signed longs. Not a problem.\nvar crcTable = makeTable();\n\n\nfunction crc32(crc, buf, len, pos) {\n var t = crcTable,\n end = pos + len;\n\n crc ^= -1;\n\n for (var i = pos; i < end; i++) {\n crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF];\n }\n\n return (crc ^ (-1)); // >>> 0;\n}\n\n\nmodule.exports = crc32;\n","'use strict';\n\nmodule.exports = {\n 2: 'need dictionary', /* Z_NEED_DICT 2 */\n 1: 'stream end', /* Z_STREAM_END 1 */\n 0: '', /* Z_OK 0 */\n '-1': 'file error', /* Z_ERRNO (-1) */\n '-2': 'stream error', /* Z_STREAM_ERROR (-2) */\n '-3': 'data error', /* Z_DATA_ERROR (-3) */\n '-4': 'insufficient memory', /* Z_MEM_ERROR (-4) */\n '-5': 'buffer error', /* Z_BUF_ERROR (-5) */\n '-6': 'incompatible version' /* Z_VERSION_ERROR (-6) */\n};\n","'use strict';\n\nvar utils = require('../utils/common');\nvar trees = require('./trees');\nvar adler32 = require('./adler32');\nvar crc32 = require('./crc32');\nvar msg = require('./messages');\n\n/* Public constants ==========================================================*/\n/* ===========================================================================*/\n\n\n/* Allowed flush values; see deflate() and inflate() below for details */\nvar Z_NO_FLUSH = 0;\nvar Z_PARTIAL_FLUSH = 1;\n//var Z_SYNC_FLUSH = 2;\nvar Z_FULL_FLUSH = 3;\nvar Z_FINISH = 4;\nvar Z_BLOCK = 5;\n//var Z_TREES = 6;\n\n\n/* Return codes for the compression/decompression functions. Negative values\n * are errors, positive values are used for special but normal events.\n */\nvar Z_OK = 0;\nvar Z_STREAM_END = 1;\n//var Z_NEED_DICT = 2;\n//var Z_ERRNO = -1;\nvar Z_STREAM_ERROR = -2;\nvar Z_DATA_ERROR = -3;\n//var Z_MEM_ERROR = -4;\nvar Z_BUF_ERROR = -5;\n//var Z_VERSION_ERROR = -6;\n\n\n/* compression levels */\n//var Z_NO_COMPRESSION = 0;\n//var Z_BEST_SPEED = 1;\n//var Z_BEST_COMPRESSION = 9;\nvar Z_DEFAULT_COMPRESSION = -1;\n\n\nvar Z_FILTERED = 1;\nvar Z_HUFFMAN_ONLY = 2;\nvar Z_RLE = 3;\nvar Z_FIXED = 4;\nvar Z_DEFAULT_STRATEGY = 0;\n\n/* Possible values of the data_type field (though see inflate()) */\n//var Z_BINARY = 0;\n//var Z_TEXT = 1;\n//var Z_ASCII = 1; // = Z_TEXT\nvar Z_UNKNOWN = 2;\n\n\n/* The deflate compression method */\nvar Z_DEFLATED = 8;\n\n/*============================================================================*/\n\n\nvar MAX_MEM_LEVEL = 9;\n/* Maximum value for memLevel in deflateInit2 */\nvar MAX_WBITS = 15;\n/* 32K LZ77 window */\nvar DEF_MEM_LEVEL = 8;\n\n\nvar LENGTH_CODES = 29;\n/* number of length codes, not counting the special END_BLOCK code */\nvar LITERALS = 256;\n/* number of literal bytes 0..255 */\nvar L_CODES = LITERALS + 1 + LENGTH_CODES;\n/* number of Literal or Length codes, including the END_BLOCK code */\nvar D_CODES = 30;\n/* number of distance codes */\nvar BL_CODES = 19;\n/* number of codes used to transfer the bit lengths */\nvar HEAP_SIZE = 2 * L_CODES + 1;\n/* maximum heap size */\nvar MAX_BITS = 15;\n/* All codes must not exceed MAX_BITS bits */\n\nvar MIN_MATCH = 3;\nvar MAX_MATCH = 258;\nvar MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);\n\nvar PRESET_DICT = 0x20;\n\nvar INIT_STATE = 42;\nvar EXTRA_STATE = 69;\nvar NAME_STATE = 73;\nvar COMMENT_STATE = 91;\nvar HCRC_STATE = 103;\nvar BUSY_STATE = 113;\nvar FINISH_STATE = 666;\n\nvar BS_NEED_MORE = 1; /* block not completed, need more input or more output */\nvar BS_BLOCK_DONE = 2; /* block flush performed */\nvar BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */\nvar BS_FINISH_DONE = 4; /* finish done, accept no more input or output */\n\nvar OS_CODE = 0x03; // Unix :) . Don't detect, use this default.\n\nfunction err(strm, errorCode) {\n strm.msg = msg[errorCode];\n return errorCode;\n}\n\nfunction rank(f) {\n return ((f) << 1) - ((f) > 4 ? 9 : 0);\n}\n\nfunction zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } }\n\n\n/* =========================================================================\n * Flush as much pending output as possible. All deflate() output goes\n * through this function so some applications may wish to modify it\n * to avoid allocating a large strm->output buffer and copying into it.\n * (See also read_buf()).\n */\nfunction flush_pending(strm) {\n var s = strm.state;\n\n //_tr_flush_bits(s);\n var len = s.pending;\n if (len > strm.avail_out) {\n len = strm.avail_out;\n }\n if (len === 0) { return; }\n\n utils.arraySet(strm.output, s.pending_buf, s.pending_out, len, strm.next_out);\n strm.next_out += len;\n s.pending_out += len;\n strm.total_out += len;\n strm.avail_out -= len;\n s.pending -= len;\n if (s.pending === 0) {\n s.pending_out = 0;\n }\n}\n\n\nfunction flush_block_only(s, last) {\n trees._tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last);\n s.block_start = s.strstart;\n flush_pending(s.strm);\n}\n\n\nfunction put_byte(s, b) {\n s.pending_buf[s.pending++] = b;\n}\n\n\n/* =========================================================================\n * Put a short in the pending buffer. The 16-bit value is put in MSB order.\n * IN assertion: the stream state is correct and there is enough room in\n * pending_buf.\n */\nfunction putShortMSB(s, b) {\n// put_byte(s, (Byte)(b >> 8));\n// put_byte(s, (Byte)(b & 0xff));\n s.pending_buf[s.pending++] = (b >>> 8) & 0xff;\n s.pending_buf[s.pending++] = b & 0xff;\n}\n\n\n/* ===========================================================================\n * Read a new buffer from the current input stream, update the adler32\n * and total number of bytes read. All deflate() input goes through\n * this function so some applications may wish to modify it to avoid\n * allocating a large strm->input buffer and copying from it.\n * (See also flush_pending()).\n */\nfunction read_buf(strm, buf, start, size) {\n var len = strm.avail_in;\n\n if (len > size) { len = size; }\n if (len === 0) { return 0; }\n\n strm.avail_in -= len;\n\n // zmemcpy(buf, strm->next_in, len);\n utils.arraySet(buf, strm.input, strm.next_in, len, start);\n if (strm.state.wrap === 1) {\n strm.adler = adler32(strm.adler, buf, len, start);\n }\n\n else if (strm.state.wrap === 2) {\n strm.adler = crc32(strm.adler, buf, len, start);\n }\n\n strm.next_in += len;\n strm.total_in += len;\n\n return len;\n}\n\n\n/* ===========================================================================\n * Set match_start to the longest match starting at the given string and\n * return its length. Matches shorter or equal to prev_length are discarded,\n * in which case the result is equal to prev_length and match_start is\n * garbage.\n * IN assertions: cur_match is the head of the hash chain for the current\n * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1\n * OUT assertion: the match length is not greater than s->lookahead.\n */\nfunction longest_match(s, cur_match) {\n var chain_length = s.max_chain_length; /* max hash chain length */\n var scan = s.strstart; /* current string */\n var match; /* matched string */\n var len; /* length of current match */\n var best_len = s.prev_length; /* best match length so far */\n var nice_match = s.nice_match; /* stop if match long enough */\n var limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ?\n s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/;\n\n var _win = s.window; // shortcut\n\n var wmask = s.w_mask;\n var prev = s.prev;\n\n /* Stop when cur_match becomes <= limit. To simplify the code,\n * we prevent matches with the string of window index 0.\n */\n\n var strend = s.strstart + MAX_MATCH;\n var scan_end1 = _win[scan + best_len - 1];\n var scan_end = _win[scan + best_len];\n\n /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.\n * It is easy to get rid of this optimization if necessary.\n */\n // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, \"Code too clever\");\n\n /* Do not waste too much time if we already have a good match: */\n if (s.prev_length >= s.good_match) {\n chain_length >>= 2;\n }\n /* Do not look for matches beyond the end of the input. This is necessary\n * to make deflate deterministic.\n */\n if (nice_match > s.lookahead) { nice_match = s.lookahead; }\n\n // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, \"need lookahead\");\n\n do {\n // Assert(cur_match < s->strstart, \"no future\");\n match = cur_match;\n\n /* Skip to next match if the match length cannot increase\n * or if the match length is less than 2. Note that the checks below\n * for insufficient lookahead only occur occasionally for performance\n * reasons. Therefore uninitialized memory will be accessed, and\n * conditional jumps will be made that depend on those values.\n * However the length of the match is limited to the lookahead, so\n * the output of deflate is not affected by the uninitialized values.\n */\n\n if (_win[match + best_len] !== scan_end ||\n _win[match + best_len - 1] !== scan_end1 ||\n _win[match] !== _win[scan] ||\n _win[++match] !== _win[scan + 1]) {\n continue;\n }\n\n /* The check at best_len-1 can be removed because it will be made\n * again later. (This heuristic is not always a win.)\n * It is not necessary to compare scan[2] and match[2] since they\n * are always equal when the other bytes match, given that\n * the hash keys are equal and that HASH_BITS >= 8.\n */\n scan += 2;\n match++;\n // Assert(*scan == *match, \"match[2]?\");\n\n /* We check for insufficient lookahead only every 8th comparison;\n * the 256th check will be made at strstart+258.\n */\n do {\n /*jshint noempty:false*/\n } while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&\n _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&\n _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&\n _win[++scan] === _win[++match] && _win[++scan] === _win[++match] &&\n scan < strend);\n\n // Assert(scan <= s->window+(unsigned)(s->window_size-1), \"wild scan\");\n\n len = MAX_MATCH - (strend - scan);\n scan = strend - MAX_MATCH;\n\n if (len > best_len) {\n s.match_start = cur_match;\n best_len = len;\n if (len >= nice_match) {\n break;\n }\n scan_end1 = _win[scan + best_len - 1];\n scan_end = _win[scan + best_len];\n }\n } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0);\n\n if (best_len <= s.lookahead) {\n return best_len;\n }\n return s.lookahead;\n}\n\n\n/* ===========================================================================\n * Fill the window when the lookahead becomes insufficient.\n * Updates strstart and lookahead.\n *\n * IN assertion: lookahead < MIN_LOOKAHEAD\n * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD\n * At least one byte has been read, or avail_in == 0; reads are\n * performed for at least two bytes (required for the zip translate_eol\n * option -- not supported here).\n */\nfunction fill_window(s) {\n var _w_size = s.w_size;\n var p, n, m, more, str;\n\n //Assert(s->lookahead < MIN_LOOKAHEAD, \"already enough lookahead\");\n\n do {\n more = s.window_size - s.lookahead - s.strstart;\n\n // JS ints have 32 bit, block below not needed\n /* Deal with !@#$% 64K limit: */\n //if (sizeof(int) <= 2) {\n // if (more == 0 && s->strstart == 0 && s->lookahead == 0) {\n // more = wsize;\n //\n // } else if (more == (unsigned)(-1)) {\n // /* Very unlikely, but possible on 16 bit machine if\n // * strstart == 0 && lookahead == 1 (input done a byte at time)\n // */\n // more--;\n // }\n //}\n\n\n /* If the window is almost full and there is insufficient lookahead,\n * move the upper half to the lower one to make room in the upper half.\n */\n if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) {\n\n utils.arraySet(s.window, s.window, _w_size, _w_size, 0);\n s.match_start -= _w_size;\n s.strstart -= _w_size;\n /* we now have strstart >= MAX_DIST */\n s.block_start -= _w_size;\n\n /* Slide the hash table (could be avoided with 32 bit values\n at the expense of memory usage). We slide even when level == 0\n to keep the hash table consistent if we switch back to level > 0\n later. (Using level 0 permanently is not an optimal usage of\n zlib, so we don't care about this pathological case.)\n */\n\n n = s.hash_size;\n p = n;\n do {\n m = s.head[--p];\n s.head[p] = (m >= _w_size ? m - _w_size : 0);\n } while (--n);\n\n n = _w_size;\n p = n;\n do {\n m = s.prev[--p];\n s.prev[p] = (m >= _w_size ? m - _w_size : 0);\n /* If n is not on any hash chain, prev[n] is garbage but\n * its value will never be used.\n */\n } while (--n);\n\n more += _w_size;\n }\n if (s.strm.avail_in === 0) {\n break;\n }\n\n /* If there was no sliding:\n * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&\n * more == window_size - lookahead - strstart\n * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)\n * => more >= window_size - 2*WSIZE + 2\n * In the BIG_MEM or MMAP case (not yet supported),\n * window_size == input_size + MIN_LOOKAHEAD &&\n * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.\n * Otherwise, window_size == 2*WSIZE so more >= 2.\n * If there was sliding, more >= WSIZE. So in all cases, more >= 2.\n */\n //Assert(more >= 2, \"more < 2\");\n n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more);\n s.lookahead += n;\n\n /* Initialize the hash value now that we have some input: */\n if (s.lookahead + s.insert >= MIN_MATCH) {\n str = s.strstart - s.insert;\n s.ins_h = s.window[str];\n\n /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */\n s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + 1]) & s.hash_mask;\n//#if MIN_MATCH != 3\n// Call update_hash() MIN_MATCH-3 more times\n//#endif\n while (s.insert) {\n /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */\n s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask;\n\n s.prev[str & s.w_mask] = s.head[s.ins_h];\n s.head[s.ins_h] = str;\n str++;\n s.insert--;\n if (s.lookahead + s.insert < MIN_MATCH) {\n break;\n }\n }\n }\n /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,\n * but this is not important since only literal bytes will be emitted.\n */\n\n } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0);\n\n /* If the WIN_INIT bytes after the end of the current data have never been\n * written, then zero those bytes in order to avoid memory check reports of\n * the use of uninitialized (or uninitialised as Julian writes) bytes by\n * the longest match routines. Update the high water mark for the next\n * time through here. WIN_INIT is set to MAX_MATCH since the longest match\n * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.\n */\n// if (s.high_water < s.window_size) {\n// var curr = s.strstart + s.lookahead;\n// var init = 0;\n//\n// if (s.high_water < curr) {\n// /* Previous high water mark below current data -- zero WIN_INIT\n// * bytes or up to end of window, whichever is less.\n// */\n// init = s.window_size - curr;\n// if (init > WIN_INIT)\n// init = WIN_INIT;\n// zmemzero(s->window + curr, (unsigned)init);\n// s->high_water = curr + init;\n// }\n// else if (s->high_water < (ulg)curr + WIN_INIT) {\n// /* High water mark at or above current data, but below current data\n// * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up\n// * to end of window, whichever is less.\n// */\n// init = (ulg)curr + WIN_INIT - s->high_water;\n// if (init > s->window_size - s->high_water)\n// init = s->window_size - s->high_water;\n// zmemzero(s->window + s->high_water, (unsigned)init);\n// s->high_water += init;\n// }\n// }\n//\n// Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,\n// \"not enough room for search\");\n}\n\n/* ===========================================================================\n * Copy without compression as much as possible from the input stream, return\n * the current block state.\n * This function does not insert new strings in the dictionary since\n * uncompressible data is probably not useful. This function is used\n * only for the level=0 compression option.\n * NOTE: this function should be optimized to avoid extra copying from\n * window to pending_buf.\n */\nfunction deflate_stored(s, flush) {\n /* Stored blocks are limited to 0xffff bytes, pending_buf is limited\n * to pending_buf_size, and each stored block has a 5 byte header:\n */\n var max_block_size = 0xffff;\n\n if (max_block_size > s.pending_buf_size - 5) {\n max_block_size = s.pending_buf_size - 5;\n }\n\n /* Copy as much as possible from input to output: */\n for (;;) {\n /* Fill the window as much as possible: */\n if (s.lookahead <= 1) {\n\n //Assert(s->strstart < s->w_size+MAX_DIST(s) ||\n // s->block_start >= (long)s->w_size, \"slide too late\");\n// if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) ||\n// s.block_start >= s.w_size)) {\n// throw new Error(\"slide too late\");\n// }\n\n fill_window(s);\n if (s.lookahead === 0 && flush === Z_NO_FLUSH) {\n return BS_NEED_MORE;\n }\n\n if (s.lookahead === 0) {\n break;\n }\n /* flush the current block */\n }\n //Assert(s->block_start >= 0L, \"block gone\");\n// if (s.block_start < 0) throw new Error(\"block gone\");\n\n s.strstart += s.lookahead;\n s.lookahead = 0;\n\n /* Emit a stored block if pending_buf will be full: */\n var max_start = s.block_start + max_block_size;\n\n if (s.strstart === 0 || s.strstart >= max_start) {\n /* strstart == 0 is possible when wraparound on 16-bit machine */\n s.lookahead = s.strstart - max_start;\n s.strstart = max_start;\n /*** FLUSH_BLOCK(s, 0); ***/\n flush_block_only(s, false);\n if (s.strm.avail_out === 0) {\n return BS_NEED_MORE;\n }\n /***/\n\n\n }\n /* Flush if we may have to slide, otherwise block_start may become\n * negative and the data will be gone:\n */\n if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) {\n /*** FLUSH_BLOCK(s, 0); ***/\n flush_block_only(s, false);\n if (s.strm.avail_out === 0) {\n return BS_NEED_MORE;\n }\n /***/\n }\n }\n\n s.insert = 0;\n\n if (flush === Z_FINISH) {\n /*** FLUSH_BLOCK(s, 1); ***/\n flush_block_only(s, true);\n if (s.strm.avail_out === 0) {\n return BS_FINISH_STARTED;\n }\n /***/\n return BS_FINISH_DONE;\n }\n\n if (s.strstart > s.block_start) {\n /*** FLUSH_BLOCK(s, 0); ***/\n flush_block_only(s, false);\n if (s.strm.avail_out === 0) {\n return BS_NEED_MORE;\n }\n /***/\n }\n\n return BS_NEED_MORE;\n}\n\n/* ===========================================================================\n * Compress as much as possible from the input stream, return the current\n * block state.\n * This function does not perform lazy evaluation of matches and inserts\n * new strings in the dictionary only for unmatched strings or for short\n * matches. It is used only for the fast compression options.\n */\nfunction deflate_fast(s, flush) {\n var hash_head; /* head of the hash chain */\n var bflush; /* set if current block must be flushed */\n\n for (;;) {\n /* Make sure that we always have enough lookahead, except\n * at the end of the input file. We need MAX_MATCH bytes\n * for the next match, plus MIN_MATCH bytes to insert the\n * string following the next match.\n */\n if (s.lookahead < MIN_LOOKAHEAD) {\n fill_window(s);\n if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {\n return BS_NEED_MORE;\n }\n if (s.lookahead === 0) {\n break; /* flush the current block */\n }\n }\n\n /* Insert the string window[strstart .. strstart+2] in the\n * dictionary, and set hash_head to the head of the hash chain:\n */\n hash_head = 0/*NIL*/;\n if (s.lookahead >= MIN_MATCH) {\n /*** INSERT_STRING(s, s.strstart, hash_head); ***/\n s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;\n hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];\n s.head[s.ins_h] = s.strstart;\n /***/\n }\n\n /* Find the longest match, discarding those <= prev_length.\n * At this point we have always match_length < MIN_MATCH\n */\n if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) {\n /* To simplify the code, we prevent matches with the string\n * of window index 0 (in particular we have to avoid a match\n * of the string with itself at the start of the input file).\n */\n s.match_length = longest_match(s, hash_head);\n /* longest_match() sets match_start */\n }\n if (s.match_length >= MIN_MATCH) {\n // check_match(s, s.strstart, s.match_start, s.match_length); // for debug only\n\n /*** _tr_tally_dist(s, s.strstart - s.match_start,\n s.match_length - MIN_MATCH, bflush); ***/\n bflush = trees._tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH);\n\n s.lookahead -= s.match_length;\n\n /* Insert new strings in the hash table only if the match length\n * is not too large. This saves time but degrades compression.\n */\n if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) {\n s.match_length--; /* string at strstart already in table */\n do {\n s.strstart++;\n /*** INSERT_STRING(s, s.strstart, hash_head); ***/\n s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;\n hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];\n s.head[s.ins_h] = s.strstart;\n /***/\n /* strstart never exceeds WSIZE-MAX_MATCH, so there are\n * always MIN_MATCH bytes ahead.\n */\n } while (--s.match_length !== 0);\n s.strstart++;\n } else\n {\n s.strstart += s.match_length;\n s.match_length = 0;\n s.ins_h = s.window[s.strstart];\n /* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */\n s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + 1]) & s.hash_mask;\n\n//#if MIN_MATCH != 3\n// Call UPDATE_HASH() MIN_MATCH-3 more times\n//#endif\n /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not\n * matter since it will be recomputed at next deflate call.\n */\n }\n } else {\n /* No match, output a literal byte */\n //Tracevv((stderr,\"%c\", s.window[s.strstart]));\n /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/\n bflush = trees._tr_tally(s, 0, s.window[s.strstart]);\n\n s.lookahead--;\n s.strstart++;\n }\n if (bflush) {\n /*** FLUSH_BLOCK(s, 0); ***/\n flush_block_only(s, false);\n if (s.strm.avail_out === 0) {\n return BS_NEED_MORE;\n }\n /***/\n }\n }\n s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1);\n if (flush === Z_FINISH) {\n /*** FLUSH_BLOCK(s, 1); ***/\n flush_block_only(s, true);\n if (s.strm.avail_out === 0) {\n return BS_FINISH_STARTED;\n }\n /***/\n return BS_FINISH_DONE;\n }\n if (s.last_lit) {\n /*** FLUSH_BLOCK(s, 0); ***/\n flush_block_only(s, false);\n if (s.strm.avail_out === 0) {\n return BS_NEED_MORE;\n }\n /***/\n }\n return BS_BLOCK_DONE;\n}\n\n/* ===========================================================================\n * Same as above, but achieves better compression. We use a lazy\n * evaluation for matches: a match is finally adopted only if there is\n * no better match at the next window position.\n */\nfunction deflate_slow(s, flush) {\n var hash_head; /* head of hash chain */\n var bflush; /* set if current block must be flushed */\n\n var max_insert;\n\n /* Process the input block. */\n for (;;) {\n /* Make sure that we always have enough lookahead, except\n * at the end of the input file. We need MAX_MATCH bytes\n * for the next match, plus MIN_MATCH bytes to insert the\n * string following the next match.\n */\n if (s.lookahead < MIN_LOOKAHEAD) {\n fill_window(s);\n if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) {\n return BS_NEED_MORE;\n }\n if (s.lookahead === 0) { break; } /* flush the current block */\n }\n\n /* Insert the string window[strstart .. strstart+2] in the\n * dictionary, and set hash_head to the head of the hash chain:\n */\n hash_head = 0/*NIL*/;\n if (s.lookahead >= MIN_MATCH) {\n /*** INSERT_STRING(s, s.strstart, hash_head); ***/\n s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;\n hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];\n s.head[s.ins_h] = s.strstart;\n /***/\n }\n\n /* Find the longest match, discarding those <= prev_length.\n */\n s.prev_length = s.match_length;\n s.prev_match = s.match_start;\n s.match_length = MIN_MATCH - 1;\n\n if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match &&\n s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) {\n /* To simplify the code, we prevent matches with the string\n * of window index 0 (in particular we have to avoid a match\n * of the string with itself at the start of the input file).\n */\n s.match_length = longest_match(s, hash_head);\n /* longest_match() sets match_start */\n\n if (s.match_length <= 5 &&\n (s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) {\n\n /* If prev_match is also MIN_MATCH, match_start is garbage\n * but we will ignore the current match anyway.\n */\n s.match_length = MIN_MATCH - 1;\n }\n }\n /* If there was a match at the previous step and the current\n * match is not better, output the previous match:\n */\n if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) {\n max_insert = s.strstart + s.lookahead - MIN_MATCH;\n /* Do not insert strings in hash table beyond this. */\n\n //check_match(s, s.strstart-1, s.prev_match, s.prev_length);\n\n /***_tr_tally_dist(s, s.strstart - 1 - s.prev_match,\n s.prev_length - MIN_MATCH, bflush);***/\n bflush = trees._tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH);\n /* Insert in hash table all strings up to the end of the match.\n * strstart-1 and strstart are already inserted. If there is not\n * enough lookahead, the last two strings are not inserted in\n * the hash table.\n */\n s.lookahead -= s.prev_length - 1;\n s.prev_length -= 2;\n do {\n if (++s.strstart <= max_insert) {\n /*** INSERT_STRING(s, s.strstart, hash_head); ***/\n s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask;\n hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h];\n s.head[s.ins_h] = s.strstart;\n /***/\n }\n } while (--s.prev_length !== 0);\n s.match_available = 0;\n s.match_length = MIN_MATCH - 1;\n s.strstart++;\n\n if (bflush) {\n /*** FLUSH_BLOCK(s, 0); ***/\n flush_block_only(s, false);\n if (s.strm.avail_out === 0) {\n return BS_NEED_MORE;\n }\n /***/\n }\n\n } else if (s.match_available) {\n /* If there was no match at the previous position, output a\n * single literal. If there was a match but the current match\n * is longer, truncate the previous match to a single literal.\n */\n //Tracevv((stderr,\"%c\", s->window[s->strstart-1]));\n /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/\n bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]);\n\n if (bflush) {\n /*** FLUSH_BLOCK_ONLY(s, 0) ***/\n flush_block_only(s, false);\n /***/\n }\n s.strstart++;\n s.lookahead--;\n if (s.strm.avail_out === 0) {\n return BS_NEED_MORE;\n }\n } else {\n /* There is no previous match to compare with, wait for\n * the next step to decide.\n */\n s.match_available = 1;\n s.strstart++;\n s.lookahead--;\n }\n }\n //Assert (flush != Z_NO_FLUSH, \"no flush?\");\n if (s.match_available) {\n //Tracevv((stderr,\"%c\", s->window[s->strstart-1]));\n /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/\n bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]);\n\n s.match_available = 0;\n }\n s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1;\n if (flush === Z_FINISH) {\n /*** FLUSH_BLOCK(s, 1); ***/\n flush_block_only(s, true);\n if (s.strm.avail_out === 0) {\n return BS_FINISH_STARTED;\n }\n /***/\n return BS_FINISH_DONE;\n }\n if (s.last_lit) {\n /*** FLUSH_BLOCK(s, 0); ***/\n flush_block_only(s, false);\n if (s.strm.avail_out === 0) {\n return BS_NEED_MORE;\n }\n /***/\n }\n\n return BS_BLOCK_DONE;\n}\n\n\n/* ===========================================================================\n * For Z_RLE, simply look for runs of bytes, generate matches only of distance\n * one. Do not maintain a hash table. (It will be regenerated if this run of\n * deflate switches away from Z_RLE.)\n */\nfunction deflate_rle(s, flush) {\n var bflush; /* set if current block must be flushed */\n var prev; /* byte at distance one to match */\n var scan, strend; /* scan goes up to strend for length of run */\n\n var _win = s.window;\n\n for (;;) {\n /* Make sure that we always have enough lookahead, except\n * at the end of the input file. We need MAX_MATCH bytes\n * for the longest run, plus one for the unrolled loop.\n */\n if (s.lookahead <= MAX_MATCH) {\n fill_window(s);\n if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) {\n return BS_NEED_MORE;\n }\n if (s.lookahead === 0) { break; } /* flush the current block */\n }\n\n /* See how many times the previous byte repeats */\n s.match_length = 0;\n if (s.lookahead >= MIN_MATCH && s.strstart > 0) {\n scan = s.strstart - 1;\n prev = _win[scan];\n if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) {\n strend = s.strstart + MAX_MATCH;\n do {\n /*jshint noempty:false*/\n } while (prev === _win[++scan] && prev === _win[++scan] &&\n prev === _win[++scan] && prev === _win[++scan] &&\n prev === _win[++scan] && prev === _win[++scan] &&\n prev === _win[++scan] && prev === _win[++scan] &&\n scan < strend);\n s.match_length = MAX_MATCH - (strend - scan);\n if (s.match_length > s.lookahead) {\n s.match_length = s.lookahead;\n }\n }\n //Assert(scan <= s->window+(uInt)(s->window_size-1), \"wild scan\");\n }\n\n /* Emit match if have run of MIN_MATCH or longer, else emit literal */\n if (s.match_length >= MIN_MATCH) {\n //check_match(s, s.strstart, s.strstart - 1, s.match_length);\n\n /*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/\n bflush = trees._tr_tally(s, 1, s.match_length - MIN_MATCH);\n\n s.lookahead -= s.match_length;\n s.strstart += s.match_length;\n s.match_length = 0;\n } else {\n /* No match, output a literal byte */\n //Tracevv((stderr,\"%c\", s->window[s->strstart]));\n /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/\n bflush = trees._tr_tally(s, 0, s.window[s.strstart]);\n\n s.lookahead--;\n s.strstart++;\n }\n if (bflush) {\n /*** FLUSH_BLOCK(s, 0); ***/\n flush_block_only(s, false);\n if (s.strm.avail_out === 0) {\n return BS_NEED_MORE;\n }\n /***/\n }\n }\n s.insert = 0;\n if (flush === Z_FINISH) {\n /*** FLUSH_BLOCK(s, 1); ***/\n flush_block_only(s, true);\n if (s.strm.avail_out === 0) {\n return BS_FINISH_STARTED;\n }\n /***/\n return BS_FINISH_DONE;\n }\n if (s.last_lit) {\n /*** FLUSH_BLOCK(s, 0); ***/\n flush_block_only(s, false);\n if (s.strm.avail_out === 0) {\n return BS_NEED_MORE;\n }\n /***/\n }\n return BS_BLOCK_DONE;\n}\n\n/* ===========================================================================\n * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.\n * (It will be regenerated if this run of deflate switches away from Huffman.)\n */\nfunction deflate_huff(s, flush) {\n var bflush; /* set if current block must be flushed */\n\n for (;;) {\n /* Make sure that we have a literal to write. */\n if (s.lookahead === 0) {\n fill_window(s);\n if (s.lookahead === 0) {\n if (flush === Z_NO_FLUSH) {\n return BS_NEED_MORE;\n }\n break; /* flush the current block */\n }\n }\n\n /* Output a literal byte */\n s.match_length = 0;\n //Tracevv((stderr,\"%c\", s->window[s->strstart]));\n /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/\n bflush = trees._tr_tally(s, 0, s.window[s.strstart]);\n s.lookahead--;\n s.strstart++;\n if (bflush) {\n /*** FLUSH_BLOCK(s, 0); ***/\n flush_block_only(s, false);\n if (s.strm.avail_out === 0) {\n return BS_NEED_MORE;\n }\n /***/\n }\n }\n s.insert = 0;\n if (flush === Z_FINISH) {\n /*** FLUSH_BLOCK(s, 1); ***/\n flush_block_only(s, true);\n if (s.strm.avail_out === 0) {\n return BS_FINISH_STARTED;\n }\n /***/\n return BS_FINISH_DONE;\n }\n if (s.last_lit) {\n /*** FLUSH_BLOCK(s, 0); ***/\n flush_block_only(s, false);\n if (s.strm.avail_out === 0) {\n return BS_NEED_MORE;\n }\n /***/\n }\n return BS_BLOCK_DONE;\n}\n\n/* Values for max_lazy_match, good_match and max_chain_length, depending on\n * the desired pack level (0..9). The values given below have been tuned to\n * exclude worst case performance for pathological files. Better values may be\n * found for specific files.\n */\nfunction Config(good_length, max_lazy, nice_length, max_chain, func) {\n this.good_length = good_length;\n this.max_lazy = max_lazy;\n this.nice_length = nice_length;\n this.max_chain = max_chain;\n this.func = func;\n}\n\nvar configuration_table;\n\nconfiguration_table = [\n /* good lazy nice chain */\n new Config(0, 0, 0, 0, deflate_stored), /* 0 store only */\n new Config(4, 4, 8, 4, deflate_fast), /* 1 max speed, no lazy matches */\n new Config(4, 5, 16, 8, deflate_fast), /* 2 */\n new Config(4, 6, 32, 32, deflate_fast), /* 3 */\n\n new Config(4, 4, 16, 16, deflate_slow), /* 4 lazy matches */\n new Config(8, 16, 32, 32, deflate_slow), /* 5 */\n new Config(8, 16, 128, 128, deflate_slow), /* 6 */\n new Config(8, 32, 128, 256, deflate_slow), /* 7 */\n new Config(32, 128, 258, 1024, deflate_slow), /* 8 */\n new Config(32, 258, 258, 4096, deflate_slow) /* 9 max compression */\n];\n\n\n/* ===========================================================================\n * Initialize the \"longest match\" routines for a new zlib stream\n */\nfunction lm_init(s) {\n s.window_size = 2 * s.w_size;\n\n /*** CLEAR_HASH(s); ***/\n zero(s.head); // Fill with NIL (= 0);\n\n /* Set the default configuration parameters:\n */\n s.max_lazy_match = configuration_table[s.level].max_lazy;\n s.good_match = configuration_table[s.level].good_length;\n s.nice_match = configuration_table[s.level].nice_length;\n s.max_chain_length = configuration_table[s.level].max_chain;\n\n s.strstart = 0;\n s.block_start = 0;\n s.lookahead = 0;\n s.insert = 0;\n s.match_length = s.prev_length = MIN_MATCH - 1;\n s.match_available = 0;\n s.ins_h = 0;\n}\n\n\nfunction DeflateState() {\n this.strm = null; /* pointer back to this zlib stream */\n this.status = 0; /* as the name implies */\n this.pending_buf = null; /* output still pending */\n this.pending_buf_size = 0; /* size of pending_buf */\n this.pending_out = 0; /* next pending byte to output to the stream */\n this.pending = 0; /* nb of bytes in the pending buffer */\n this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */\n this.gzhead = null; /* gzip header information to write */\n this.gzindex = 0; /* where in extra, name, or comment */\n this.method = Z_DEFLATED; /* can only be DEFLATED */\n this.last_flush = -1; /* value of flush param for previous deflate call */\n\n this.w_size = 0; /* LZ77 window size (32K by default) */\n this.w_bits = 0; /* log2(w_size) (8..16) */\n this.w_mask = 0; /* w_size - 1 */\n\n this.window = null;\n /* Sliding window. Input bytes are read into the second half of the window,\n * and move to the first half later to keep a dictionary of at least wSize\n * bytes. With this organization, matches are limited to a distance of\n * wSize-MAX_MATCH bytes, but this ensures that IO is always\n * performed with a length multiple of the block size.\n */\n\n this.window_size = 0;\n /* Actual size of window: 2*wSize, except when the user input buffer\n * is directly used as sliding window.\n */\n\n this.prev = null;\n /* Link to older string with same hash index. To limit the size of this\n * array to 64K, this link is maintained only for the last 32K strings.\n * An index in this array is thus a window index modulo 32K.\n */\n\n this.head = null; /* Heads of the hash chains or NIL. */\n\n this.ins_h = 0; /* hash index of string to be inserted */\n this.hash_size = 0; /* number of elements in hash table */\n this.hash_bits = 0; /* log2(hash_size) */\n this.hash_mask = 0; /* hash_size-1 */\n\n this.hash_shift = 0;\n /* Number of bits by which ins_h must be shifted at each input\n * step. It must be such that after MIN_MATCH steps, the oldest\n * byte no longer takes part in the hash key, that is:\n * hash_shift * MIN_MATCH >= hash_bits\n */\n\n this.block_start = 0;\n /* Window position at the beginning of the current output block. Gets\n * negative when the window is moved backwards.\n */\n\n this.match_length = 0; /* length of best match */\n this.prev_match = 0; /* previous match */\n this.match_available = 0; /* set if previous match exists */\n this.strstart = 0; /* start of string to insert */\n this.match_start = 0; /* start of matching string */\n this.lookahead = 0; /* number of valid bytes ahead in window */\n\n this.prev_length = 0;\n /* Length of the best match at previous step. Matches not greater than this\n * are discarded. This is used in the lazy match evaluation.\n */\n\n this.max_chain_length = 0;\n /* To speed up deflation, hash chains are never searched beyond this\n * length. A higher limit improves compression ratio but degrades the\n * speed.\n */\n\n this.max_lazy_match = 0;\n /* Attempt to find a better match only when the current match is strictly\n * smaller than this value. This mechanism is used only for compression\n * levels >= 4.\n */\n // That's alias to max_lazy_match, don't use directly\n //this.max_insert_length = 0;\n /* Insert new strings in the hash table only if the match length is not\n * greater than this length. This saves time but degrades compression.\n * max_insert_length is used only for compression levels <= 3.\n */\n\n this.level = 0; /* compression level (1..9) */\n this.strategy = 0; /* favor or force Huffman coding*/\n\n this.good_match = 0;\n /* Use a faster search when the previous match is longer than this */\n\n this.nice_match = 0; /* Stop searching when current match exceeds this */\n\n /* used by trees.c: */\n\n /* Didn't use ct_data typedef below to suppress compiler warning */\n\n // struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */\n // struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */\n // struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */\n\n // Use flat array of DOUBLE size, with interleaved fata,\n // because JS does not support effective\n this.dyn_ltree = new utils.Buf16(HEAP_SIZE * 2);\n this.dyn_dtree = new utils.Buf16((2 * D_CODES + 1) * 2);\n this.bl_tree = new utils.Buf16((2 * BL_CODES + 1) * 2);\n zero(this.dyn_ltree);\n zero(this.dyn_dtree);\n zero(this.bl_tree);\n\n this.l_desc = null; /* desc. for literal tree */\n this.d_desc = null; /* desc. for distance tree */\n this.bl_desc = null; /* desc. for bit length tree */\n\n //ush bl_count[MAX_BITS+1];\n this.bl_count = new utils.Buf16(MAX_BITS + 1);\n /* number of codes at each bit length for an optimal tree */\n\n //int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */\n this.heap = new utils.Buf16(2 * L_CODES + 1); /* heap used to build the Huffman trees */\n zero(this.heap);\n\n this.heap_len = 0; /* number of elements in the heap */\n this.heap_max = 0; /* element of largest frequency */\n /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.\n * The same heap array is used to build all trees.\n */\n\n this.depth = new utils.Buf16(2 * L_CODES + 1); //uch depth[2*L_CODES+1];\n zero(this.depth);\n /* Depth of each subtree used as tie breaker for trees of equal frequency\n */\n\n this.l_buf = 0; /* buffer index for literals or lengths */\n\n this.lit_bufsize = 0;\n /* Size of match buffer for literals/lengths. There are 4 reasons for\n * limiting lit_bufsize to 64K:\n * - frequencies can be kept in 16 bit counters\n * - if compression is not successful for the first block, all input\n * data is still in the window so we can still emit a stored block even\n * when input comes from standard input. (This can also be done for\n * all blocks if lit_bufsize is not greater than 32K.)\n * - if compression is not successful for a file smaller than 64K, we can\n * even emit a stored file instead of a stored block (saving 5 bytes).\n * This is applicable only for zip (not gzip or zlib).\n * - creating new Huffman trees less frequently may not provide fast\n * adaptation to changes in the input data statistics. (Take for\n * example a binary file with poorly compressible code followed by\n * a highly compressible string table.) Smaller buffer sizes give\n * fast adaptation but have of course the overhead of transmitting\n * trees more frequently.\n * - I can't count above 4\n */\n\n this.last_lit = 0; /* running index in l_buf */\n\n this.d_buf = 0;\n /* Buffer index for distances. To simplify the code, d_buf and l_buf have\n * the same number of elements. To use different lengths, an extra flag\n * array would be necessary.\n */\n\n this.opt_len = 0; /* bit length of current block with optimal trees */\n this.static_len = 0; /* bit length of current block with static trees */\n this.matches = 0; /* number of string matches in current block */\n this.insert = 0; /* bytes at end of window left to insert */\n\n\n this.bi_buf = 0;\n /* Output buffer. bits are inserted starting at the bottom (least\n * significant bits).\n */\n this.bi_valid = 0;\n /* Number of valid bits in bi_buf. All bits above the last valid bit\n * are always zero.\n */\n\n // Used for window memory init. We safely ignore it for JS. That makes\n // sense only for pointers and memory check tools.\n //this.high_water = 0;\n /* High water mark offset in window for initialized bytes -- bytes above\n * this are set to zero in order to avoid memory check warnings when\n * longest match routines access bytes past the input. This is then\n * updated to the new high water mark.\n */\n}\n\n\nfunction deflateResetKeep(strm) {\n var s;\n\n if (!strm || !strm.state) {\n return err(strm, Z_STREAM_ERROR);\n }\n\n strm.total_in = strm.total_out = 0;\n strm.data_type = Z_UNKNOWN;\n\n s = strm.state;\n s.pending = 0;\n s.pending_out = 0;\n\n if (s.wrap < 0) {\n s.wrap = -s.wrap;\n /* was made negative by deflate(..., Z_FINISH); */\n }\n s.status = (s.wrap ? INIT_STATE : BUSY_STATE);\n strm.adler = (s.wrap === 2) ?\n 0 // crc32(0, Z_NULL, 0)\n :\n 1; // adler32(0, Z_NULL, 0)\n s.last_flush = Z_NO_FLUSH;\n trees._tr_init(s);\n return Z_OK;\n}\n\n\nfunction deflateReset(strm) {\n var ret = deflateResetKeep(strm);\n if (ret === Z_OK) {\n lm_init(strm.state);\n }\n return ret;\n}\n\n\nfunction deflateSetHeader(strm, head) {\n if (!strm || !strm.state) { return Z_STREAM_ERROR; }\n if (strm.state.wrap !== 2) { return Z_STREAM_ERROR; }\n strm.state.gzhead = head;\n return Z_OK;\n}\n\n\nfunction deflateInit2(strm, level, method, windowBits, memLevel, strategy) {\n if (!strm) { // === Z_NULL\n return Z_STREAM_ERROR;\n }\n var wrap = 1;\n\n if (level === Z_DEFAULT_COMPRESSION) {\n level = 6;\n }\n\n if (windowBits < 0) { /* suppress zlib wrapper */\n wrap = 0;\n windowBits = -windowBits;\n }\n\n else if (windowBits > 15) {\n wrap = 2; /* write gzip wrapper instead */\n windowBits -= 16;\n }\n\n\n if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED ||\n windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||\n strategy < 0 || strategy > Z_FIXED) {\n return err(strm, Z_STREAM_ERROR);\n }\n\n\n if (windowBits === 8) {\n windowBits = 9;\n }\n /* until 256-byte window bug fixed */\n\n var s = new DeflateState();\n\n strm.state = s;\n s.strm = strm;\n\n s.wrap = wrap;\n s.gzhead = null;\n s.w_bits = windowBits;\n s.w_size = 1 << s.w_bits;\n s.w_mask = s.w_size - 1;\n\n s.hash_bits = memLevel + 7;\n s.hash_size = 1 << s.hash_bits;\n s.hash_mask = s.hash_size - 1;\n s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH);\n\n s.window = new utils.Buf8(s.w_size * 2);\n s.head = new utils.Buf16(s.hash_size);\n s.prev = new utils.Buf16(s.w_size);\n\n // Don't need mem init magic for JS.\n //s.high_water = 0; /* nothing written to s->window yet */\n\n s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */\n\n s.pending_buf_size = s.lit_bufsize * 4;\n\n //overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);\n //s->pending_buf = (uchf *) overlay;\n s.pending_buf = new utils.Buf8(s.pending_buf_size);\n\n // It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`)\n //s->d_buf = overlay + s->lit_bufsize/sizeof(ush);\n s.d_buf = 1 * s.lit_bufsize;\n\n //s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;\n s.l_buf = (1 + 2) * s.lit_bufsize;\n\n s.level = level;\n s.strategy = strategy;\n s.method = method;\n\n return deflateReset(strm);\n}\n\nfunction deflateInit(strm, level) {\n return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY);\n}\n\n\nfunction deflate(strm, flush) {\n var old_flush, s;\n var beg, val; // for gzip header write only\n\n if (!strm || !strm.state ||\n flush > Z_BLOCK || flush < 0) {\n return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR;\n }\n\n s = strm.state;\n\n if (!strm.output ||\n (!strm.input && strm.avail_in !== 0) ||\n (s.status === FINISH_STATE && flush !== Z_FINISH)) {\n return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR);\n }\n\n s.strm = strm; /* just in case */\n old_flush = s.last_flush;\n s.last_flush = flush;\n\n /* Write the header */\n if (s.status === INIT_STATE) {\n\n if (s.wrap === 2) { // GZIP header\n strm.adler = 0; //crc32(0L, Z_NULL, 0);\n put_byte(s, 31);\n put_byte(s, 139);\n put_byte(s, 8);\n if (!s.gzhead) { // s->gzhead == Z_NULL\n put_byte(s, 0);\n put_byte(s, 0);\n put_byte(s, 0);\n put_byte(s, 0);\n put_byte(s, 0);\n put_byte(s, s.level === 9 ? 2 :\n (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?\n 4 : 0));\n put_byte(s, OS_CODE);\n s.status = BUSY_STATE;\n }\n else {\n put_byte(s, (s.gzhead.text ? 1 : 0) +\n (s.gzhead.hcrc ? 2 : 0) +\n (!s.gzhead.extra ? 0 : 4) +\n (!s.gzhead.name ? 0 : 8) +\n (!s.gzhead.comment ? 0 : 16)\n );\n put_byte(s, s.gzhead.time & 0xff);\n put_byte(s, (s.gzhead.time >> 8) & 0xff);\n put_byte(s, (s.gzhead.time >> 16) & 0xff);\n put_byte(s, (s.gzhead.time >> 24) & 0xff);\n put_byte(s, s.level === 9 ? 2 :\n (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ?\n 4 : 0));\n put_byte(s, s.gzhead.os & 0xff);\n if (s.gzhead.extra && s.gzhead.extra.length) {\n put_byte(s, s.gzhead.extra.length & 0xff);\n put_byte(s, (s.gzhead.extra.length >> 8) & 0xff);\n }\n if (s.gzhead.hcrc) {\n strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0);\n }\n s.gzindex = 0;\n s.status = EXTRA_STATE;\n }\n }\n else // DEFLATE header\n {\n var header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8;\n var level_flags = -1;\n\n if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) {\n level_flags = 0;\n } else if (s.level < 6) {\n level_flags = 1;\n } else if (s.level === 6) {\n level_flags = 2;\n } else {\n level_flags = 3;\n }\n header |= (level_flags << 6);\n if (s.strstart !== 0) { header |= PRESET_DICT; }\n header += 31 - (header % 31);\n\n s.status = BUSY_STATE;\n putShortMSB(s, header);\n\n /* Save the adler32 of the preset dictionary: */\n if (s.strstart !== 0) {\n putShortMSB(s, strm.adler >>> 16);\n putShortMSB(s, strm.adler & 0xffff);\n }\n strm.adler = 1; // adler32(0L, Z_NULL, 0);\n }\n }\n\n//#ifdef GZIP\n if (s.status === EXTRA_STATE) {\n if (s.gzhead.extra/* != Z_NULL*/) {\n beg = s.pending; /* start of bytes to update crc */\n\n while (s.gzindex < (s.gzhead.extra.length & 0xffff)) {\n if (s.pending === s.pending_buf_size) {\n if (s.gzhead.hcrc && s.pending > beg) {\n strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);\n }\n flush_pending(strm);\n beg = s.pending;\n if (s.pending === s.pending_buf_size) {\n break;\n }\n }\n put_byte(s, s.gzhead.extra[s.gzindex] & 0xff);\n s.gzindex++;\n }\n if (s.gzhead.hcrc && s.pending > beg) {\n strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);\n }\n if (s.gzindex === s.gzhead.extra.length) {\n s.gzindex = 0;\n s.status = NAME_STATE;\n }\n }\n else {\n s.status = NAME_STATE;\n }\n }\n if (s.status === NAME_STATE) {\n if (s.gzhead.name/* != Z_NULL*/) {\n beg = s.pending; /* start of bytes to update crc */\n //int val;\n\n do {\n if (s.pending === s.pending_buf_size) {\n if (s.gzhead.hcrc && s.pending > beg) {\n strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);\n }\n flush_pending(strm);\n beg = s.pending;\n if (s.pending === s.pending_buf_size) {\n val = 1;\n break;\n }\n }\n // JS specific: little magic to add zero terminator to end of string\n if (s.gzindex < s.gzhead.name.length) {\n val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff;\n } else {\n val = 0;\n }\n put_byte(s, val);\n } while (val !== 0);\n\n if (s.gzhead.hcrc && s.pending > beg) {\n strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);\n }\n if (val === 0) {\n s.gzindex = 0;\n s.status = COMMENT_STATE;\n }\n }\n else {\n s.status = COMMENT_STATE;\n }\n }\n if (s.status === COMMENT_STATE) {\n if (s.gzhead.comment/* != Z_NULL*/) {\n beg = s.pending; /* start of bytes to update crc */\n //int val;\n\n do {\n if (s.pending === s.pending_buf_size) {\n if (s.gzhead.hcrc && s.pending > beg) {\n strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);\n }\n flush_pending(strm);\n beg = s.pending;\n if (s.pending === s.pending_buf_size) {\n val = 1;\n break;\n }\n }\n // JS specific: little magic to add zero terminator to end of string\n if (s.gzindex < s.gzhead.comment.length) {\n val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff;\n } else {\n val = 0;\n }\n put_byte(s, val);\n } while (val !== 0);\n\n if (s.gzhead.hcrc && s.pending > beg) {\n strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg);\n }\n if (val === 0) {\n s.status = HCRC_STATE;\n }\n }\n else {\n s.status = HCRC_STATE;\n }\n }\n if (s.status === HCRC_STATE) {\n if (s.gzhead.hcrc) {\n if (s.pending + 2 > s.pending_buf_size) {\n flush_pending(strm);\n }\n if (s.pending + 2 <= s.pending_buf_size) {\n put_byte(s, strm.adler & 0xff);\n put_byte(s, (strm.adler >> 8) & 0xff);\n strm.adler = 0; //crc32(0L, Z_NULL, 0);\n s.status = BUSY_STATE;\n }\n }\n else {\n s.status = BUSY_STATE;\n }\n }\n//#endif\n\n /* Flush as much pending output as possible */\n if (s.pending !== 0) {\n flush_pending(strm);\n if (strm.avail_out === 0) {\n /* Since avail_out is 0, deflate will be called again with\n * more output space, but possibly with both pending and\n * avail_in equal to zero. There won't be anything to do,\n * but this is not an error situation so make sure we\n * return OK instead of BUF_ERROR at next call of deflate:\n */\n s.last_flush = -1;\n return Z_OK;\n }\n\n /* Make sure there is something to do and avoid duplicate consecutive\n * flushes. For repeated and useless calls with Z_FINISH, we keep\n * returning Z_STREAM_END instead of Z_BUF_ERROR.\n */\n } else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) &&\n flush !== Z_FINISH) {\n return err(strm, Z_BUF_ERROR);\n }\n\n /* User must not provide more input after the first FINISH: */\n if (s.status === FINISH_STATE && strm.avail_in !== 0) {\n return err(strm, Z_BUF_ERROR);\n }\n\n /* Start a new block or continue the current one.\n */\n if (strm.avail_in !== 0 || s.lookahead !== 0 ||\n (flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) {\n var bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) :\n (s.strategy === Z_RLE ? deflate_rle(s, flush) :\n configuration_table[s.level].func(s, flush));\n\n if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) {\n s.status = FINISH_STATE;\n }\n if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) {\n if (strm.avail_out === 0) {\n s.last_flush = -1;\n /* avoid BUF_ERROR next call, see above */\n }\n return Z_OK;\n /* If flush != Z_NO_FLUSH && avail_out == 0, the next call\n * of deflate should use the same flush parameter to make sure\n * that the flush is complete. So we don't have to output an\n * empty block here, this will be done at next call. This also\n * ensures that for a very small output buffer, we emit at most\n * one empty block.\n */\n }\n if (bstate === BS_BLOCK_DONE) {\n if (flush === Z_PARTIAL_FLUSH) {\n trees._tr_align(s);\n }\n else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */\n\n trees._tr_stored_block(s, 0, 0, false);\n /* For a full flush, this empty block will be recognized\n * as a special marker by inflate_sync().\n */\n if (flush === Z_FULL_FLUSH) {\n /*** CLEAR_HASH(s); ***/ /* forget history */\n zero(s.head); // Fill with NIL (= 0);\n\n if (s.lookahead === 0) {\n s.strstart = 0;\n s.block_start = 0;\n s.insert = 0;\n }\n }\n }\n flush_pending(strm);\n if (strm.avail_out === 0) {\n s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */\n return Z_OK;\n }\n }\n }\n //Assert(strm->avail_out > 0, \"bug2\");\n //if (strm.avail_out <= 0) { throw new Error(\"bug2\");}\n\n if (flush !== Z_FINISH) { return Z_OK; }\n if (s.wrap <= 0) { return Z_STREAM_END; }\n\n /* Write the trailer */\n if (s.wrap === 2) {\n put_byte(s, strm.adler & 0xff);\n put_byte(s, (strm.adler >> 8) & 0xff);\n put_byte(s, (strm.adler >> 16) & 0xff);\n put_byte(s, (strm.adler >> 24) & 0xff);\n put_byte(s, strm.total_in & 0xff);\n put_byte(s, (strm.total_in >> 8) & 0xff);\n put_byte(s, (strm.total_in >> 16) & 0xff);\n put_byte(s, (strm.total_in >> 24) & 0xff);\n }\n else\n {\n putShortMSB(s, strm.adler >>> 16);\n putShortMSB(s, strm.adler & 0xffff);\n }\n\n flush_pending(strm);\n /* If avail_out is zero, the application will call deflate again\n * to flush the rest.\n */\n if (s.wrap > 0) { s.wrap = -s.wrap; }\n /* write the trailer only once! */\n return s.pending !== 0 ? Z_OK : Z_STREAM_END;\n}\n\nfunction deflateEnd(strm) {\n var status;\n\n if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) {\n return Z_STREAM_ERROR;\n }\n\n status = strm.state.status;\n if (status !== INIT_STATE &&\n status !== EXTRA_STATE &&\n status !== NAME_STATE &&\n status !== COMMENT_STATE &&\n status !== HCRC_STATE &&\n status !== BUSY_STATE &&\n status !== FINISH_STATE\n ) {\n return err(strm, Z_STREAM_ERROR);\n }\n\n strm.state = null;\n\n return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK;\n}\n\n\n/* =========================================================================\n * Initializes the compression dictionary from the given byte\n * sequence without producing any compressed output.\n */\nfunction deflateSetDictionary(strm, dictionary) {\n var dictLength = dictionary.length;\n\n var s;\n var str, n;\n var wrap;\n var avail;\n var next;\n var input;\n var tmpDict;\n\n if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) {\n return Z_STREAM_ERROR;\n }\n\n s = strm.state;\n wrap = s.wrap;\n\n if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) {\n return Z_STREAM_ERROR;\n }\n\n /* when using zlib wrappers, compute Adler-32 for provided dictionary */\n if (wrap === 1) {\n /* adler32(strm->adler, dictionary, dictLength); */\n strm.adler = adler32(strm.adler, dictionary, dictLength, 0);\n }\n\n s.wrap = 0; /* avoid computing Adler-32 in read_buf */\n\n /* if dictionary would fill window, just replace the history */\n if (dictLength >= s.w_size) {\n if (wrap === 0) { /* already empty otherwise */\n /*** CLEAR_HASH(s); ***/\n zero(s.head); // Fill with NIL (= 0);\n s.strstart = 0;\n s.block_start = 0;\n s.insert = 0;\n }\n /* use the tail */\n // dictionary = dictionary.slice(dictLength - s.w_size);\n tmpDict = new utils.Buf8(s.w_size);\n utils.arraySet(tmpDict, dictionary, dictLength - s.w_size, s.w_size, 0);\n dictionary = tmpDict;\n dictLength = s.w_size;\n }\n /* insert dictionary into window and hash */\n avail = strm.avail_in;\n next = strm.next_in;\n input = strm.input;\n strm.avail_in = dictLength;\n strm.next_in = 0;\n strm.input = dictionary;\n fill_window(s);\n while (s.lookahead >= MIN_MATCH) {\n str = s.strstart;\n n = s.lookahead - (MIN_MATCH - 1);\n do {\n /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */\n s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask;\n\n s.prev[str & s.w_mask] = s.head[s.ins_h];\n\n s.head[s.ins_h] = str;\n str++;\n } while (--n);\n s.strstart = str;\n s.lookahead = MIN_MATCH - 1;\n fill_window(s);\n }\n s.strstart += s.lookahead;\n s.block_start = s.strstart;\n s.insert = s.lookahead;\n s.lookahead = 0;\n s.match_length = s.prev_length = MIN_MATCH - 1;\n s.match_available = 0;\n strm.next_in = next;\n strm.input = input;\n strm.avail_in = avail;\n s.wrap = wrap;\n return Z_OK;\n}\n\n\nexports.deflateInit = deflateInit;\nexports.deflateInit2 = deflateInit2;\nexports.deflateReset = deflateReset;\nexports.deflateResetKeep = deflateResetKeep;\nexports.deflateSetHeader = deflateSetHeader;\nexports.deflate = deflate;\nexports.deflateEnd = deflateEnd;\nexports.deflateSetDictionary = deflateSetDictionary;\nexports.deflateInfo = 'pako deflate (from Nodeca project)';\n\n/* Not implemented\nexports.deflateBound = deflateBound;\nexports.deflateCopy = deflateCopy;\nexports.deflateParams = deflateParams;\nexports.deflatePending = deflatePending;\nexports.deflatePrime = deflatePrime;\nexports.deflateTune = deflateTune;\n*/\n","// String encode/decode helpers\n'use strict';\n\n\nvar utils = require('./common');\n\n\n// Quick check if we can use fast array to bin string conversion\n//\n// - apply(Array) can fail on Android 2.2\n// - apply(Uint8Array) can fail on iOS 5.1 Safary\n//\nvar STR_APPLY_OK = true;\nvar STR_APPLY_UIA_OK = true;\n\ntry { String.fromCharCode.apply(null, [ 0 ]); } catch (__) { STR_APPLY_OK = false; }\ntry { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; }\n\n\n// Table with utf8 lengths (calculated by first byte of sequence)\n// Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS,\n// because max possible codepoint is 0x10ffff\nvar _utf8len = new utils.Buf8(256);\nfor (var q = 0; q < 256; q++) {\n _utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1);\n}\n_utf8len[254] = _utf8len[254] = 1; // Invalid sequence start\n\n\n// convert string to array (typed, when possible)\nexports.string2buf = function (str) {\n var buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0;\n\n // count binary size\n for (m_pos = 0; m_pos < str_len; m_pos++) {\n c = str.charCodeAt(m_pos);\n if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {\n c2 = str.charCodeAt(m_pos + 1);\n if ((c2 & 0xfc00) === 0xdc00) {\n c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);\n m_pos++;\n }\n }\n buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4;\n }\n\n // allocate buffer\n buf = new utils.Buf8(buf_len);\n\n // convert\n for (i = 0, m_pos = 0; i < buf_len; m_pos++) {\n c = str.charCodeAt(m_pos);\n if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) {\n c2 = str.charCodeAt(m_pos + 1);\n if ((c2 & 0xfc00) === 0xdc00) {\n c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00);\n m_pos++;\n }\n }\n if (c < 0x80) {\n /* one byte */\n buf[i++] = c;\n } else if (c < 0x800) {\n /* two bytes */\n buf[i++] = 0xC0 | (c >>> 6);\n buf[i++] = 0x80 | (c & 0x3f);\n } else if (c < 0x10000) {\n /* three bytes */\n buf[i++] = 0xE0 | (c >>> 12);\n buf[i++] = 0x80 | (c >>> 6 & 0x3f);\n buf[i++] = 0x80 | (c & 0x3f);\n } else {\n /* four bytes */\n buf[i++] = 0xf0 | (c >>> 18);\n buf[i++] = 0x80 | (c >>> 12 & 0x3f);\n buf[i++] = 0x80 | (c >>> 6 & 0x3f);\n buf[i++] = 0x80 | (c & 0x3f);\n }\n }\n\n return buf;\n};\n\n// Helper (used in 2 places)\nfunction buf2binstring(buf, len) {\n // use fallback for big arrays to avoid stack overflow\n if (len < 65537) {\n if ((buf.subarray && STR_APPLY_UIA_OK) || (!buf.subarray && STR_APPLY_OK)) {\n return String.fromCharCode.apply(null, utils.shrinkBuf(buf, len));\n }\n }\n\n var result = '';\n for (var i = 0; i < len; i++) {\n result += String.fromCharCode(buf[i]);\n }\n return result;\n}\n\n\n// Convert byte array to binary string\nexports.buf2binstring = function (buf) {\n return buf2binstring(buf, buf.length);\n};\n\n\n// Convert binary string (typed, when possible)\nexports.binstring2buf = function (str) {\n var buf = new utils.Buf8(str.length);\n for (var i = 0, len = buf.length; i < len; i++) {\n buf[i] = str.charCodeAt(i);\n }\n return buf;\n};\n\n\n// convert array to string\nexports.buf2string = function (buf, max) {\n var i, out, c, c_len;\n var len = max || buf.length;\n\n // Reserve max possible length (2 words per char)\n // NB: by unknown reasons, Array is significantly faster for\n // String.fromCharCode.apply than Uint16Array.\n var utf16buf = new Array(len * 2);\n\n for (out = 0, i = 0; i < len;) {\n c = buf[i++];\n // quick process ascii\n if (c < 0x80) { utf16buf[out++] = c; continue; }\n\n c_len = _utf8len[c];\n // skip 5 & 6 byte codes\n if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; }\n\n // apply mask on first byte\n c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07;\n // join the rest\n while (c_len > 1 && i < len) {\n c = (c << 6) | (buf[i++] & 0x3f);\n c_len--;\n }\n\n // terminated by end of string?\n if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; }\n\n if (c < 0x10000) {\n utf16buf[out++] = c;\n } else {\n c -= 0x10000;\n utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff);\n utf16buf[out++] = 0xdc00 | (c & 0x3ff);\n }\n }\n\n return buf2binstring(utf16buf, out);\n};\n\n\n// Calculate max possible position in utf8 buffer,\n// that will not break sequence. If that's not possible\n// - (very small limits) return max size as is.\n//\n// buf[] - utf8 bytes array\n// max - length limit (mandatory);\nexports.utf8border = function (buf, max) {\n var pos;\n\n max = max || buf.length;\n if (max > buf.length) { max = buf.length; }\n\n // go back from last position, until start of sequence found\n pos = max - 1;\n while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; }\n\n // Fuckup - very small and broken sequence,\n // return max, because we should return something anyway.\n if (pos < 0) { return max; }\n\n // If we came to start of buffer - that means vuffer is too small,\n // return max too.\n if (pos === 0) { return max; }\n\n return (pos + _utf8len[buf[pos]] > max) ? pos : max;\n};\n","'use strict';\n\n\nfunction ZStream() {\n /* next input byte */\n this.input = null; // JS specific, because we have no pointers\n this.next_in = 0;\n /* number of bytes available at input */\n this.avail_in = 0;\n /* total number of input bytes read so far */\n this.total_in = 0;\n /* next output byte should be put there */\n this.output = null; // JS specific, because we have no pointers\n this.next_out = 0;\n /* remaining free space at output */\n this.avail_out = 0;\n /* total number of bytes output so far */\n this.total_out = 0;\n /* last error message, NULL if no error */\n this.msg = ''/*Z_NULL*/;\n /* not visible by applications */\n this.state = null;\n /* best guess about the data type: binary or text */\n this.data_type = 2/*Z_UNKNOWN*/;\n /* adler32 value of the uncompressed data */\n this.adler = 0;\n}\n\nmodule.exports = ZStream;\n","'use strict';\n\n\nvar zlib_deflate = require('./zlib/deflate');\nvar utils = require('./utils/common');\nvar strings = require('./utils/strings');\nvar msg = require('./zlib/messages');\nvar ZStream = require('./zlib/zstream');\n\nvar toString = Object.prototype.toString;\n\n/* Public constants ==========================================================*/\n/* ===========================================================================*/\n\nvar Z_NO_FLUSH = 0;\nvar Z_FINISH = 4;\n\nvar Z_OK = 0;\nvar Z_STREAM_END = 1;\nvar Z_SYNC_FLUSH = 2;\n\nvar Z_DEFAULT_COMPRESSION = -1;\n\nvar Z_DEFAULT_STRATEGY = 0;\n\nvar Z_DEFLATED = 8;\n\n/* ===========================================================================*/\n\n\n/**\n * class Deflate\n *\n * Generic JS-style wrapper for zlib calls. If you don't need\n * streaming behaviour - use more simple functions: [[deflate]],\n * [[deflateRaw]] and [[gzip]].\n **/\n\n/* internal\n * Deflate.chunks -> Array\n *\n * Chunks of output data, if [[Deflate#onData]] not overriden.\n **/\n\n/**\n * Deflate.result -> Uint8Array|Array\n *\n * Compressed result, generated by default [[Deflate#onData]]\n * and [[Deflate#onEnd]] handlers. Filled after you push last chunk\n * (call [[Deflate#push]] with `Z_FINISH` / `true` param) or if you\n * push a chunk with explicit flush (call [[Deflate#push]] with\n * `Z_SYNC_FLUSH` param).\n **/\n\n/**\n * Deflate.err -> Number\n *\n * Error code after deflate finished. 0 (Z_OK) on success.\n * You will not need it in real life, because deflate errors\n * are possible only on wrong options or bad `onData` / `onEnd`\n * custom handlers.\n **/\n\n/**\n * Deflate.msg -> String\n *\n * Error message, if [[Deflate.err]] != 0\n **/\n\n\n/**\n * new Deflate(options)\n * - options (Object): zlib deflate options.\n *\n * Creates new deflator instance with specified params. Throws exception\n * on bad params. Supported options:\n *\n * - `level`\n * - `windowBits`\n * - `memLevel`\n * - `strategy`\n * - `dictionary`\n *\n * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)\n * for more information on these.\n *\n * Additional options, for internal needs:\n *\n * - `chunkSize` - size of generated data chunks (16K by default)\n * - `raw` (Boolean) - do raw deflate\n * - `gzip` (Boolean) - create gzip wrapper\n * - `to` (String) - if equal to 'string', then result will be \"binary string\"\n * (each char code [0..255])\n * - `header` (Object) - custom header for gzip\n * - `text` (Boolean) - true if compressed data believed to be text\n * - `time` (Number) - modification time, unix timestamp\n * - `os` (Number) - operation system code\n * - `extra` (Array) - array of bytes with extra data (max 65536)\n * - `name` (String) - file name (binary string)\n * - `comment` (String) - comment (binary string)\n * - `hcrc` (Boolean) - true if header crc should be added\n *\n * ##### Example:\n *\n * ```javascript\n * var pako = require('pako')\n * , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9])\n * , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]);\n *\n * var deflate = new pako.Deflate({ level: 3});\n *\n * deflate.push(chunk1, false);\n * deflate.push(chunk2, true); // true -> last chunk\n *\n * if (deflate.err) { throw new Error(deflate.err); }\n *\n * console.log(deflate.result);\n * ```\n **/\nfunction Deflate(options) {\n if (!(this instanceof Deflate)) return new Deflate(options);\n\n this.options = utils.assign({\n level: Z_DEFAULT_COMPRESSION,\n method: Z_DEFLATED,\n chunkSize: 16384,\n windowBits: 15,\n memLevel: 8,\n strategy: Z_DEFAULT_STRATEGY,\n to: ''\n }, options || {});\n\n var opt = this.options;\n\n if (opt.raw && (opt.windowBits > 0)) {\n opt.windowBits = -opt.windowBits;\n }\n\n else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) {\n opt.windowBits += 16;\n }\n\n this.err = 0; // error code, if happens (0 = Z_OK)\n this.msg = ''; // error message\n this.ended = false; // used to avoid multiple onEnd() calls\n this.chunks = []; // chunks of compressed data\n\n this.strm = new ZStream();\n this.strm.avail_out = 0;\n\n var status = zlib_deflate.deflateInit2(\n this.strm,\n opt.level,\n opt.method,\n opt.windowBits,\n opt.memLevel,\n opt.strategy\n );\n\n if (status !== Z_OK) {\n throw new Error(msg[status]);\n }\n\n if (opt.header) {\n zlib_deflate.deflateSetHeader(this.strm, opt.header);\n }\n\n if (opt.dictionary) {\n var dict;\n // Convert data if needed\n if (typeof opt.dictionary === 'string') {\n // If we need to compress text, change encoding to utf8.\n dict = strings.string2buf(opt.dictionary);\n } else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') {\n dict = new Uint8Array(opt.dictionary);\n } else {\n dict = opt.dictionary;\n }\n\n status = zlib_deflate.deflateSetDictionary(this.strm, dict);\n\n if (status !== Z_OK) {\n throw new Error(msg[status]);\n }\n\n this._dict_set = true;\n }\n}\n\n/**\n * Deflate#push(data[, mode]) -> Boolean\n * - data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be\n * converted to utf8 byte sequence.\n * - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes.\n * See constants. Skipped or `false` means Z_NO_FLUSH, `true` meansh Z_FINISH.\n *\n * Sends input data to deflate pipe, generating [[Deflate#onData]] calls with\n * new compressed chunks. Returns `true` on success. The last data block must have\n * mode Z_FINISH (or `true`). That will flush internal pending buffers and call\n * [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you\n * can use mode Z_SYNC_FLUSH, keeping the compression context.\n *\n * On fail call [[Deflate#onEnd]] with error code and return false.\n *\n * We strongly recommend to use `Uint8Array` on input for best speed (output\n * array format is detected automatically). Also, don't skip last param and always\n * use the same type in your code (boolean or number). That will improve JS speed.\n *\n * For regular `Array`-s make sure all elements are [0..255].\n *\n * ##### Example\n *\n * ```javascript\n * push(chunk, false); // push one of data chunks\n * ...\n * push(chunk, true); // push last chunk\n * ```\n **/\nDeflate.prototype.push = function (data, mode) {\n var strm = this.strm;\n var chunkSize = this.options.chunkSize;\n var status, _mode;\n\n if (this.ended) { return false; }\n\n _mode = (mode === ~~mode) ? mode : ((mode === true) ? Z_FINISH : Z_NO_FLUSH);\n\n // Convert data if needed\n if (typeof data === 'string') {\n // If we need to compress text, change encoding to utf8.\n strm.input = strings.string2buf(data);\n } else if (toString.call(data) === '[object ArrayBuffer]') {\n strm.input = new Uint8Array(data);\n } else {\n strm.input = data;\n }\n\n strm.next_in = 0;\n strm.avail_in = strm.input.length;\n\n do {\n if (strm.avail_out === 0) {\n strm.output = new utils.Buf8(chunkSize);\n strm.next_out = 0;\n strm.avail_out = chunkSize;\n }\n status = zlib_deflate.deflate(strm, _mode); /* no bad return value */\n\n if (status !== Z_STREAM_END && status !== Z_OK) {\n this.onEnd(status);\n this.ended = true;\n return false;\n }\n if (strm.avail_out === 0 || (strm.avail_in === 0 && (_mode === Z_FINISH || _mode === Z_SYNC_FLUSH))) {\n if (this.options.to === 'string') {\n this.onData(strings.buf2binstring(utils.shrinkBuf(strm.output, strm.next_out)));\n } else {\n this.onData(utils.shrinkBuf(strm.output, strm.next_out));\n }\n }\n } while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== Z_STREAM_END);\n\n // Finalize on the last chunk.\n if (_mode === Z_FINISH) {\n status = zlib_deflate.deflateEnd(this.strm);\n this.onEnd(status);\n this.ended = true;\n return status === Z_OK;\n }\n\n // callback interim results if Z_SYNC_FLUSH.\n if (_mode === Z_SYNC_FLUSH) {\n this.onEnd(Z_OK);\n strm.avail_out = 0;\n return true;\n }\n\n return true;\n};\n\n\n/**\n * Deflate#onData(chunk) -> Void\n * - chunk (Uint8Array|Array|String): ouput data. Type of array depends\n * on js engine support. When string output requested, each chunk\n * will be string.\n *\n * By default, stores data blocks in `chunks[]` property and glue\n * those in `onEnd`. Override this handler, if you need another behaviour.\n **/\nDeflate.prototype.onData = function (chunk) {\n this.chunks.push(chunk);\n};\n\n\n/**\n * Deflate#onEnd(status) -> Void\n * - status (Number): deflate status. 0 (Z_OK) on success,\n * other if not.\n *\n * Called once after you tell deflate that the input stream is\n * complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH)\n * or if an error happened. By default - join collected chunks,\n * free memory and fill `results` / `err` properties.\n **/\nDeflate.prototype.onEnd = function (status) {\n // On success - join\n if (status === Z_OK) {\n if (this.options.to === 'string') {\n this.result = this.chunks.join('');\n } else {\n this.result = utils.flattenChunks(this.chunks);\n }\n }\n this.chunks = [];\n this.err = status;\n this.msg = this.strm.msg;\n};\n\n\n/**\n * deflate(data[, options]) -> Uint8Array|Array|String\n * - data (Uint8Array|Array|String): input data to compress.\n * - options (Object): zlib deflate options.\n *\n * Compress `data` with deflate algorithm and `options`.\n *\n * Supported options are:\n *\n * - level\n * - windowBits\n * - memLevel\n * - strategy\n * - dictionary\n *\n * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)\n * for more information on these.\n *\n * Sugar (options):\n *\n * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify\n * negative windowBits implicitly.\n * - `to` (String) - if equal to 'string', then result will be \"binary string\"\n * (each char code [0..255])\n *\n * ##### Example:\n *\n * ```javascript\n * var pako = require('pako')\n * , data = Uint8Array([1,2,3,4,5,6,7,8,9]);\n *\n * console.log(pako.deflate(data));\n * ```\n **/\nfunction deflate(input, options) {\n var deflator = new Deflate(options);\n\n deflator.push(input, true);\n\n // That will never happens, if you don't cheat with options :)\n if (deflator.err) { throw deflator.msg || msg[deflator.err]; }\n\n return deflator.result;\n}\n\n\n/**\n * deflateRaw(data[, options]) -> Uint8Array|Array|String\n * - data (Uint8Array|Array|String): input data to compress.\n * - options (Object): zlib deflate options.\n *\n * The same as [[deflate]], but creates raw data, without wrapper\n * (header and adler32 crc).\n **/\nfunction deflateRaw(input, options) {\n options = options || {};\n options.raw = true;\n return deflate(input, options);\n}\n\n\n/**\n * gzip(data[, options]) -> Uint8Array|Array|String\n * - data (Uint8Array|Array|String): input data to compress.\n * - options (Object): zlib deflate options.\n *\n * The same as [[deflate]], but create gzip wrapper instead of\n * deflate one.\n **/\nfunction gzip(input, options) {\n options = options || {};\n options.gzip = true;\n return deflate(input, options);\n}\n\n\nexports.Deflate = Deflate;\nexports.deflate = deflate;\nexports.deflateRaw = deflateRaw;\nexports.gzip = gzip;\n","'use strict';\n\n// See state defs from inflate.js\nvar BAD = 30; /* got a data error -- remain here until reset */\nvar TYPE = 12; /* i: waiting for type bits, including last-flag bit */\n\n/*\n Decode literal, length, and distance codes and write out the resulting\n literal and match bytes until either not enough input or output is\n available, an end-of-block is encountered, or a data error is encountered.\n When large enough input and output buffers are supplied to inflate(), for\n example, a 16K input buffer and a 64K output buffer, more than 95% of the\n inflate execution time is spent in this routine.\n\n Entry assumptions:\n\n state.mode === LEN\n strm.avail_in >= 6\n strm.avail_out >= 258\n start >= strm.avail_out\n state.bits < 8\n\n On return, state.mode is one of:\n\n LEN -- ran out of enough output space or enough available input\n TYPE -- reached end of block code, inflate() to interpret next block\n BAD -- error in block data\n\n Notes:\n\n - The maximum input bits used by a length/distance pair is 15 bits for the\n length code, 5 bits for the length extra, 15 bits for the distance code,\n and 13 bits for the distance extra. This totals 48 bits, or six bytes.\n Therefore if strm.avail_in >= 6, then there is enough input to avoid\n checking for available input while decoding.\n\n - The maximum bytes that a single length/distance pair can output is 258\n bytes, which is the maximum length that can be coded. inflate_fast()\n requires strm.avail_out >= 258 for each loop to avoid checking for\n output space.\n */\nmodule.exports = function inflate_fast(strm, start) {\n var state;\n var _in; /* local strm.input */\n var last; /* have enough input while in < last */\n var _out; /* local strm.output */\n var beg; /* inflate()'s initial strm.output */\n var end; /* while out < end, enough space available */\n//#ifdef INFLATE_STRICT\n var dmax; /* maximum distance from zlib header */\n//#endif\n var wsize; /* window size or zero if not using window */\n var whave; /* valid bytes in the window */\n var wnext; /* window write index */\n // Use `s_window` instead `window`, avoid conflict with instrumentation tools\n var s_window; /* allocated sliding window, if wsize != 0 */\n var hold; /* local strm.hold */\n var bits; /* local strm.bits */\n var lcode; /* local strm.lencode */\n var dcode; /* local strm.distcode */\n var lmask; /* mask for first level of length codes */\n var dmask; /* mask for first level of distance codes */\n var here; /* retrieved table entry */\n var op; /* code bits, operation, extra bits, or */\n /* window position, window bytes to copy */\n var len; /* match length, unused bytes */\n var dist; /* match distance */\n var from; /* where to copy match from */\n var from_source;\n\n\n var input, output; // JS specific, because we have no pointers\n\n /* copy state to local variables */\n state = strm.state;\n //here = state.here;\n _in = strm.next_in;\n input = strm.input;\n last = _in + (strm.avail_in - 5);\n _out = strm.next_out;\n output = strm.output;\n beg = _out - (start - strm.avail_out);\n end = _out + (strm.avail_out - 257);\n//#ifdef INFLATE_STRICT\n dmax = state.dmax;\n//#endif\n wsize = state.wsize;\n whave = state.whave;\n wnext = state.wnext;\n s_window = state.window;\n hold = state.hold;\n bits = state.bits;\n lcode = state.lencode;\n dcode = state.distcode;\n lmask = (1 << state.lenbits) - 1;\n dmask = (1 << state.distbits) - 1;\n\n\n /* decode literals and length/distances until end-of-block or not enough\n input data or output space */\n\n top:\n do {\n if (bits < 15) {\n hold += input[_in++] << bits;\n bits += 8;\n hold += input[_in++] << bits;\n bits += 8;\n }\n\n here = lcode[hold & lmask];\n\n dolen:\n for (;;) { // Goto emulation\n op = here >>> 24/*here.bits*/;\n hold >>>= op;\n bits -= op;\n op = (here >>> 16) & 0xff/*here.op*/;\n if (op === 0) { /* literal */\n //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?\n // \"inflate: literal '%c'\\n\" :\n // \"inflate: literal 0x%02x\\n\", here.val));\n output[_out++] = here & 0xffff/*here.val*/;\n }\n else if (op & 16) { /* length base */\n len = here & 0xffff/*here.val*/;\n op &= 15; /* number of extra bits */\n if (op) {\n if (bits < op) {\n hold += input[_in++] << bits;\n bits += 8;\n }\n len += hold & ((1 << op) - 1);\n hold >>>= op;\n bits -= op;\n }\n //Tracevv((stderr, \"inflate: length %u\\n\", len));\n if (bits < 15) {\n hold += input[_in++] << bits;\n bits += 8;\n hold += input[_in++] << bits;\n bits += 8;\n }\n here = dcode[hold & dmask];\n\n dodist:\n for (;;) { // goto emulation\n op = here >>> 24/*here.bits*/;\n hold >>>= op;\n bits -= op;\n op = (here >>> 16) & 0xff/*here.op*/;\n\n if (op & 16) { /* distance base */\n dist = here & 0xffff/*here.val*/;\n op &= 15; /* number of extra bits */\n if (bits < op) {\n hold += input[_in++] << bits;\n bits += 8;\n if (bits < op) {\n hold += input[_in++] << bits;\n bits += 8;\n }\n }\n dist += hold & ((1 << op) - 1);\n//#ifdef INFLATE_STRICT\n if (dist > dmax) {\n strm.msg = 'invalid distance too far back';\n state.mode = BAD;\n break top;\n }\n//#endif\n hold >>>= op;\n bits -= op;\n //Tracevv((stderr, \"inflate: distance %u\\n\", dist));\n op = _out - beg; /* max distance in output */\n if (dist > op) { /* see if copy from window */\n op = dist - op; /* distance back in window */\n if (op > whave) {\n if (state.sane) {\n strm.msg = 'invalid distance too far back';\n state.mode = BAD;\n break top;\n }\n\n// (!) This block is disabled in zlib defailts,\n// don't enable it for binary compatibility\n//#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR\n// if (len <= op - whave) {\n// do {\n// output[_out++] = 0;\n// } while (--len);\n// continue top;\n// }\n// len -= op - whave;\n// do {\n// output[_out++] = 0;\n// } while (--op > whave);\n// if (op === 0) {\n// from = _out - dist;\n// do {\n// output[_out++] = output[from++];\n// } while (--len);\n// continue top;\n// }\n//#endif\n }\n from = 0; // window index\n from_source = s_window;\n if (wnext === 0) { /* very common case */\n from += wsize - op;\n if (op < len) { /* some from window */\n len -= op;\n do {\n output[_out++] = s_window[from++];\n } while (--op);\n from = _out - dist; /* rest from output */\n from_source = output;\n }\n }\n else if (wnext < op) { /* wrap around window */\n from += wsize + wnext - op;\n op -= wnext;\n if (op < len) { /* some from end of window */\n len -= op;\n do {\n output[_out++] = s_window[from++];\n } while (--op);\n from = 0;\n if (wnext < len) { /* some from start of window */\n op = wnext;\n len -= op;\n do {\n output[_out++] = s_window[from++];\n } while (--op);\n from = _out - dist; /* rest from output */\n from_source = output;\n }\n }\n }\n else { /* contiguous in window */\n from += wnext - op;\n if (op < len) { /* some from window */\n len -= op;\n do {\n output[_out++] = s_window[from++];\n } while (--op);\n from = _out - dist; /* rest from output */\n from_source = output;\n }\n }\n while (len > 2) {\n output[_out++] = from_source[from++];\n output[_out++] = from_source[from++];\n output[_out++] = from_source[from++];\n len -= 3;\n }\n if (len) {\n output[_out++] = from_source[from++];\n if (len > 1) {\n output[_out++] = from_source[from++];\n }\n }\n }\n else {\n from = _out - dist; /* copy direct from output */\n do { /* minimum length is three */\n output[_out++] = output[from++];\n output[_out++] = output[from++];\n output[_out++] = output[from++];\n len -= 3;\n } while (len > 2);\n if (len) {\n output[_out++] = output[from++];\n if (len > 1) {\n output[_out++] = output[from++];\n }\n }\n }\n }\n else if ((op & 64) === 0) { /* 2nd level distance code */\n here = dcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))];\n continue dodist;\n }\n else {\n strm.msg = 'invalid distance code';\n state.mode = BAD;\n break top;\n }\n\n break; // need to emulate goto via \"continue\"\n }\n }\n else if ((op & 64) === 0) { /* 2nd level length code */\n here = lcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))];\n continue dolen;\n }\n else if (op & 32) { /* end-of-block */\n //Tracevv((stderr, \"inflate: end of block\\n\"));\n state.mode = TYPE;\n break top;\n }\n else {\n strm.msg = 'invalid literal/length code';\n state.mode = BAD;\n break top;\n }\n\n break; // need to emulate goto via \"continue\"\n }\n } while (_in < last && _out < end);\n\n /* return unused bytes (on entry, bits < 8, so in won't go too far back) */\n len = bits >> 3;\n _in -= len;\n bits -= len << 3;\n hold &= (1 << bits) - 1;\n\n /* update state and return */\n strm.next_in = _in;\n strm.next_out = _out;\n strm.avail_in = (_in < last ? 5 + (last - _in) : 5 - (_in - last));\n strm.avail_out = (_out < end ? 257 + (end - _out) : 257 - (_out - end));\n state.hold = hold;\n state.bits = bits;\n return;\n};\n","'use strict';\n\n\nvar utils = require('../utils/common');\n\nvar MAXBITS = 15;\nvar ENOUGH_LENS = 852;\nvar ENOUGH_DISTS = 592;\n//var ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS);\n\nvar CODES = 0;\nvar LENS = 1;\nvar DISTS = 2;\n\nvar lbase = [ /* Length codes 257..285 base */\n 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,\n 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0\n];\n\nvar lext = [ /* Length codes 257..285 extra */\n 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,\n 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78\n];\n\nvar dbase = [ /* Distance codes 0..29 base */\n 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,\n 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,\n 8193, 12289, 16385, 24577, 0, 0\n];\n\nvar dext = [ /* Distance codes 0..29 extra */\n 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,\n 23, 23, 24, 24, 25, 25, 26, 26, 27, 27,\n 28, 28, 29, 29, 64, 64\n];\n\nmodule.exports = function inflate_table(type, lens, lens_index, codes, table, table_index, work, opts)\n{\n var bits = opts.bits;\n //here = opts.here; /* table entry for duplication */\n\n var len = 0; /* a code's length in bits */\n var sym = 0; /* index of code symbols */\n var min = 0, max = 0; /* minimum and maximum code lengths */\n var root = 0; /* number of index bits for root table */\n var curr = 0; /* number of index bits for current table */\n var drop = 0; /* code bits to drop for sub-table */\n var left = 0; /* number of prefix codes available */\n var used = 0; /* code entries in table used */\n var huff = 0; /* Huffman code */\n var incr; /* for incrementing code, index */\n var fill; /* index for replicating entries */\n var low; /* low bits for current root entry */\n var mask; /* mask for low root bits */\n var next; /* next available space in table */\n var base = null; /* base value table to use */\n var base_index = 0;\n// var shoextra; /* extra bits table to use */\n var end; /* use base and extra for symbol > end */\n var count = new utils.Buf16(MAXBITS + 1); //[MAXBITS+1]; /* number of codes of each length */\n var offs = new utils.Buf16(MAXBITS + 1); //[MAXBITS+1]; /* offsets in table for each length */\n var extra = null;\n var extra_index = 0;\n\n var here_bits, here_op, here_val;\n\n /*\n Process a set of code lengths to create a canonical Huffman code. The\n code lengths are lens[0..codes-1]. Each length corresponds to the\n symbols 0..codes-1. The Huffman code is generated by first sorting the\n symbols by length from short to long, and retaining the symbol order\n for codes with equal lengths. Then the code starts with all zero bits\n for the first code of the shortest length, and the codes are integer\n increments for the same length, and zeros are appended as the length\n increases. For the deflate format, these bits are stored backwards\n from their more natural integer increment ordering, and so when the\n decoding tables are built in the large loop below, the integer codes\n are incremented backwards.\n\n This routine assumes, but does not check, that all of the entries in\n lens[] are in the range 0..MAXBITS. The caller must assure this.\n 1..MAXBITS is interpreted as that code length. zero means that that\n symbol does not occur in this code.\n\n The codes are sorted by computing a count of codes for each length,\n creating from that a table of starting indices for each length in the\n sorted table, and then entering the symbols in order in the sorted\n table. The sorted table is work[], with that space being provided by\n the caller.\n\n The length counts are used for other purposes as well, i.e. finding\n the minimum and maximum length codes, determining if there are any\n codes at all, checking for a valid set of lengths, and looking ahead\n at length counts to determine sub-table sizes when building the\n decoding tables.\n */\n\n /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */\n for (len = 0; len <= MAXBITS; len++) {\n count[len] = 0;\n }\n for (sym = 0; sym < codes; sym++) {\n count[lens[lens_index + sym]]++;\n }\n\n /* bound code lengths, force root to be within code lengths */\n root = bits;\n for (max = MAXBITS; max >= 1; max--) {\n if (count[max] !== 0) { break; }\n }\n if (root > max) {\n root = max;\n }\n if (max === 0) { /* no symbols to code at all */\n //table.op[opts.table_index] = 64; //here.op = (var char)64; /* invalid code marker */\n //table.bits[opts.table_index] = 1; //here.bits = (var char)1;\n //table.val[opts.table_index++] = 0; //here.val = (var short)0;\n table[table_index++] = (1 << 24) | (64 << 16) | 0;\n\n\n //table.op[opts.table_index] = 64;\n //table.bits[opts.table_index] = 1;\n //table.val[opts.table_index++] = 0;\n table[table_index++] = (1 << 24) | (64 << 16) | 0;\n\n opts.bits = 1;\n return 0; /* no symbols, but wait for decoding to report error */\n }\n for (min = 1; min < max; min++) {\n if (count[min] !== 0) { break; }\n }\n if (root < min) {\n root = min;\n }\n\n /* check for an over-subscribed or incomplete set of lengths */\n left = 1;\n for (len = 1; len <= MAXBITS; len++) {\n left <<= 1;\n left -= count[len];\n if (left < 0) {\n return -1;\n } /* over-subscribed */\n }\n if (left > 0 && (type === CODES || max !== 1)) {\n return -1; /* incomplete set */\n }\n\n /* generate offsets into symbol table for each length for sorting */\n offs[1] = 0;\n for (len = 1; len < MAXBITS; len++) {\n offs[len + 1] = offs[len] + count[len];\n }\n\n /* sort symbols by length, by symbol order within each length */\n for (sym = 0; sym < codes; sym++) {\n if (lens[lens_index + sym] !== 0) {\n work[offs[lens[lens_index + sym]]++] = sym;\n }\n }\n\n /*\n Create and fill in decoding tables. In this loop, the table being\n filled is at next and has curr index bits. The code being used is huff\n with length len. That code is converted to an index by dropping drop\n bits off of the bottom. For codes where len is less than drop + curr,\n those top drop + curr - len bits are incremented through all values to\n fill the table with replicated entries.\n\n root is the number of index bits for the root table. When len exceeds\n root, sub-tables are created pointed to by the root entry with an index\n of the low root bits of huff. This is saved in low to check for when a\n new sub-table should be started. drop is zero when the root table is\n being filled, and drop is root when sub-tables are being filled.\n\n When a new sub-table is needed, it is necessary to look ahead in the\n code lengths to determine what size sub-table is needed. The length\n counts are used for this, and so count[] is decremented as codes are\n entered in the tables.\n\n used keeps track of how many table entries have been allocated from the\n provided *table space. It is checked for LENS and DIST tables against\n the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in\n the initial root table size constants. See the comments in inftrees.h\n for more information.\n\n sym increments through all symbols, and the loop terminates when\n all codes of length max, i.e. all codes, have been processed. This\n routine permits incomplete codes, so another loop after this one fills\n in the rest of the decoding tables with invalid code markers.\n */\n\n /* set up for code type */\n // poor man optimization - use if-else instead of switch,\n // to avoid deopts in old v8\n if (type === CODES) {\n base = extra = work; /* dummy value--not used */\n end = 19;\n\n } else if (type === LENS) {\n base = lbase;\n base_index -= 257;\n extra = lext;\n extra_index -= 257;\n end = 256;\n\n } else { /* DISTS */\n base = dbase;\n extra = dext;\n end = -1;\n }\n\n /* initialize opts for loop */\n huff = 0; /* starting code */\n sym = 0; /* starting code symbol */\n len = min; /* starting code length */\n next = table_index; /* current table to fill in */\n curr = root; /* current table index bits */\n drop = 0; /* current bits to drop from code for index */\n low = -1; /* trigger new sub-table when len > root */\n used = 1 << root; /* use root table entries */\n mask = used - 1; /* mask for comparing low */\n\n /* check available table space */\n if ((type === LENS && used > ENOUGH_LENS) ||\n (type === DISTS && used > ENOUGH_DISTS)) {\n return 1;\n }\n\n /* process all codes and make table entries */\n for (;;) {\n /* create table entry */\n here_bits = len - drop;\n if (work[sym] < end) {\n here_op = 0;\n here_val = work[sym];\n }\n else if (work[sym] > end) {\n here_op = extra[extra_index + work[sym]];\n here_val = base[base_index + work[sym]];\n }\n else {\n here_op = 32 + 64; /* end of block */\n here_val = 0;\n }\n\n /* replicate for those indices with low len bits equal to huff */\n incr = 1 << (len - drop);\n fill = 1 << curr;\n min = fill; /* save offset to next table */\n do {\n fill -= incr;\n table[next + (huff >> drop) + fill] = (here_bits << 24) | (here_op << 16) | here_val |0;\n } while (fill !== 0);\n\n /* backwards increment the len-bit code huff */\n incr = 1 << (len - 1);\n while (huff & incr) {\n incr >>= 1;\n }\n if (incr !== 0) {\n huff &= incr - 1;\n huff += incr;\n } else {\n huff = 0;\n }\n\n /* go to next symbol, update count, len */\n sym++;\n if (--count[len] === 0) {\n if (len === max) { break; }\n len = lens[lens_index + work[sym]];\n }\n\n /* create new sub-table if needed */\n if (len > root && (huff & mask) !== low) {\n /* if first time, transition to sub-tables */\n if (drop === 0) {\n drop = root;\n }\n\n /* increment past last table */\n next += min; /* here min is 1 << curr */\n\n /* determine length of next table */\n curr = len - drop;\n left = 1 << curr;\n while (curr + drop < max) {\n left -= count[curr + drop];\n if (left <= 0) { break; }\n curr++;\n left <<= 1;\n }\n\n /* check for enough space */\n used += 1 << curr;\n if ((type === LENS && used > ENOUGH_LENS) ||\n (type === DISTS && used > ENOUGH_DISTS)) {\n return 1;\n }\n\n /* point entry in root table to sub-table */\n low = huff & mask;\n /*table.op[low] = curr;\n table.bits[low] = root;\n table.val[low] = next - opts.table_index;*/\n table[low] = (root << 24) | (curr << 16) | (next - table_index) |0;\n }\n }\n\n /* fill in remaining table entry if code is incomplete (guaranteed to have\n at most one remaining entry, since if the code is incomplete, the\n maximum code length that was allowed to get this far is one bit) */\n if (huff !== 0) {\n //table.op[next + huff] = 64; /* invalid code marker */\n //table.bits[next + huff] = len - drop;\n //table.val[next + huff] = 0;\n table[next + huff] = ((len - drop) << 24) | (64 << 16) |0;\n }\n\n /* set return parameters */\n //opts.table_index += used;\n opts.bits = root;\n return 0;\n};\n","'use strict';\n\n\nvar utils = require('../utils/common');\nvar adler32 = require('./adler32');\nvar crc32 = require('./crc32');\nvar inflate_fast = require('./inffast');\nvar inflate_table = require('./inftrees');\n\nvar CODES = 0;\nvar LENS = 1;\nvar DISTS = 2;\n\n/* Public constants ==========================================================*/\n/* ===========================================================================*/\n\n\n/* Allowed flush values; see deflate() and inflate() below for details */\n//var Z_NO_FLUSH = 0;\n//var Z_PARTIAL_FLUSH = 1;\n//var Z_SYNC_FLUSH = 2;\n//var Z_FULL_FLUSH = 3;\nvar Z_FINISH = 4;\nvar Z_BLOCK = 5;\nvar Z_TREES = 6;\n\n\n/* Return codes for the compression/decompression functions. Negative values\n * are errors, positive values are used for special but normal events.\n */\nvar Z_OK = 0;\nvar Z_STREAM_END = 1;\nvar Z_NEED_DICT = 2;\n//var Z_ERRNO = -1;\nvar Z_STREAM_ERROR = -2;\nvar Z_DATA_ERROR = -3;\nvar Z_MEM_ERROR = -4;\nvar Z_BUF_ERROR = -5;\n//var Z_VERSION_ERROR = -6;\n\n/* The deflate compression method */\nvar Z_DEFLATED = 8;\n\n\n/* STATES ====================================================================*/\n/* ===========================================================================*/\n\n\nvar HEAD = 1; /* i: waiting for magic header */\nvar FLAGS = 2; /* i: waiting for method and flags (gzip) */\nvar TIME = 3; /* i: waiting for modification time (gzip) */\nvar OS = 4; /* i: waiting for extra flags and operating system (gzip) */\nvar EXLEN = 5; /* i: waiting for extra length (gzip) */\nvar EXTRA = 6; /* i: waiting for extra bytes (gzip) */\nvar NAME = 7; /* i: waiting for end of file name (gzip) */\nvar COMMENT = 8; /* i: waiting for end of comment (gzip) */\nvar HCRC = 9; /* i: waiting for header crc (gzip) */\nvar DICTID = 10; /* i: waiting for dictionary check value */\nvar DICT = 11; /* waiting for inflateSetDictionary() call */\nvar TYPE = 12; /* i: waiting for type bits, including last-flag bit */\nvar TYPEDO = 13; /* i: same, but skip check to exit inflate on new block */\nvar STORED = 14; /* i: waiting for stored size (length and complement) */\nvar COPY_ = 15; /* i/o: same as COPY below, but only first time in */\nvar COPY = 16; /* i/o: waiting for input or output to copy stored block */\nvar TABLE = 17; /* i: waiting for dynamic block table lengths */\nvar LENLENS = 18; /* i: waiting for code length code lengths */\nvar CODELENS = 19; /* i: waiting for length/lit and distance code lengths */\nvar LEN_ = 20; /* i: same as LEN below, but only first time in */\nvar LEN = 21; /* i: waiting for length/lit/eob code */\nvar LENEXT = 22; /* i: waiting for length extra bits */\nvar DIST = 23; /* i: waiting for distance code */\nvar DISTEXT = 24; /* i: waiting for distance extra bits */\nvar MATCH = 25; /* o: waiting for output space to copy string */\nvar LIT = 26; /* o: waiting for output space to write literal */\nvar CHECK = 27; /* i: waiting for 32-bit check value */\nvar LENGTH = 28; /* i: waiting for 32-bit length (gzip) */\nvar DONE = 29; /* finished check, done -- remain here until reset */\nvar BAD = 30; /* got a data error -- remain here until reset */\nvar MEM = 31; /* got an inflate() memory error -- remain here until reset */\nvar SYNC = 32; /* looking for synchronization bytes to restart inflate() */\n\n/* ===========================================================================*/\n\n\n\nvar ENOUGH_LENS = 852;\nvar ENOUGH_DISTS = 592;\n//var ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS);\n\nvar MAX_WBITS = 15;\n/* 32K LZ77 window */\nvar DEF_WBITS = MAX_WBITS;\n\n\nfunction zswap32(q) {\n return (((q >>> 24) & 0xff) +\n ((q >>> 8) & 0xff00) +\n ((q & 0xff00) << 8) +\n ((q & 0xff) << 24));\n}\n\n\nfunction InflateState() {\n this.mode = 0; /* current inflate mode */\n this.last = false; /* true if processing last block */\n this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */\n this.havedict = false; /* true if dictionary provided */\n this.flags = 0; /* gzip header method and flags (0 if zlib) */\n this.dmax = 0; /* zlib header max distance (INFLATE_STRICT) */\n this.check = 0; /* protected copy of check value */\n this.total = 0; /* protected copy of output count */\n // TODO: may be {}\n this.head = null; /* where to save gzip header information */\n\n /* sliding window */\n this.wbits = 0; /* log base 2 of requested window size */\n this.wsize = 0; /* window size or zero if not using window */\n this.whave = 0; /* valid bytes in the window */\n this.wnext = 0; /* window write index */\n this.window = null; /* allocated sliding window, if needed */\n\n /* bit accumulator */\n this.hold = 0; /* input bit accumulator */\n this.bits = 0; /* number of bits in \"in\" */\n\n /* for string and stored block copying */\n this.length = 0; /* literal or length of data to copy */\n this.offset = 0; /* distance back to copy string from */\n\n /* for table and code decoding */\n this.extra = 0; /* extra bits needed */\n\n /* fixed and dynamic code tables */\n this.lencode = null; /* starting table for length/literal codes */\n this.distcode = null; /* starting table for distance codes */\n this.lenbits = 0; /* index bits for lencode */\n this.distbits = 0; /* index bits for distcode */\n\n /* dynamic table building */\n this.ncode = 0; /* number of code length code lengths */\n this.nlen = 0; /* number of length code lengths */\n this.ndist = 0; /* number of distance code lengths */\n this.have = 0; /* number of code lengths in lens[] */\n this.next = null; /* next available space in codes[] */\n\n this.lens = new utils.Buf16(320); /* temporary storage for code lengths */\n this.work = new utils.Buf16(288); /* work area for code table building */\n\n /*\n because we don't have pointers in js, we use lencode and distcode directly\n as buffers so we don't need codes\n */\n //this.codes = new utils.Buf32(ENOUGH); /* space for code tables */\n this.lendyn = null; /* dynamic table for length/literal codes (JS specific) */\n this.distdyn = null; /* dynamic table for distance codes (JS specific) */\n this.sane = 0; /* if false, allow invalid distance too far */\n this.back = 0; /* bits back of last unprocessed length/lit */\n this.was = 0; /* initial length of match */\n}\n\nfunction inflateResetKeep(strm) {\n var state;\n\n if (!strm || !strm.state) { return Z_STREAM_ERROR; }\n state = strm.state;\n strm.total_in = strm.total_out = state.total = 0;\n strm.msg = ''; /*Z_NULL*/\n if (state.wrap) { /* to support ill-conceived Java test suite */\n strm.adler = state.wrap & 1;\n }\n state.mode = HEAD;\n state.last = 0;\n state.havedict = 0;\n state.dmax = 32768;\n state.head = null/*Z_NULL*/;\n state.hold = 0;\n state.bits = 0;\n //state.lencode = state.distcode = state.next = state.codes;\n state.lencode = state.lendyn = new utils.Buf32(ENOUGH_LENS);\n state.distcode = state.distdyn = new utils.Buf32(ENOUGH_DISTS);\n\n state.sane = 1;\n state.back = -1;\n //Tracev((stderr, \"inflate: reset\\n\"));\n return Z_OK;\n}\n\nfunction inflateReset(strm) {\n var state;\n\n if (!strm || !strm.state) { return Z_STREAM_ERROR; }\n state = strm.state;\n state.wsize = 0;\n state.whave = 0;\n state.wnext = 0;\n return inflateResetKeep(strm);\n\n}\n\nfunction inflateReset2(strm, windowBits) {\n var wrap;\n var state;\n\n /* get the state */\n if (!strm || !strm.state) { return Z_STREAM_ERROR; }\n state = strm.state;\n\n /* extract wrap request from windowBits parameter */\n if (windowBits < 0) {\n wrap = 0;\n windowBits = -windowBits;\n }\n else {\n wrap = (windowBits >> 4) + 1;\n if (windowBits < 48) {\n windowBits &= 15;\n }\n }\n\n /* set number of window bits, free window if different */\n if (windowBits && (windowBits < 8 || windowBits > 15)) {\n return Z_STREAM_ERROR;\n }\n if (state.window !== null && state.wbits !== windowBits) {\n state.window = null;\n }\n\n /* update state and reset the rest of it */\n state.wrap = wrap;\n state.wbits = windowBits;\n return inflateReset(strm);\n}\n\nfunction inflateInit2(strm, windowBits) {\n var ret;\n var state;\n\n if (!strm) { return Z_STREAM_ERROR; }\n //strm.msg = Z_NULL; /* in case we return an error */\n\n state = new InflateState();\n\n //if (state === Z_NULL) return Z_MEM_ERROR;\n //Tracev((stderr, \"inflate: allocated\\n\"));\n strm.state = state;\n state.window = null/*Z_NULL*/;\n ret = inflateReset2(strm, windowBits);\n if (ret !== Z_OK) {\n strm.state = null/*Z_NULL*/;\n }\n return ret;\n}\n\nfunction inflateInit(strm) {\n return inflateInit2(strm, DEF_WBITS);\n}\n\n\n/*\n Return state with length and distance decoding tables and index sizes set to\n fixed code decoding. Normally this returns fixed tables from inffixed.h.\n If BUILDFIXED is defined, then instead this routine builds the tables the\n first time it's called, and returns those tables the first time and\n thereafter. This reduces the size of the code by about 2K bytes, in\n exchange for a little execution time. However, BUILDFIXED should not be\n used for threaded applications, since the rewriting of the tables and virgin\n may not be thread-safe.\n */\nvar virgin = true;\n\nvar lenfix, distfix; // We have no pointers in JS, so keep tables separate\n\nfunction fixedtables(state) {\n /* build fixed huffman tables if first call (may not be thread safe) */\n if (virgin) {\n var sym;\n\n lenfix = new utils.Buf32(512);\n distfix = new utils.Buf32(32);\n\n /* literal/length table */\n sym = 0;\n while (sym < 144) { state.lens[sym++] = 8; }\n while (sym < 256) { state.lens[sym++] = 9; }\n while (sym < 280) { state.lens[sym++] = 7; }\n while (sym < 288) { state.lens[sym++] = 8; }\n\n inflate_table(LENS, state.lens, 0, 288, lenfix, 0, state.work, { bits: 9 });\n\n /* distance table */\n sym = 0;\n while (sym < 32) { state.lens[sym++] = 5; }\n\n inflate_table(DISTS, state.lens, 0, 32, distfix, 0, state.work, { bits: 5 });\n\n /* do this just once */\n virgin = false;\n }\n\n state.lencode = lenfix;\n state.lenbits = 9;\n state.distcode = distfix;\n state.distbits = 5;\n}\n\n\n/*\n Update the window with the last wsize (normally 32K) bytes written before\n returning. If window does not exist yet, create it. This is only called\n when a window is already in use, or when output has been written during this\n inflate call, but the end of the deflate stream has not been reached yet.\n It is also called to create a window for dictionary data when a dictionary\n is loaded.\n\n Providing output buffers larger than 32K to inflate() should provide a speed\n advantage, since only the last 32K of output is copied to the sliding window\n upon return from inflate(), and since all distances after the first 32K of\n output will fall in the output data, making match copies simpler and faster.\n The advantage may be dependent on the size of the processor's data caches.\n */\nfunction updatewindow(strm, src, end, copy) {\n var dist;\n var state = strm.state;\n\n /* if it hasn't been done already, allocate space for the window */\n if (state.window === null) {\n state.wsize = 1 << state.wbits;\n state.wnext = 0;\n state.whave = 0;\n\n state.window = new utils.Buf8(state.wsize);\n }\n\n /* copy state->wsize or less output bytes into the circular window */\n if (copy >= state.wsize) {\n utils.arraySet(state.window, src, end - state.wsize, state.wsize, 0);\n state.wnext = 0;\n state.whave = state.wsize;\n }\n else {\n dist = state.wsize - state.wnext;\n if (dist > copy) {\n dist = copy;\n }\n //zmemcpy(state->window + state->wnext, end - copy, dist);\n utils.arraySet(state.window, src, end - copy, dist, state.wnext);\n copy -= dist;\n if (copy) {\n //zmemcpy(state->window, end - copy, copy);\n utils.arraySet(state.window, src, end - copy, copy, 0);\n state.wnext = copy;\n state.whave = state.wsize;\n }\n else {\n state.wnext += dist;\n if (state.wnext === state.wsize) { state.wnext = 0; }\n if (state.whave < state.wsize) { state.whave += dist; }\n }\n }\n return 0;\n}\n\nfunction inflate(strm, flush) {\n var state;\n var input, output; // input/output buffers\n var next; /* next input INDEX */\n var put; /* next output INDEX */\n var have, left; /* available input and output */\n var hold; /* bit buffer */\n var bits; /* bits in bit buffer */\n var _in, _out; /* save starting available input and output */\n var copy; /* number of stored or match bytes to copy */\n var from; /* where to copy match bytes from */\n var from_source;\n var here = 0; /* current decoding table entry */\n var here_bits, here_op, here_val; // paked \"here\" denormalized (JS specific)\n //var last; /* parent table entry */\n var last_bits, last_op, last_val; // paked \"last\" denormalized (JS specific)\n var len; /* length to copy for repeats, bits to drop */\n var ret; /* return code */\n var hbuf = new utils.Buf8(4); /* buffer for gzip header crc calculation */\n var opts;\n\n var n; // temporary var for NEED_BITS\n\n var order = /* permutation of code lengths */\n [ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ];\n\n\n if (!strm || !strm.state || !strm.output ||\n (!strm.input && strm.avail_in !== 0)) {\n return Z_STREAM_ERROR;\n }\n\n state = strm.state;\n if (state.mode === TYPE) { state.mode = TYPEDO; } /* skip check */\n\n\n //--- LOAD() ---\n put = strm.next_out;\n output = strm.output;\n left = strm.avail_out;\n next = strm.next_in;\n input = strm.input;\n have = strm.avail_in;\n hold = state.hold;\n bits = state.bits;\n //---\n\n _in = have;\n _out = left;\n ret = Z_OK;\n\n inf_leave: // goto emulation\n for (;;) {\n switch (state.mode) {\n case HEAD:\n if (state.wrap === 0) {\n state.mode = TYPEDO;\n break;\n }\n //=== NEEDBITS(16);\n while (bits < 16) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n if ((state.wrap & 2) && hold === 0x8b1f) { /* gzip header */\n state.check = 0/*crc32(0L, Z_NULL, 0)*/;\n //=== CRC2(state.check, hold);\n hbuf[0] = hold & 0xff;\n hbuf[1] = (hold >>> 8) & 0xff;\n state.check = crc32(state.check, hbuf, 2, 0);\n //===//\n\n //=== INITBITS();\n hold = 0;\n bits = 0;\n //===//\n state.mode = FLAGS;\n break;\n }\n state.flags = 0; /* expect zlib header */\n if (state.head) {\n state.head.done = false;\n }\n if (!(state.wrap & 1) || /* check if zlib header allowed */\n (((hold & 0xff)/*BITS(8)*/ << 8) + (hold >> 8)) % 31) {\n strm.msg = 'incorrect header check';\n state.mode = BAD;\n break;\n }\n if ((hold & 0x0f)/*BITS(4)*/ !== Z_DEFLATED) {\n strm.msg = 'unknown compression method';\n state.mode = BAD;\n break;\n }\n //--- DROPBITS(4) ---//\n hold >>>= 4;\n bits -= 4;\n //---//\n len = (hold & 0x0f)/*BITS(4)*/ + 8;\n if (state.wbits === 0) {\n state.wbits = len;\n }\n else if (len > state.wbits) {\n strm.msg = 'invalid window size';\n state.mode = BAD;\n break;\n }\n state.dmax = 1 << len;\n //Tracev((stderr, \"inflate: zlib header ok\\n\"));\n strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/;\n state.mode = hold & 0x200 ? DICTID : TYPE;\n //=== INITBITS();\n hold = 0;\n bits = 0;\n //===//\n break;\n case FLAGS:\n //=== NEEDBITS(16); */\n while (bits < 16) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n state.flags = hold;\n if ((state.flags & 0xff) !== Z_DEFLATED) {\n strm.msg = 'unknown compression method';\n state.mode = BAD;\n break;\n }\n if (state.flags & 0xe000) {\n strm.msg = 'unknown header flags set';\n state.mode = BAD;\n break;\n }\n if (state.head) {\n state.head.text = ((hold >> 8) & 1);\n }\n if (state.flags & 0x0200) {\n //=== CRC2(state.check, hold);\n hbuf[0] = hold & 0xff;\n hbuf[1] = (hold >>> 8) & 0xff;\n state.check = crc32(state.check, hbuf, 2, 0);\n //===//\n }\n //=== INITBITS();\n hold = 0;\n bits = 0;\n //===//\n state.mode = TIME;\n /* falls through */\n case TIME:\n //=== NEEDBITS(32); */\n while (bits < 32) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n if (state.head) {\n state.head.time = hold;\n }\n if (state.flags & 0x0200) {\n //=== CRC4(state.check, hold)\n hbuf[0] = hold & 0xff;\n hbuf[1] = (hold >>> 8) & 0xff;\n hbuf[2] = (hold >>> 16) & 0xff;\n hbuf[3] = (hold >>> 24) & 0xff;\n state.check = crc32(state.check, hbuf, 4, 0);\n //===\n }\n //=== INITBITS();\n hold = 0;\n bits = 0;\n //===//\n state.mode = OS;\n /* falls through */\n case OS:\n //=== NEEDBITS(16); */\n while (bits < 16) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n if (state.head) {\n state.head.xflags = (hold & 0xff);\n state.head.os = (hold >> 8);\n }\n if (state.flags & 0x0200) {\n //=== CRC2(state.check, hold);\n hbuf[0] = hold & 0xff;\n hbuf[1] = (hold >>> 8) & 0xff;\n state.check = crc32(state.check, hbuf, 2, 0);\n //===//\n }\n //=== INITBITS();\n hold = 0;\n bits = 0;\n //===//\n state.mode = EXLEN;\n /* falls through */\n case EXLEN:\n if (state.flags & 0x0400) {\n //=== NEEDBITS(16); */\n while (bits < 16) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n state.length = hold;\n if (state.head) {\n state.head.extra_len = hold;\n }\n if (state.flags & 0x0200) {\n //=== CRC2(state.check, hold);\n hbuf[0] = hold & 0xff;\n hbuf[1] = (hold >>> 8) & 0xff;\n state.check = crc32(state.check, hbuf, 2, 0);\n //===//\n }\n //=== INITBITS();\n hold = 0;\n bits = 0;\n //===//\n }\n else if (state.head) {\n state.head.extra = null/*Z_NULL*/;\n }\n state.mode = EXTRA;\n /* falls through */\n case EXTRA:\n if (state.flags & 0x0400) {\n copy = state.length;\n if (copy > have) { copy = have; }\n if (copy) {\n if (state.head) {\n len = state.head.extra_len - state.length;\n if (!state.head.extra) {\n // Use untyped array for more conveniend processing later\n state.head.extra = new Array(state.head.extra_len);\n }\n utils.arraySet(\n state.head.extra,\n input,\n next,\n // extra field is limited to 65536 bytes\n // - no need for additional size check\n copy,\n /*len + copy > state.head.extra_max - len ? state.head.extra_max : copy,*/\n len\n );\n //zmemcpy(state.head.extra + len, next,\n // len + copy > state.head.extra_max ?\n // state.head.extra_max - len : copy);\n }\n if (state.flags & 0x0200) {\n state.check = crc32(state.check, input, copy, next);\n }\n have -= copy;\n next += copy;\n state.length -= copy;\n }\n if (state.length) { break inf_leave; }\n }\n state.length = 0;\n state.mode = NAME;\n /* falls through */\n case NAME:\n if (state.flags & 0x0800) {\n if (have === 0) { break inf_leave; }\n copy = 0;\n do {\n // TODO: 2 or 1 bytes?\n len = input[next + copy++];\n /* use constant limit because in js we should not preallocate memory */\n if (state.head && len &&\n (state.length < 65536 /*state.head.name_max*/)) {\n state.head.name += String.fromCharCode(len);\n }\n } while (len && copy < have);\n\n if (state.flags & 0x0200) {\n state.check = crc32(state.check, input, copy, next);\n }\n have -= copy;\n next += copy;\n if (len) { break inf_leave; }\n }\n else if (state.head) {\n state.head.name = null;\n }\n state.length = 0;\n state.mode = COMMENT;\n /* falls through */\n case COMMENT:\n if (state.flags & 0x1000) {\n if (have === 0) { break inf_leave; }\n copy = 0;\n do {\n len = input[next + copy++];\n /* use constant limit because in js we should not preallocate memory */\n if (state.head && len &&\n (state.length < 65536 /*state.head.comm_max*/)) {\n state.head.comment += String.fromCharCode(len);\n }\n } while (len && copy < have);\n if (state.flags & 0x0200) {\n state.check = crc32(state.check, input, copy, next);\n }\n have -= copy;\n next += copy;\n if (len) { break inf_leave; }\n }\n else if (state.head) {\n state.head.comment = null;\n }\n state.mode = HCRC;\n /* falls through */\n case HCRC:\n if (state.flags & 0x0200) {\n //=== NEEDBITS(16); */\n while (bits < 16) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n if (hold !== (state.check & 0xffff)) {\n strm.msg = 'header crc mismatch';\n state.mode = BAD;\n break;\n }\n //=== INITBITS();\n hold = 0;\n bits = 0;\n //===//\n }\n if (state.head) {\n state.head.hcrc = ((state.flags >> 9) & 1);\n state.head.done = true;\n }\n strm.adler = state.check = 0;\n state.mode = TYPE;\n break;\n case DICTID:\n //=== NEEDBITS(32); */\n while (bits < 32) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n strm.adler = state.check = zswap32(hold);\n //=== INITBITS();\n hold = 0;\n bits = 0;\n //===//\n state.mode = DICT;\n /* falls through */\n case DICT:\n if (state.havedict === 0) {\n //--- RESTORE() ---\n strm.next_out = put;\n strm.avail_out = left;\n strm.next_in = next;\n strm.avail_in = have;\n state.hold = hold;\n state.bits = bits;\n //---\n return Z_NEED_DICT;\n }\n strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/;\n state.mode = TYPE;\n /* falls through */\n case TYPE:\n if (flush === Z_BLOCK || flush === Z_TREES) { break inf_leave; }\n /* falls through */\n case TYPEDO:\n if (state.last) {\n //--- BYTEBITS() ---//\n hold >>>= bits & 7;\n bits -= bits & 7;\n //---//\n state.mode = CHECK;\n break;\n }\n //=== NEEDBITS(3); */\n while (bits < 3) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n state.last = (hold & 0x01)/*BITS(1)*/;\n //--- DROPBITS(1) ---//\n hold >>>= 1;\n bits -= 1;\n //---//\n\n switch ((hold & 0x03)/*BITS(2)*/) {\n case 0: /* stored block */\n //Tracev((stderr, \"inflate: stored block%s\\n\",\n // state.last ? \" (last)\" : \"\"));\n state.mode = STORED;\n break;\n case 1: /* fixed block */\n fixedtables(state);\n //Tracev((stderr, \"inflate: fixed codes block%s\\n\",\n // state.last ? \" (last)\" : \"\"));\n state.mode = LEN_; /* decode codes */\n if (flush === Z_TREES) {\n //--- DROPBITS(2) ---//\n hold >>>= 2;\n bits -= 2;\n //---//\n break inf_leave;\n }\n break;\n case 2: /* dynamic block */\n //Tracev((stderr, \"inflate: dynamic codes block%s\\n\",\n // state.last ? \" (last)\" : \"\"));\n state.mode = TABLE;\n break;\n case 3:\n strm.msg = 'invalid block type';\n state.mode = BAD;\n }\n //--- DROPBITS(2) ---//\n hold >>>= 2;\n bits -= 2;\n //---//\n break;\n case STORED:\n //--- BYTEBITS() ---// /* go to byte boundary */\n hold >>>= bits & 7;\n bits -= bits & 7;\n //---//\n //=== NEEDBITS(32); */\n while (bits < 32) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n if ((hold & 0xffff) !== ((hold >>> 16) ^ 0xffff)) {\n strm.msg = 'invalid stored block lengths';\n state.mode = BAD;\n break;\n }\n state.length = hold & 0xffff;\n //Tracev((stderr, \"inflate: stored length %u\\n\",\n // state.length));\n //=== INITBITS();\n hold = 0;\n bits = 0;\n //===//\n state.mode = COPY_;\n if (flush === Z_TREES) { break inf_leave; }\n /* falls through */\n case COPY_:\n state.mode = COPY;\n /* falls through */\n case COPY:\n copy = state.length;\n if (copy) {\n if (copy > have) { copy = have; }\n if (copy > left) { copy = left; }\n if (copy === 0) { break inf_leave; }\n //--- zmemcpy(put, next, copy); ---\n utils.arraySet(output, input, next, copy, put);\n //---//\n have -= copy;\n next += copy;\n left -= copy;\n put += copy;\n state.length -= copy;\n break;\n }\n //Tracev((stderr, \"inflate: stored end\\n\"));\n state.mode = TYPE;\n break;\n case TABLE:\n //=== NEEDBITS(14); */\n while (bits < 14) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n state.nlen = (hold & 0x1f)/*BITS(5)*/ + 257;\n //--- DROPBITS(5) ---//\n hold >>>= 5;\n bits -= 5;\n //---//\n state.ndist = (hold & 0x1f)/*BITS(5)*/ + 1;\n //--- DROPBITS(5) ---//\n hold >>>= 5;\n bits -= 5;\n //---//\n state.ncode = (hold & 0x0f)/*BITS(4)*/ + 4;\n //--- DROPBITS(4) ---//\n hold >>>= 4;\n bits -= 4;\n //---//\n//#ifndef PKZIP_BUG_WORKAROUND\n if (state.nlen > 286 || state.ndist > 30) {\n strm.msg = 'too many length or distance symbols';\n state.mode = BAD;\n break;\n }\n//#endif\n //Tracev((stderr, \"inflate: table sizes ok\\n\"));\n state.have = 0;\n state.mode = LENLENS;\n /* falls through */\n case LENLENS:\n while (state.have < state.ncode) {\n //=== NEEDBITS(3);\n while (bits < 3) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n state.lens[order[state.have++]] = (hold & 0x07);//BITS(3);\n //--- DROPBITS(3) ---//\n hold >>>= 3;\n bits -= 3;\n //---//\n }\n while (state.have < 19) {\n state.lens[order[state.have++]] = 0;\n }\n // We have separate tables & no pointers. 2 commented lines below not needed.\n //state.next = state.codes;\n //state.lencode = state.next;\n // Switch to use dynamic table\n state.lencode = state.lendyn;\n state.lenbits = 7;\n\n opts = { bits: state.lenbits };\n ret = inflate_table(CODES, state.lens, 0, 19, state.lencode, 0, state.work, opts);\n state.lenbits = opts.bits;\n\n if (ret) {\n strm.msg = 'invalid code lengths set';\n state.mode = BAD;\n break;\n }\n //Tracev((stderr, \"inflate: code lengths ok\\n\"));\n state.have = 0;\n state.mode = CODELENS;\n /* falls through */\n case CODELENS:\n while (state.have < state.nlen + state.ndist) {\n for (;;) {\n here = state.lencode[hold & ((1 << state.lenbits) - 1)];/*BITS(state.lenbits)*/\n here_bits = here >>> 24;\n here_op = (here >>> 16) & 0xff;\n here_val = here & 0xffff;\n\n if ((here_bits) <= bits) { break; }\n //--- PULLBYTE() ---//\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n //---//\n }\n if (here_val < 16) {\n //--- DROPBITS(here.bits) ---//\n hold >>>= here_bits;\n bits -= here_bits;\n //---//\n state.lens[state.have++] = here_val;\n }\n else {\n if (here_val === 16) {\n //=== NEEDBITS(here.bits + 2);\n n = here_bits + 2;\n while (bits < n) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n //--- DROPBITS(here.bits) ---//\n hold >>>= here_bits;\n bits -= here_bits;\n //---//\n if (state.have === 0) {\n strm.msg = 'invalid bit length repeat';\n state.mode = BAD;\n break;\n }\n len = state.lens[state.have - 1];\n copy = 3 + (hold & 0x03);//BITS(2);\n //--- DROPBITS(2) ---//\n hold >>>= 2;\n bits -= 2;\n //---//\n }\n else if (here_val === 17) {\n //=== NEEDBITS(here.bits + 3);\n n = here_bits + 3;\n while (bits < n) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n //--- DROPBITS(here.bits) ---//\n hold >>>= here_bits;\n bits -= here_bits;\n //---//\n len = 0;\n copy = 3 + (hold & 0x07);//BITS(3);\n //--- DROPBITS(3) ---//\n hold >>>= 3;\n bits -= 3;\n //---//\n }\n else {\n //=== NEEDBITS(here.bits + 7);\n n = here_bits + 7;\n while (bits < n) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n //--- DROPBITS(here.bits) ---//\n hold >>>= here_bits;\n bits -= here_bits;\n //---//\n len = 0;\n copy = 11 + (hold & 0x7f);//BITS(7);\n //--- DROPBITS(7) ---//\n hold >>>= 7;\n bits -= 7;\n //---//\n }\n if (state.have + copy > state.nlen + state.ndist) {\n strm.msg = 'invalid bit length repeat';\n state.mode = BAD;\n break;\n }\n while (copy--) {\n state.lens[state.have++] = len;\n }\n }\n }\n\n /* handle error breaks in while */\n if (state.mode === BAD) { break; }\n\n /* check for end-of-block code (better have one) */\n if (state.lens[256] === 0) {\n strm.msg = 'invalid code -- missing end-of-block';\n state.mode = BAD;\n break;\n }\n\n /* build code tables -- note: do not change the lenbits or distbits\n values here (9 and 6) without reading the comments in inftrees.h\n concerning the ENOUGH constants, which depend on those values */\n state.lenbits = 9;\n\n opts = { bits: state.lenbits };\n ret = inflate_table(LENS, state.lens, 0, state.nlen, state.lencode, 0, state.work, opts);\n // We have separate tables & no pointers. 2 commented lines below not needed.\n // state.next_index = opts.table_index;\n state.lenbits = opts.bits;\n // state.lencode = state.next;\n\n if (ret) {\n strm.msg = 'invalid literal/lengths set';\n state.mode = BAD;\n break;\n }\n\n state.distbits = 6;\n //state.distcode.copy(state.codes);\n // Switch to use dynamic table\n state.distcode = state.distdyn;\n opts = { bits: state.distbits };\n ret = inflate_table(DISTS, state.lens, state.nlen, state.ndist, state.distcode, 0, state.work, opts);\n // We have separate tables & no pointers. 2 commented lines below not needed.\n // state.next_index = opts.table_index;\n state.distbits = opts.bits;\n // state.distcode = state.next;\n\n if (ret) {\n strm.msg = 'invalid distances set';\n state.mode = BAD;\n break;\n }\n //Tracev((stderr, 'inflate: codes ok\\n'));\n state.mode = LEN_;\n if (flush === Z_TREES) { break inf_leave; }\n /* falls through */\n case LEN_:\n state.mode = LEN;\n /* falls through */\n case LEN:\n if (have >= 6 && left >= 258) {\n //--- RESTORE() ---\n strm.next_out = put;\n strm.avail_out = left;\n strm.next_in = next;\n strm.avail_in = have;\n state.hold = hold;\n state.bits = bits;\n //---\n inflate_fast(strm, _out);\n //--- LOAD() ---\n put = strm.next_out;\n output = strm.output;\n left = strm.avail_out;\n next = strm.next_in;\n input = strm.input;\n have = strm.avail_in;\n hold = state.hold;\n bits = state.bits;\n //---\n\n if (state.mode === TYPE) {\n state.back = -1;\n }\n break;\n }\n state.back = 0;\n for (;;) {\n here = state.lencode[hold & ((1 << state.lenbits) - 1)]; /*BITS(state.lenbits)*/\n here_bits = here >>> 24;\n here_op = (here >>> 16) & 0xff;\n here_val = here & 0xffff;\n\n if (here_bits <= bits) { break; }\n //--- PULLBYTE() ---//\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n //---//\n }\n if (here_op && (here_op & 0xf0) === 0) {\n last_bits = here_bits;\n last_op = here_op;\n last_val = here_val;\n for (;;) {\n here = state.lencode[last_val +\n ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)];\n here_bits = here >>> 24;\n here_op = (here >>> 16) & 0xff;\n here_val = here & 0xffff;\n\n if ((last_bits + here_bits) <= bits) { break; }\n //--- PULLBYTE() ---//\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n //---//\n }\n //--- DROPBITS(last.bits) ---//\n hold >>>= last_bits;\n bits -= last_bits;\n //---//\n state.back += last_bits;\n }\n //--- DROPBITS(here.bits) ---//\n hold >>>= here_bits;\n bits -= here_bits;\n //---//\n state.back += here_bits;\n state.length = here_val;\n if (here_op === 0) {\n //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?\n // \"inflate: literal '%c'\\n\" :\n // \"inflate: literal 0x%02x\\n\", here.val));\n state.mode = LIT;\n break;\n }\n if (here_op & 32) {\n //Tracevv((stderr, \"inflate: end of block\\n\"));\n state.back = -1;\n state.mode = TYPE;\n break;\n }\n if (here_op & 64) {\n strm.msg = 'invalid literal/length code';\n state.mode = BAD;\n break;\n }\n state.extra = here_op & 15;\n state.mode = LENEXT;\n /* falls through */\n case LENEXT:\n if (state.extra) {\n //=== NEEDBITS(state.extra);\n n = state.extra;\n while (bits < n) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n state.length += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/;\n //--- DROPBITS(state.extra) ---//\n hold >>>= state.extra;\n bits -= state.extra;\n //---//\n state.back += state.extra;\n }\n //Tracevv((stderr, \"inflate: length %u\\n\", state.length));\n state.was = state.length;\n state.mode = DIST;\n /* falls through */\n case DIST:\n for (;;) {\n here = state.distcode[hold & ((1 << state.distbits) - 1)];/*BITS(state.distbits)*/\n here_bits = here >>> 24;\n here_op = (here >>> 16) & 0xff;\n here_val = here & 0xffff;\n\n if ((here_bits) <= bits) { break; }\n //--- PULLBYTE() ---//\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n //---//\n }\n if ((here_op & 0xf0) === 0) {\n last_bits = here_bits;\n last_op = here_op;\n last_val = here_val;\n for (;;) {\n here = state.distcode[last_val +\n ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)];\n here_bits = here >>> 24;\n here_op = (here >>> 16) & 0xff;\n here_val = here & 0xffff;\n\n if ((last_bits + here_bits) <= bits) { break; }\n //--- PULLBYTE() ---//\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n //---//\n }\n //--- DROPBITS(last.bits) ---//\n hold >>>= last_bits;\n bits -= last_bits;\n //---//\n state.back += last_bits;\n }\n //--- DROPBITS(here.bits) ---//\n hold >>>= here_bits;\n bits -= here_bits;\n //---//\n state.back += here_bits;\n if (here_op & 64) {\n strm.msg = 'invalid distance code';\n state.mode = BAD;\n break;\n }\n state.offset = here_val;\n state.extra = (here_op) & 15;\n state.mode = DISTEXT;\n /* falls through */\n case DISTEXT:\n if (state.extra) {\n //=== NEEDBITS(state.extra);\n n = state.extra;\n while (bits < n) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n state.offset += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/;\n //--- DROPBITS(state.extra) ---//\n hold >>>= state.extra;\n bits -= state.extra;\n //---//\n state.back += state.extra;\n }\n//#ifdef INFLATE_STRICT\n if (state.offset > state.dmax) {\n strm.msg = 'invalid distance too far back';\n state.mode = BAD;\n break;\n }\n//#endif\n //Tracevv((stderr, \"inflate: distance %u\\n\", state.offset));\n state.mode = MATCH;\n /* falls through */\n case MATCH:\n if (left === 0) { break inf_leave; }\n copy = _out - left;\n if (state.offset > copy) { /* copy from window */\n copy = state.offset - copy;\n if (copy > state.whave) {\n if (state.sane) {\n strm.msg = 'invalid distance too far back';\n state.mode = BAD;\n break;\n }\n// (!) This block is disabled in zlib defailts,\n// don't enable it for binary compatibility\n//#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR\n// Trace((stderr, \"inflate.c too far\\n\"));\n// copy -= state.whave;\n// if (copy > state.length) { copy = state.length; }\n// if (copy > left) { copy = left; }\n// left -= copy;\n// state.length -= copy;\n// do {\n// output[put++] = 0;\n// } while (--copy);\n// if (state.length === 0) { state.mode = LEN; }\n// break;\n//#endif\n }\n if (copy > state.wnext) {\n copy -= state.wnext;\n from = state.wsize - copy;\n }\n else {\n from = state.wnext - copy;\n }\n if (copy > state.length) { copy = state.length; }\n from_source = state.window;\n }\n else { /* copy from output */\n from_source = output;\n from = put - state.offset;\n copy = state.length;\n }\n if (copy > left) { copy = left; }\n left -= copy;\n state.length -= copy;\n do {\n output[put++] = from_source[from++];\n } while (--copy);\n if (state.length === 0) { state.mode = LEN; }\n break;\n case LIT:\n if (left === 0) { break inf_leave; }\n output[put++] = state.length;\n left--;\n state.mode = LEN;\n break;\n case CHECK:\n if (state.wrap) {\n //=== NEEDBITS(32);\n while (bits < 32) {\n if (have === 0) { break inf_leave; }\n have--;\n // Use '|' insdead of '+' to make sure that result is signed\n hold |= input[next++] << bits;\n bits += 8;\n }\n //===//\n _out -= left;\n strm.total_out += _out;\n state.total += _out;\n if (_out) {\n strm.adler = state.check =\n /*UPDATE(state.check, put - _out, _out);*/\n (state.flags ? crc32(state.check, output, _out, put - _out) : adler32(state.check, output, _out, put - _out));\n\n }\n _out = left;\n // NB: crc32 stored as signed 32-bit int, zswap32 returns signed too\n if ((state.flags ? hold : zswap32(hold)) !== state.check) {\n strm.msg = 'incorrect data check';\n state.mode = BAD;\n break;\n }\n //=== INITBITS();\n hold = 0;\n bits = 0;\n //===//\n //Tracev((stderr, \"inflate: check matches trailer\\n\"));\n }\n state.mode = LENGTH;\n /* falls through */\n case LENGTH:\n if (state.wrap && state.flags) {\n //=== NEEDBITS(32);\n while (bits < 32) {\n if (have === 0) { break inf_leave; }\n have--;\n hold += input[next++] << bits;\n bits += 8;\n }\n //===//\n if (hold !== (state.total & 0xffffffff)) {\n strm.msg = 'incorrect length check';\n state.mode = BAD;\n break;\n }\n //=== INITBITS();\n hold = 0;\n bits = 0;\n //===//\n //Tracev((stderr, \"inflate: length matches trailer\\n\"));\n }\n state.mode = DONE;\n /* falls through */\n case DONE:\n ret = Z_STREAM_END;\n break inf_leave;\n case BAD:\n ret = Z_DATA_ERROR;\n break inf_leave;\n case MEM:\n return Z_MEM_ERROR;\n case SYNC:\n /* falls through */\n default:\n return Z_STREAM_ERROR;\n }\n }\n\n // inf_leave <- here is real place for \"goto inf_leave\", emulated via \"break inf_leave\"\n\n /*\n Return from inflate(), updating the total counts and the check value.\n If there was no progress during the inflate() call, return a buffer\n error. Call updatewindow() to create and/or update the window state.\n Note: a memory error from inflate() is non-recoverable.\n */\n\n //--- RESTORE() ---\n strm.next_out = put;\n strm.avail_out = left;\n strm.next_in = next;\n strm.avail_in = have;\n state.hold = hold;\n state.bits = bits;\n //---\n\n if (state.wsize || (_out !== strm.avail_out && state.mode < BAD &&\n (state.mode < CHECK || flush !== Z_FINISH))) {\n if (updatewindow(strm, strm.output, strm.next_out, _out - strm.avail_out)) {\n state.mode = MEM;\n return Z_MEM_ERROR;\n }\n }\n _in -= strm.avail_in;\n _out -= strm.avail_out;\n strm.total_in += _in;\n strm.total_out += _out;\n state.total += _out;\n if (state.wrap && _out) {\n strm.adler = state.check = /*UPDATE(state.check, strm.next_out - _out, _out);*/\n (state.flags ? crc32(state.check, output, _out, strm.next_out - _out) : adler32(state.check, output, _out, strm.next_out - _out));\n }\n strm.data_type = state.bits + (state.last ? 64 : 0) +\n (state.mode === TYPE ? 128 : 0) +\n (state.mode === LEN_ || state.mode === COPY_ ? 256 : 0);\n if (((_in === 0 && _out === 0) || flush === Z_FINISH) && ret === Z_OK) {\n ret = Z_BUF_ERROR;\n }\n return ret;\n}\n\nfunction inflateEnd(strm) {\n\n if (!strm || !strm.state /*|| strm->zfree == (free_func)0*/) {\n return Z_STREAM_ERROR;\n }\n\n var state = strm.state;\n if (state.window) {\n state.window = null;\n }\n strm.state = null;\n return Z_OK;\n}\n\nfunction inflateGetHeader(strm, head) {\n var state;\n\n /* check state */\n if (!strm || !strm.state) { return Z_STREAM_ERROR; }\n state = strm.state;\n if ((state.wrap & 2) === 0) { return Z_STREAM_ERROR; }\n\n /* save header structure */\n state.head = head;\n head.done = false;\n return Z_OK;\n}\n\nfunction inflateSetDictionary(strm, dictionary) {\n var dictLength = dictionary.length;\n\n var state;\n var dictid;\n var ret;\n\n /* check state */\n if (!strm /* == Z_NULL */ || !strm.state /* == Z_NULL */) { return Z_STREAM_ERROR; }\n state = strm.state;\n\n if (state.wrap !== 0 && state.mode !== DICT) {\n return Z_STREAM_ERROR;\n }\n\n /* check for correct dictionary identifier */\n if (state.mode === DICT) {\n dictid = 1; /* adler32(0, null, 0)*/\n /* dictid = adler32(dictid, dictionary, dictLength); */\n dictid = adler32(dictid, dictionary, dictLength, 0);\n if (dictid !== state.check) {\n return Z_DATA_ERROR;\n }\n }\n /* copy dictionary to window using updatewindow(), which will amend the\n existing dictionary if appropriate */\n ret = updatewindow(strm, dictionary, dictLength, dictLength);\n if (ret) {\n state.mode = MEM;\n return Z_MEM_ERROR;\n }\n state.havedict = 1;\n // Tracev((stderr, \"inflate: dictionary set\\n\"));\n return Z_OK;\n}\n\nexports.inflateReset = inflateReset;\nexports.inflateReset2 = inflateReset2;\nexports.inflateResetKeep = inflateResetKeep;\nexports.inflateInit = inflateInit;\nexports.inflateInit2 = inflateInit2;\nexports.inflate = inflate;\nexports.inflateEnd = inflateEnd;\nexports.inflateGetHeader = inflateGetHeader;\nexports.inflateSetDictionary = inflateSetDictionary;\nexports.inflateInfo = 'pako inflate (from Nodeca project)';\n\n/* Not implemented\nexports.inflateCopy = inflateCopy;\nexports.inflateGetDictionary = inflateGetDictionary;\nexports.inflateMark = inflateMark;\nexports.inflatePrime = inflatePrime;\nexports.inflateSync = inflateSync;\nexports.inflateSyncPoint = inflateSyncPoint;\nexports.inflateUndermine = inflateUndermine;\n*/\n","'use strict';\n\n\nmodule.exports = {\n\n /* Allowed flush values; see deflate() and inflate() below for details */\n Z_NO_FLUSH: 0,\n Z_PARTIAL_FLUSH: 1,\n Z_SYNC_FLUSH: 2,\n Z_FULL_FLUSH: 3,\n Z_FINISH: 4,\n Z_BLOCK: 5,\n Z_TREES: 6,\n\n /* Return codes for the compression/decompression functions. Negative values\n * are errors, positive values are used for special but normal events.\n */\n Z_OK: 0,\n Z_STREAM_END: 1,\n Z_NEED_DICT: 2,\n Z_ERRNO: -1,\n Z_STREAM_ERROR: -2,\n Z_DATA_ERROR: -3,\n //Z_MEM_ERROR: -4,\n Z_BUF_ERROR: -5,\n //Z_VERSION_ERROR: -6,\n\n /* compression levels */\n Z_NO_COMPRESSION: 0,\n Z_BEST_SPEED: 1,\n Z_BEST_COMPRESSION: 9,\n Z_DEFAULT_COMPRESSION: -1,\n\n\n Z_FILTERED: 1,\n Z_HUFFMAN_ONLY: 2,\n Z_RLE: 3,\n Z_FIXED: 4,\n Z_DEFAULT_STRATEGY: 0,\n\n /* Possible values of the data_type field (though see inflate()) */\n Z_BINARY: 0,\n Z_TEXT: 1,\n //Z_ASCII: 1, // = Z_TEXT (deprecated)\n Z_UNKNOWN: 2,\n\n /* The deflate compression method */\n Z_DEFLATED: 8\n //Z_NULL: null // Use -1 or null inline, depending on var type\n};\n","'use strict';\n\n\nfunction GZheader() {\n /* true if compressed data believed to be text */\n this.text = 0;\n /* modification time */\n this.time = 0;\n /* extra flags (not used when writing a gzip file) */\n this.xflags = 0;\n /* operating system */\n this.os = 0;\n /* pointer to extra field or Z_NULL if none */\n this.extra = null;\n /* extra field length (valid if extra != Z_NULL) */\n this.extra_len = 0; // Actually, we don't need it in JS,\n // but leave for few code modifications\n\n //\n // Setup limits is not necessary because in js we should not preallocate memory\n // for inflate use constant limit in 65536 bytes\n //\n\n /* space at extra (only when reading header) */\n // this.extra_max = 0;\n /* pointer to zero-terminated file name or Z_NULL */\n this.name = '';\n /* space at name (only when reading header) */\n // this.name_max = 0;\n /* pointer to zero-terminated comment or Z_NULL */\n this.comment = '';\n /* space at comment (only when reading header) */\n // this.comm_max = 0;\n /* true if there was or will be a header crc */\n this.hcrc = 0;\n /* true when done reading gzip header (not used when writing a gzip file) */\n this.done = false;\n}\n\nmodule.exports = GZheader;\n","'use strict';\n\n\nvar zlib_inflate = require('./zlib/inflate');\nvar utils = require('./utils/common');\nvar strings = require('./utils/strings');\nvar c = require('./zlib/constants');\nvar msg = require('./zlib/messages');\nvar ZStream = require('./zlib/zstream');\nvar GZheader = require('./zlib/gzheader');\n\nvar toString = Object.prototype.toString;\n\n/**\n * class Inflate\n *\n * Generic JS-style wrapper for zlib calls. If you don't need\n * streaming behaviour - use more simple functions: [[inflate]]\n * and [[inflateRaw]].\n **/\n\n/* internal\n * inflate.chunks -> Array\n *\n * Chunks of output data, if [[Inflate#onData]] not overriden.\n **/\n\n/**\n * Inflate.result -> Uint8Array|Array|String\n *\n * Uncompressed result, generated by default [[Inflate#onData]]\n * and [[Inflate#onEnd]] handlers. Filled after you push last chunk\n * (call [[Inflate#push]] with `Z_FINISH` / `true` param) or if you\n * push a chunk with explicit flush (call [[Inflate#push]] with\n * `Z_SYNC_FLUSH` param).\n **/\n\n/**\n * Inflate.err -> Number\n *\n * Error code after inflate finished. 0 (Z_OK) on success.\n * Should be checked if broken data possible.\n **/\n\n/**\n * Inflate.msg -> String\n *\n * Error message, if [[Inflate.err]] != 0\n **/\n\n\n/**\n * new Inflate(options)\n * - options (Object): zlib inflate options.\n *\n * Creates new inflator instance with specified params. Throws exception\n * on bad params. Supported options:\n *\n * - `windowBits`\n * - `dictionary`\n *\n * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)\n * for more information on these.\n *\n * Additional options, for internal needs:\n *\n * - `chunkSize` - size of generated data chunks (16K by default)\n * - `raw` (Boolean) - do raw inflate\n * - `to` (String) - if equal to 'string', then result will be converted\n * from utf8 to utf16 (javascript) string. When string output requested,\n * chunk length can differ from `chunkSize`, depending on content.\n *\n * By default, when no options set, autodetect deflate/gzip data format via\n * wrapper header.\n *\n * ##### Example:\n *\n * ```javascript\n * var pako = require('pako')\n * , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9])\n * , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]);\n *\n * var inflate = new pako.Inflate({ level: 3});\n *\n * inflate.push(chunk1, false);\n * inflate.push(chunk2, true); // true -> last chunk\n *\n * if (inflate.err) { throw new Error(inflate.err); }\n *\n * console.log(inflate.result);\n * ```\n **/\nfunction Inflate(options) {\n if (!(this instanceof Inflate)) return new Inflate(options);\n\n this.options = utils.assign({\n chunkSize: 16384,\n windowBits: 0,\n to: ''\n }, options || {});\n\n var opt = this.options;\n\n // Force window size for `raw` data, if not set directly,\n // because we have no header for autodetect.\n if (opt.raw && (opt.windowBits >= 0) && (opt.windowBits < 16)) {\n opt.windowBits = -opt.windowBits;\n if (opt.windowBits === 0) { opt.windowBits = -15; }\n }\n\n // If `windowBits` not defined (and mode not raw) - set autodetect flag for gzip/deflate\n if ((opt.windowBits >= 0) && (opt.windowBits < 16) &&\n !(options && options.windowBits)) {\n opt.windowBits += 32;\n }\n\n // Gzip header has no info about windows size, we can do autodetect only\n // for deflate. So, if window size not set, force it to max when gzip possible\n if ((opt.windowBits > 15) && (opt.windowBits < 48)) {\n // bit 3 (16) -> gzipped data\n // bit 4 (32) -> autodetect gzip/deflate\n if ((opt.windowBits & 15) === 0) {\n opt.windowBits |= 15;\n }\n }\n\n this.err = 0; // error code, if happens (0 = Z_OK)\n this.msg = ''; // error message\n this.ended = false; // used to avoid multiple onEnd() calls\n this.chunks = []; // chunks of compressed data\n\n this.strm = new ZStream();\n this.strm.avail_out = 0;\n\n var status = zlib_inflate.inflateInit2(\n this.strm,\n opt.windowBits\n );\n\n if (status !== c.Z_OK) {\n throw new Error(msg[status]);\n }\n\n this.header = new GZheader();\n\n zlib_inflate.inflateGetHeader(this.strm, this.header);\n}\n\n/**\n * Inflate#push(data[, mode]) -> Boolean\n * - data (Uint8Array|Array|ArrayBuffer|String): input data\n * - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes.\n * See constants. Skipped or `false` means Z_NO_FLUSH, `true` meansh Z_FINISH.\n *\n * Sends input data to inflate pipe, generating [[Inflate#onData]] calls with\n * new output chunks. Returns `true` on success. The last data block must have\n * mode Z_FINISH (or `true`). That will flush internal pending buffers and call\n * [[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you\n * can use mode Z_SYNC_FLUSH, keeping the decompression context.\n *\n * On fail call [[Inflate#onEnd]] with error code and return false.\n *\n * We strongly recommend to use `Uint8Array` on input for best speed (output\n * format is detected automatically). Also, don't skip last param and always\n * use the same type in your code (boolean or number). That will improve JS speed.\n *\n * For regular `Array`-s make sure all elements are [0..255].\n *\n * ##### Example\n *\n * ```javascript\n * push(chunk, false); // push one of data chunks\n * ...\n * push(chunk, true); // push last chunk\n * ```\n **/\nInflate.prototype.push = function (data, mode) {\n var strm = this.strm;\n var chunkSize = this.options.chunkSize;\n var dictionary = this.options.dictionary;\n var status, _mode;\n var next_out_utf8, tail, utf8str;\n var dict;\n\n // Flag to properly process Z_BUF_ERROR on testing inflate call\n // when we check that all output data was flushed.\n var allowBufError = false;\n\n if (this.ended) { return false; }\n _mode = (mode === ~~mode) ? mode : ((mode === true) ? c.Z_FINISH : c.Z_NO_FLUSH);\n\n // Convert data if needed\n if (typeof data === 'string') {\n // Only binary strings can be decompressed on practice\n strm.input = strings.binstring2buf(data);\n } else if (toString.call(data) === '[object ArrayBuffer]') {\n strm.input = new Uint8Array(data);\n } else {\n strm.input = data;\n }\n\n strm.next_in = 0;\n strm.avail_in = strm.input.length;\n\n do {\n if (strm.avail_out === 0) {\n strm.output = new utils.Buf8(chunkSize);\n strm.next_out = 0;\n strm.avail_out = chunkSize;\n }\n\n status = zlib_inflate.inflate(strm, c.Z_NO_FLUSH); /* no bad return value */\n\n if (status === c.Z_NEED_DICT && dictionary) {\n // Convert data if needed\n if (typeof dictionary === 'string') {\n dict = strings.string2buf(dictionary);\n } else if (toString.call(dictionary) === '[object ArrayBuffer]') {\n dict = new Uint8Array(dictionary);\n } else {\n dict = dictionary;\n }\n\n status = zlib_inflate.inflateSetDictionary(this.strm, dict);\n\n }\n\n if (status === c.Z_BUF_ERROR && allowBufError === true) {\n status = c.Z_OK;\n allowBufError = false;\n }\n\n if (status !== c.Z_STREAM_END && status !== c.Z_OK) {\n this.onEnd(status);\n this.ended = true;\n return false;\n }\n\n if (strm.next_out) {\n if (strm.avail_out === 0 || status === c.Z_STREAM_END || (strm.avail_in === 0 && (_mode === c.Z_FINISH || _mode === c.Z_SYNC_FLUSH))) {\n\n if (this.options.to === 'string') {\n\n next_out_utf8 = strings.utf8border(strm.output, strm.next_out);\n\n tail = strm.next_out - next_out_utf8;\n utf8str = strings.buf2string(strm.output, next_out_utf8);\n\n // move tail\n strm.next_out = tail;\n strm.avail_out = chunkSize - tail;\n if (tail) { utils.arraySet(strm.output, strm.output, next_out_utf8, tail, 0); }\n\n this.onData(utf8str);\n\n } else {\n this.onData(utils.shrinkBuf(strm.output, strm.next_out));\n }\n }\n }\n\n // When no more input data, we should check that internal inflate buffers\n // are flushed. The only way to do it when avail_out = 0 - run one more\n // inflate pass. But if output data not exists, inflate return Z_BUF_ERROR.\n // Here we set flag to process this error properly.\n //\n // NOTE. Deflate does not return error in this case and does not needs such\n // logic.\n if (strm.avail_in === 0 && strm.avail_out === 0) {\n allowBufError = true;\n }\n\n } while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== c.Z_STREAM_END);\n\n if (status === c.Z_STREAM_END) {\n _mode = c.Z_FINISH;\n }\n\n // Finalize on the last chunk.\n if (_mode === c.Z_FINISH) {\n status = zlib_inflate.inflateEnd(this.strm);\n this.onEnd(status);\n this.ended = true;\n return status === c.Z_OK;\n }\n\n // callback interim results if Z_SYNC_FLUSH.\n if (_mode === c.Z_SYNC_FLUSH) {\n this.onEnd(c.Z_OK);\n strm.avail_out = 0;\n return true;\n }\n\n return true;\n};\n\n\n/**\n * Inflate#onData(chunk) -> Void\n * - chunk (Uint8Array|Array|String): ouput data. Type of array depends\n * on js engine support. When string output requested, each chunk\n * will be string.\n *\n * By default, stores data blocks in `chunks[]` property and glue\n * those in `onEnd`. Override this handler, if you need another behaviour.\n **/\nInflate.prototype.onData = function (chunk) {\n this.chunks.push(chunk);\n};\n\n\n/**\n * Inflate#onEnd(status) -> Void\n * - status (Number): inflate status. 0 (Z_OK) on success,\n * other if not.\n *\n * Called either after you tell inflate that the input stream is\n * complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH)\n * or if an error happened. By default - join collected chunks,\n * free memory and fill `results` / `err` properties.\n **/\nInflate.prototype.onEnd = function (status) {\n // On success - join\n if (status === c.Z_OK) {\n if (this.options.to === 'string') {\n // Glue & convert here, until we teach pako to send\n // utf8 alligned strings to onData\n this.result = this.chunks.join('');\n } else {\n this.result = utils.flattenChunks(this.chunks);\n }\n }\n this.chunks = [];\n this.err = status;\n this.msg = this.strm.msg;\n};\n\n\n/**\n * inflate(data[, options]) -> Uint8Array|Array|String\n * - data (Uint8Array|Array|String): input data to decompress.\n * - options (Object): zlib inflate options.\n *\n * Decompress `data` with inflate/ungzip and `options`. Autodetect\n * format via wrapper header by default. That's why we don't provide\n * separate `ungzip` method.\n *\n * Supported options are:\n *\n * - windowBits\n *\n * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced)\n * for more information.\n *\n * Sugar (options):\n *\n * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify\n * negative windowBits implicitly.\n * - `to` (String) - if equal to 'string', then result will be converted\n * from utf8 to utf16 (javascript) string. When string output requested,\n * chunk length can differ from `chunkSize`, depending on content.\n *\n *\n * ##### Example:\n *\n * ```javascript\n * var pako = require('pako')\n * , input = pako.deflate([1,2,3,4,5,6,7,8,9])\n * , output;\n *\n * try {\n * output = pako.inflate(input);\n * } catch (err)\n * console.log(err);\n * }\n * ```\n **/\nfunction inflate(input, options) {\n var inflator = new Inflate(options);\n\n inflator.push(input, true);\n\n // That will never happens, if you don't cheat with options :)\n if (inflator.err) { throw inflator.msg || msg[inflator.err]; }\n\n return inflator.result;\n}\n\n\n/**\n * inflateRaw(data[, options]) -> Uint8Array|Array|String\n * - data (Uint8Array|Array|String): input data to decompress.\n * - options (Object): zlib inflate options.\n *\n * The same as [[inflate]], but creates raw data, without wrapper\n * (header and adler32 crc).\n **/\nfunction inflateRaw(input, options) {\n options = options || {};\n options.raw = true;\n return inflate(input, options);\n}\n\n\n/**\n * ungzip(data[, options]) -> Uint8Array|Array|String\n * - data (Uint8Array|Array|String): input data to decompress.\n * - options (Object): zlib inflate options.\n *\n * Just shortcut to [[inflate]], because it autodetects format\n * by header.content. Done for convenience.\n **/\n\n\nexports.Inflate = Inflate;\nexports.inflate = inflate;\nexports.inflateRaw = inflateRaw;\nexports.ungzip = inflate;\n","// Top level file is just a mixin of submodules & constants\n'use strict';\n\nvar assign = require('./lib/utils/common').assign;\n\nvar deflate = require('./lib/deflate');\nvar inflate = require('./lib/inflate');\nvar constants = require('./lib/zlib/constants');\n\nvar pako = {};\n\nassign(pako, deflate, inflate, constants);\n\nmodule.exports = pako;\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* Robert D. Vincent\n*\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\nimport pako from 'pako'\nimport { Filter } from '../core/Filter.js';\nimport { MniVolume } from '../core/MniVolume.js';\n\n\n/**\n* Decode a HDF5 file, but is most likely to be restricted to the features that are\n* used for Minc2 file format.\n* The input \"0\" is an array buffer, the metadata \"debug\" can be set to true to\n* enable a verbose mode.\n*/\nclass Minc2Decoder extends Filter{\n\n constructor(){\n super();\n\n this.setMetadata(\"debug\", false);\n\n this._type_enum = {\n INT8: 1,\n UINT8: 2,\n INT16: 3,\n UINT16: 4,\n INT32: 5,\n UINT32: 6,\n FLT: 7,\n DBL: 8,\n STR: 9\n };\n\n this._type_matching = [\n \"int8\",\n \"uint8\",\n \"int16\",\n \"uint16\",\n \"int32\",\n \"uint32\",\n \"float32\",\n \"float64\",\n \"undef\" // STR type is not compatible with minc\n // we deal rgb8 manually\n ];\n\n this.type_sizes = [0, 1, 1, 2, 2, 4, 4, 4, 8, 0];\n\n this._dv_offset = 0;\n this._align = 8;\n this._little_endian = true;\n this._continuation_queue = [];\n this._dv = null;//new DataView(abuf);\n this._superblk = {};\n this._start_offset = 0;\n this._huge_id = 0;\n\n }\n\n /**\n * [PRIVATE]\n */\n createLink() {\n var r = {};\n // internal/private\n r.hdr_offset = 0; // offset to object header.\n r.data_offset = 0; // offset to actual data.\n r.data_length = 0; // length of data.\n r.n_filled = 0; // counts elements written to array\n r.chunk_size = 0; // size of chunks\n r.sym_btree = 0; // offset of symbol table btree\n r.sym_lheap = 0; // offset of symbol table local heap\n // permanent/global\n r.name = \"\"; // name of this group or dataset.\n r.attributes = {}; // indexed by attribute name.\n r.children = []; // not associative for now.\n r.array = undefined; // actual data, if dataset.\n r.type = -1; // type of data.\n r.inflate = false; // true if need to inflate (gzip).\n r.dims = []; // dimension sizes.\n return r;\n }\n\n\n /**\n * [PRIVATE]\n *\n * Turns out that alignment of the messages in at least the\n * version 1 object header is actually relative to the start\n * of the header. So we update the start position of the\n * header here, so we can refer to it when calculating the\n * alignment in this.checkAlignment().\n */\n startAlignment() {\n this._start_offset = this._dv_offset;\n }\n\n\n /**\n * [PRIVATE]\n */\n checkAlignment() {\n var tmp = this._dv_offset - this._start_offset;\n if ((tmp % this._align) !== 0) {\n var n = this._align - (tmp % this._align);\n this._dv_offset += n;\n if (this.getMetadata(\"debug\")) {\n console.log('skipping ' + n + ' bytes at ' + tmp + ' for alignmnent');\n }\n }\n }\n\n\n /**\n * [PRIVATE]\n *\n * helper functions to manipulate the current DataView offset.\n */\n skip(n_bytes) {\n this._dv_offset += n_bytes;\n }\n\n\n /**\n * [PRIVATE]\n */\n seek(new_offset) {\n this._dv_offset = new_offset;\n }\n\n\n /**\n * [PRIVATE]\n */\n tell() {\n return this._dv_offset;\n }\n\n\n /**\n * [PRIVATE]\n *\n * helper functions for access to our DataView.\n */\n getU8() {\n var v = this._dv.getUint8(this._dv_offset);\n this._dv_offset += 1;\n return v;\n }\n\n\n /**\n * [PRIVATE]\n */\n getU16() {\n var v = this._dv.getUint16(this._dv_offset, this._little_endian);\n this._dv_offset += 2;\n return v;\n }\n\n\n /**\n * [PRIVATE]\n */\n getU32() {\n var v = this._dv.getUint32(this._dv_offset, this._little_endian);\n this._dv_offset += 4;\n return v;\n }\n\n\n /**\n * [PRIVATE]\n */\n getU64() {\n var v = this._dv.getUint64(this._dv_offset, this._little_endian);\n this._dv_offset += 8;\n return v;\n }\n\n\n /**\n * [PRIVATE]\n */\n getF32() {\n var v = this._dv.getFloat32(this._dv_offset, this._little_endian);\n this._dv_offset += 4;\n return v;\n }\n\n\n /**\n * [PRIVATE]\n */\n getF64() {\n var v = this._dv.getFloat64(this._dv_offset, this._little_endian);\n this._dv_offset += 8;\n return v;\n }\n\n\n /**\n * [PRIVATE]\n */\n getOffset(offsz) {\n var v = 0;\n offsz = offsz || this._superblk.offsz;\n if (offsz === 4) {\n v = this._dv.getUint32(this._dv_offset, this._little_endian);\n } else if (offsz === 8) {\n v = this._dv.getUint64(this._dv_offset, this._little_endian);\n } else {\n throw new Error('Unsupported value for offset size ' + offsz);\n }\n this._dv_offset += offsz;\n return v;\n }\n\n\n /**\n * [PRIVATE]\n */\n getLength() {\n var v = this._dv.getUint64(this._dv_offset, this._little_endian);\n this._dv_offset += this._superblk.lensz;\n return v;\n }\n\n\n /**\n * [PRIVATE]\n */\n getString(length) {\n var r = \"\";\n var i;\n var c;\n for (i = 0; i < length; i += 1) {\n c = this.getU8();\n if (c === 0) {\n this._dv_offset += (length - i - 1);\n break;\n }\n r += String.fromCharCode(c);\n }\n return r;\n }\n\n\n /**\n * [PRIVATE]\n */\n getArray(typ, n_bytes, new_off) {\n var value;\n var n_values;\n var new_abuf;\n var abuf = this._getInput();\n var i;\n var spp = this._dv_offset;\n if (new_off) {\n this._dv_offset = new_off;\n }\n switch (typ) {\n case this._type_enum.INT8:\n value = new Int8Array(abuf, this._dv_offset, n_bytes);\n break;\n case this._type_enum.UINT8:\n value = new Uint8Array(abuf, this._dv_offset, n_bytes);\n break;\n case this._type_enum.INT16:\n if ((this._dv_offset % 2) !== 0) {\n new_abuf = new ArrayBuffer(n_bytes);\n n_values = n_bytes / 2;\n value = new Int16Array(new_abuf);\n for (i = 0; i < n_values; i += 1) {\n value[i] = this.getU16();\n }\n } else {\n value = new Int16Array(abuf, this._dv_offset, n_bytes / 2);\n this._dv_offset += n_bytes;\n }\n break;\n case this._type_enum.UINT16:\n if ((this._dv_offset % 2) !== 0) {\n new_abuf = new ArrayBuffer(n_bytes);\n n_values = n_bytes / 2;\n value = new Uint16Array(new_abuf);\n for (i = 0; i < n_values; i += 1) {\n value[i] = this.getU16();\n }\n } else {\n value = new Uint16Array(abuf, this._dv_offset, n_bytes / 2);\n this._dv_offset += n_bytes;\n }\n break;\n case this._type_enum.INT32:\n if ((this._dv_offset % 4) !== 0) {\n new_abuf = new ArrayBuffer(n_bytes);\n n_values = n_bytes / 4;\n value = new Int32Array(new_abuf);\n for (i = 0; i < n_values; i += 1) {\n value[i] = this.getU32();\n }\n } else {\n value = new Int32Array(abuf, this._dv_offset, n_bytes / 4);\n this._dv_offset += n_bytes;\n }\n break;\n case this._type_enum.UINT32:\n if ((this._dv_offset % 4) !== 0) {\n new_abuf = new ArrayBuffer(n_bytes);\n n_values = n_bytes / 4;\n value = new Uint32Array(new_abuf);\n for (i = 0; i < n_values; i += 1) {\n value[i] = this.getU32();\n }\n } else {\n value = new Uint32Array(abuf, this._dv_offset, n_bytes / 4);\n this._dv_offset += n_bytes;\n }\n break;\n case this._type_enum.FLT:\n if ((this._dv_offset % 4) !== 0) {\n new_abuf = new ArrayBuffer(n_bytes);\n n_values = n_bytes / 4;\n value = new Float32Array(new_abuf);\n for (i = 0; i < n_values; i += 1) {\n value[i] = this.getF32();\n }\n } else {\n value = new Float32Array(abuf, this._dv_offset, n_bytes / 4);\n this._dv_offset += n_bytes;\n }\n break;\n case this._type_enum.DBL:\n if ((this._dv_offset % 8) !== 0) {\n new_abuf = new ArrayBuffer(n_bytes);\n n_values = n_bytes / 8;\n value = new Float64Array(new_abuf);\n for (i = 0; i < n_values; i += 1) {\n value[i] = this.getF64();\n }\n } else {\n value = new Float64Array(abuf, this._dv_offset, n_bytes / 8);\n this._dv_offset += n_bytes;\n }\n break;\n default:\n throw new Error('Bad type in this.getArray ' + typ);\n }\n if (new_off) {\n this._dv_offset = spp;\n }\n return value;\n }\n\n\n /**\n * [PRIVATE]\n *\n * Get a variably-sized integer from the DataView.\n */\n getUXX(n) {\n var v;\n var i;\n switch (n) {\n case 1:\n v = this._dv.getUint8(this._dv_offset);\n break;\n case 2:\n v = this._dv.getUint16(this._dv_offset, this._little_endian);\n break;\n case 4:\n v = this._dv.getUint32(this._dv_offset, this._little_endian);\n break;\n case 8:\n v = this._dv.getUint64(this._dv_offset, this._little_endian);\n break;\n default:\n /* Certain hdf5 types can have odd numbers of bytes. We try\n * to deal with that special case here.\n */\n v = 0;\n if (!this._little_endian) {\n for (i = 0; i < n; i++) {\n v = (v << 8) + this._dv.getUint8(this._dv_offset + i);\n }\n }\n else {\n for (i = n - 1; i >= 0; i--) {\n v = (v << 8) + this._dv.getUint8(this._dv_offset + i);\n }\n }\n }\n this._dv_offset += n;\n return v;\n }\n\n\n /**\n * [PRIVATE]\n *\n * Verify that the expected signature is found at this offset.\n */\n checkSignature(str) {\n var i;\n for (i = 0; i < str.length; i += 1) {\n if (this._dv.getUint8(this._dv_offset + i) !== str.charCodeAt(i)) {\n return false;\n }\n }\n this.skip(str.length);\n return true;\n }\n\n\n /**\n * [PRIVATE]\n */\n hdf5Superblock() {\n var sb = {};\n if (!this.checkSignature(\"\\u0089HDF\\r\\n\\u001A\\n\")) {\n throw new Error('Bad magic string in HDF5');\n }\n sb.sbver = this.getU8();\n if (sb.sbver > 2) {\n throw new Error('Unsupported HDF5 superblock version ' + sb.sbver);\n }\n if (sb.sbver <= 1) {\n sb.fsver = this.getU8();\n sb.rgver = this.getU8();\n this.skip(1); // reserved\n sb.shver = this.getU8();\n sb.offsz = this.getU8();\n sb.lensz = this.getU8();\n this.skip(1); // reserved\n sb.gln_k = this.getU16();\n sb.gin_k = this.getU16();\n sb.cflags = this.getU32();\n if (sb.sbver === 1) {\n sb.isin_k = this.getU16();\n this.skip(2); // reserved\n }\n sb.base_addr = this.getOffset(sb.offsz);\n sb.gfsi_addr = this.getOffset(sb.offsz);\n sb.eof_addr = this.getOffset(sb.offsz);\n sb.dib_addr = this.getOffset(sb.offsz);\n sb.root_ln_offs = this.getOffset(sb.offsz);\n sb.root_addr = this.getOffset(sb.offsz);\n sb.root_cache_type = this.getU32();\n this.skip(4);\n this.skip(16);\n } else {\n sb.offsz = this.getU8();\n sb.lensz = this.getU8();\n sb.cflags = this.getU8();\n sb.base_addr = this.getOffset(sb.offsz);\n sb.ext_addr = this.getOffset(sb.offsz);\n sb.eof_addr = this.getOffset(sb.offsz);\n sb.root_addr = this.getOffset(sb.offsz);\n sb.checksum = this.getU32();\n }\n if (this.getMetadata(\"debug\")) {\n console.log(\"HDF5 SB \" + sb.sbver + \" \" + sb.offsz + \" \" + sb.lensz + \" \" + sb.cflags);\n }\n return sb;\n }\n\n\n /**\n * [PRIVATE]\n *\n * read the v2 fractal heap header\n */\n hdf5FractalHeapHeader() {\n var fh = {};\n if (!this.checkSignature(\"FRHP\")) {\n throw new Error('Bad or missing FRHP signature');\n }\n fh.ver = this.getU8(); // Version\n fh.idlen = this.getU16(); // Heap ID length\n fh.iof_el = this.getU16(); // I/O filter's encoded length\n fh.flags = this.getU8(); // Flags\n fh.objmax = this.getU32(); // Maximum size of managed objects.\n fh.objnid = this.getLength(); // Next huge object ID\n fh.objbta = this.getOffset(); // v2 B-tree address of huge objects\n fh.nf_blk = this.getLength(); // Amount of free space in managed blocks\n fh.af_blk = this.getOffset(); // Address of managed block free space manager\n fh.heap_total = this.getLength(); // Amount of managed space in heap\n fh.heap_alloc = this.getLength(); // Amount of allocated managed space in heap\n fh.bai_offset = this.getLength(); // Offset of direct block allocation iterator\n fh.heap_nobj = this.getLength(); // Number of managed objects in heap\n fh.heap_chuge = this.getLength(); // Size of huge objects in heap\n fh.heap_nhuge = this.getLength(); // Number of huge objects in heap\n fh.heap_ctiny = this.getLength(); // Size of tiny objects in heap\n fh.heap_ntiny = this.getLength(); // Number of tiny objects in heap\n fh.table_width = this.getU16(); // Table width\n fh.start_blksz = this.getLength(); // Starting block size\n fh.max_blksz = this.getLength(); // Maximum direct block size\n fh.max_heapsz = this.getU16(); // Maximum heap size\n fh.rib_srows = this.getU16(); // Starting # of rows in root indirect block\n fh.root_addr = this.getOffset(); // Address of root block\n fh.rib_crows = this.getU16(); // Current # of rows in root indirect block\n\n var max_dblock_rows = Math.log2(fh.max_blksz) - Math.log2(fh.start_blksz) + 2;\n fh.K = Math.min(fh.rib_crows, max_dblock_rows) * fh.table_width;\n fh.N = (fh.rib_crows < max_dblock_rows) ? 0 : fh.K - (max_dblock_rows * fh.table_width);\n\n if (this.getMetadata(\"debug\")) {\n console.log(\"FRHP V\" + fh.ver + \" F\" + fh.flags + \" \" + fh.objbta + \" Total:\" + fh.heap_total + \" Alloc:\" + fh.heap_alloc + \" #obj:\" + fh.heap_nobj + \" width:\" + fh.table_width + \" start_blksz:\" + fh.start_blksz + \" max_blksz:\" + fh.max_blksz + \" \" + fh.max_heapsz + \" srows:\" + fh.rib_srows + \" crows:\" + fh.rib_crows + \" \" + fh.heap_nhuge);\n console.log(\" K: \" + fh.K + \" N: \" + fh.N);\n }\n\n if (fh.iof_el > 0) {\n throw new Error(\"Filters present in fractal heap.\");\n }\n return fh;\n }\n\n\n /**\n * [PRIVATE]\n *\n * read the v2 btree header\n */\n hdf5V2BtreeHeader() {\n var bh = {};\n if (!this.checkSignature(\"BTHD\")) {\n throw new Error('Bad or missing BTHD signature');\n }\n bh.ver = this.getU8();\n bh.type = this.getU8();\n bh.nodesz = this.getU32();\n bh.recsz = this.getU16();\n bh.depth = this.getU16();\n bh.splitp = this.getU8();\n bh.mergep = this.getU8();\n bh.root_addr = this.getOffset();\n bh.root_nrec = this.getU16();\n bh.total_nrec = this.getLength();\n bh.checksum = this.getU32();\n\n if (this.getMetadata(\"debug\")) {\n console.log(\"BTHD V\" + bh.ver + \" T\" + bh.type + \" \" + bh.nodesz + \" \" + bh.recsz + \" \" + bh.depth + \" \" + bh.root_addr + \" \" + bh.root_nrec + \" \" + bh.total_nrec);\n }\n return bh;\n }\n\n\n\n /**\n * [PRIVATE]\n *\n * Enumerates btree records in a block. Records are found both in direct\n * and indirect v2 btree blocks.\n */\n hdf5V2BtreeRecords(fh, bt_type, nrec, link) {\n var i;\n var spp; // saved position pointer\n var offset;\n var length;\n if (bt_type === 1) {\n for (i = 0; i < nrec; i++) {\n offset = this.getOffset();\n length = this.getLength();\n var id = this.getLength();\n if (this.getMetadata(\"debug\")) {\n console.log(\" -> \" + offset + \" \" + length + \" \" + id + \" \" + this._this._huge_id);\n }\n spp = this.tell();\n if (id === this._this._huge_id) {\n this.seek(offset);\n this.hdf5MsgAttribute(length, link);\n }\n this.seek(spp);\n }\n }\n else if (bt_type === 8) {\n var cb_offs;\n var cb_leng;\n /* maximum heap size is stored in bits! */\n cb_offs = fh.max_heapsz / 8;\n var tmp = Math.min(fh.objmax, fh.max_blksz);\n if (tmp <= 256) {\n cb_leng = 1;\n }\n else if (tmp <= 65536) {\n cb_leng = 2;\n }\n else {\n cb_leng = 4;\n }\n for (i = 0; i < nrec; i++) {\n /* Read managed fractal heap ID.\n */\n var vt = this.getU8();\n if ((vt & 0xc0) !== 0) {\n throw new Error('Bad Fractal Heap ID version ' + vt);\n }\n var id_type = (vt & 0x30);\n var flags;\n if (id_type === 0x10) { // huge!\n this._this._huge_id = this.getUXX(7);\n }\n else if (id_type === 0x00) { // managed.\n offset = this.getUXX(cb_offs);\n length = this.getUXX(cb_leng);\n }\n else {\n throw new Error(\"Can't handle this Heap ID: \" + vt);\n }\n flags = this.getU8();\n\n /* Read the rest of the record.\n */\n this.getU32(); // creation order (IGNORE)\n this.getU32(); // hash (IGNORE)\n if (this.getMetadata(\"debug\")) {\n console.log(\" -> \" + vt + \" \" + offset + \" \" + length + \" \" + flags);\n }\n spp = this.tell();\n if (id_type === 0x10) {\n /* A \"huge\" object is found by indexing through the btree\n * present in the header\n */\n this.seek(fh.objbta);\n var bh = this.hdf5V2BtreeHeader();\n if (bh.type === 1) {\n this.seek(bh.root_addr);\n this.hdf5V2BtreeLeafNode(fh, bh.root_nrec, link);\n }\n else {\n throw new Error(\"Can only handle type-1 btrees\");\n }\n }\n else {\n /*\n * A managed object implies that the attribute message is\n * found in the associated fractal heap at the specified\n * offset in the heap. We get the actual address\n * corresponding to the offset here.\n */\n var location = this.hdf5FractalHeapOffset(fh, offset);\n this.seek(location);\n this.hdf5MsgAttribute(length, link);\n }\n this.seek(spp);\n }\n }\n else {\n throw new Error(\"Unhandled V2 btree type.\");\n }\n }\n\n\n /**\n * [PRIVATE]\n *\n * read a v2 btree leaf node\n */\n hdf5V2BtreeLeafNode(fh, nrec, link) {\n\n if (!this.checkSignature(\"BTLF\")) {\n throw new Error('Bad or missing BTLF signature');\n }\n\n var ver = this.getU8();\n var typ = this.getU8();\n\n if (this.getMetadata(\"debug\")) {\n console.log(\"BTLF V\" + ver + \" T\" + typ + \" \" + this.tell());\n }\n this.hdf5V2BtreeRecords(fh, typ, nrec, link);\n }\n\n\n /**\n * [PRIVATE]\n *\n * read the hdf5 v2 btree internal node\n */\n hdf5V2BtreeInternalNode(fh, nrec, depth, link) {\n\n if (!this.checkSignature(\"BTIN\")) {\n throw new Error('Bad or missing BTIN signature');\n }\n var ver = this.getU8();\n var type = this.getU8();\n var i;\n\n if (this.getMetadata(\"debug\")) {\n console.log(\"BTIN V\" + ver + \" T\" + type);\n }\n this.hdf5V2BtreeRecords(fh, type, nrec, link);\n for (i = 0; i <= nrec; i++) {\n var child_offset = this.getOffset();\n var child_nrec = this.getUXX(1); // TODO: calculate real size!!\n var child_total;\n /* TODO: unfortunately, this field is optional and\n * variably-sized. Calculating the size is non-trivial, as it\n * depends on the total depth and size of the tree. For now\n * we will just assume it is its minimum size, as I've never\n * encountered a file with depth > 1 anyway.\n */\n if (depth > 1) {\n child_total = this.getUXX(1);\n }\n if (this.getMetadata(\"debug\")) {\n console.log(\" child->\" + child_offset + \" \" + child_nrec + \" \" + child_total);\n }\n }\n }\n\n\n /**\n * [PRIVATE]\n */\n hdf5GetMsgName(n) {\n\n // JO: used to be in the global scope.\n /* Names of the various HDF5 messages.\n * Note that MESSAGE23 appears to be illegal. All the rest are defined,\n * although I've never encountered a BOGUS message!\n */\n var msg_names = [\n \"NIL\", \"Dataspace\", \"LinkInfo\", \"Datatype\", \"FillValue 1\", \"FillValue 2\",\n \"Link\", \"ExternalFiles\", \"Layout\", \"BOGUS\", \"GroupInfo\", \"FilterPipeline\",\n \"Attribute\", \"ObjectComment\", \"ObjectModTime 1\", \"SharedMsgTable\",\n \"ObjHdrContinue\", \"SymbolTable\", \"ObjectModTime 2\", \"BtreeKValue\",\n \"DriverInfo\", \"AttrInfo\", \"ObjectRefCnt\", \"MESSAGE23\",\n \"FileSpaceInfo\"\n ];\n\n if (n < msg_names.length) {\n return msg_names[n];\n }\n throw new Error('Unknown message type ' + n + \" \" + this.tell());\n }\n\n\n /**\n * [PRIVATE]\n */\n hdf5V1BtreeNode(link) {\n var abuf = this._getInput();\n var i;\n var bt = {};\n if (!this.checkSignature(\"TREE\")) {\n throw new Error('Bad TREE signature at ' + this.tell());\n }\n\n bt.keys = [];\n\n bt.node_type = this.getU8();\n bt.node_level = this.getU8();\n bt.entries_used = this.getU16();\n bt.left_sibling = this.getOffset();\n bt.right_sibling = this.getOffset();\n\n if (this.getMetadata(\"debug\")) {\n console.log(\"BTREE type \" + bt.node_type + \" lvl \" +\n bt.node_level + \" n_used \" + bt.entries_used + \" \" +\n bt.left_sibling + \" \" + bt.right_sibling);\n }\n\n if (!link) {\n /* If this BTREE is associated with a group (not a dataset),\n * then its keys are single \"length\" value.\n */\n for (i = 0; i < bt.entries_used; i += 1) {\n bt.keys[i] = {};\n bt.keys[i].key_value = this.getLength();\n bt.keys[i].child_address = this.getOffset();\n if (this.getMetadata(\"debug\")) {\n console.log(\" BTREE \" + i + \" key \" +\n bt.keys[i].key_value + \" adr \" +\n bt.keys[i].child_address);\n }\n }\n } else {\n var j;\n\n /* If this BTREE is a \"chunked raw data node\" associated\n * with a dataset, then its keys are complex, consisting\n * of the chunk size in bytes, a filter mask, and a set of\n * offsets matching the dimensionality of the chunk layout.\n * The chunk size stores the actual stored length of the\n * data, so it may not equal the uncompressed chunk size.\n */\n var chunks = [];\n\n for (i = 0; i < bt.entries_used; i += 1) {\n bt.keys[i] = {};\n chunks[i] = {};\n chunks[i].chunk_size = this.getU32();\n chunks[i].filter_mask = this.getU32();\n chunks[i].chunk_offsets = [];\n for (j = 0; j < link.dims.length + 1; j += 1) {\n chunks[i].chunk_offsets.push(this.getU64());\n }\n bt.keys[i].child_address = this.getOffset();\n if (i < bt.entries_used) {\n if (this.getMetadata(\"debug\")) {\n console.log(\" BTREE \" + i +\n \" chunk_size \" + chunks[i].chunk_size +\n \" filter_mask \" + chunks[i].filter_mask +\n \" addr \" + bt.keys[i].child_address);\n }\n }\n }\n chunks[i] = {};\n chunks[i].chunk_size = this.getU32();\n chunks[i].filter_mask = this.getU32();\n chunks[i].chunk_offsets = [];\n for (j = 0; j < link.dims.length + 1; j += 1) {\n chunks[i].chunk_offsets.push(this.getU64());\n }\n\n /* If we're at a leaf node, we have data to deal with.\n * We might have to uncompress!\n */\n if (bt.node_level === 0) {\n var length;\n var offset;\n var sp;\n var dp;\n\n for (i = 0; i < bt.entries_used; i += 1) {\n length = chunks[i].chunk_size;\n offset = bt.keys[i].child_address;\n\n if (link.inflate) {\n sp = new Uint8Array(abuf, offset, length);\n dp = pako.inflate(sp);\n switch (link.type) {\n case this._type_enum.INT8:\n dp = new Int8Array(dp.buffer);\n break;\n case this._type_enum.UINT8:\n dp = new Uint8Array(dp.buffer);\n break;\n case this._type_enum.INT16:\n dp = new Int16Array(dp.buffer);\n break;\n case this._type_enum.UINT16:\n dp = new Uint16Array(dp.buffer);\n break;\n case this._type_enum.INT32:\n dp = new Int32Array(dp.buffer);\n break;\n case this._type_enum.UINT32:\n dp = new Uint32Array(dp.buffer);\n break;\n case this._type_enum.FLT:\n dp = new Float32Array(dp.buffer);\n break;\n case this._type_enum.DBL:\n dp = new Float64Array(dp.buffer);\n break;\n default:\n throw new Error('Unknown type code ' + link.type);\n }\n if (link.array.length - link.n_filled < dp.length) {\n dp = dp.subarray(0, link.array.length - link.n_filled);\n }\n link.array.set(dp, link.n_filled);\n link.n_filled += dp.length;\n if (this.getMetadata(\"debug\")) {\n console.log(link.name + \" \" + sp.length + \" \" + dp.length + \" \" + link.n_filled + \"/\" + link.array.length);\n }\n }\n else {\n /* no need to inflate data. */\n dp = this.getArray(link.type, length, offset);\n link.array.set(dp, link.n_filled);\n link.n_filled += dp.length;\n }\n }\n } else {\n for (i = 0; i < bt.entries_used; i += 1) {\n this.seek(bt.keys[i].child_address);\n this.hdf5V1BtreeNode(link);\n }\n }\n }\n return bt;\n }\n\n\n /**\n * [PRIVATE]\n */\n hdf5GroupSymbolTable(lh, link) {\n if (!this.checkSignature(\"SNOD\")) {\n throw new Error('Bad or missing SNOD signature');\n }\n var ver = this.getU8();\n this.skip(1);\n var n_sym = this.getU16();\n if (this.getMetadata(\"debug\")) {\n console.log(\"this.hdf5GroupSymbolTable V\" + ver + \" #\" + n_sym +\n \" '\" + link.name + \"'\");\n }\n var i;\n var link_name_offset;\n var ohdr_address;\n var cache_type;\n var child;\n var spp;\n\n for (i = 0; i < 2 * this._superblk.gln_k; i += 1) {\n link_name_offset = this.getOffset();\n ohdr_address = this.getOffset();\n cache_type = this.getU32();\n this.skip(20);\n\n if (i < n_sym) {\n child = this.createLink();\n child.hdr_offset = ohdr_address;\n if (lh) {\n spp = this.tell();\n /* The link name is a zero-terminated string\n * starting at the link_name_off relative to\n * the beginning of the data segment of the local\n * heap.\n */\n this.seek(lh.lh_dseg_off + link_name_offset);\n child.name = this.getString(lh.lh_dseg_len);\n this.seek(spp);\n }\n if (this.getMetadata(\"debug\")) {\n console.log(\" \" + i + \" O \" + link_name_offset + \" A \" +\n ohdr_address + \" T \" + cache_type + \" '\" +\n child.name + \"'\");\n }\n link.children.push(child);\n }\n }\n }\n\n\n /**\n * [PRIVATE]\n *\n * Read a v1 local heap header. These define relatively small\n * regions used primarily for storing symbol names associated with\n * a symbol table message.\n */\n hdf5LocalHeap() {\n var lh = {};\n if (!this.checkSignature(\"HEAP\")) {\n throw new Error('Bad or missing HEAP signature');\n }\n lh.lh_ver = this.getU8();\n this.skip(3);\n lh.lh_dseg_len = this.getLength();\n lh.lh_flst_len = this.getLength();\n lh.lh_dseg_off = this.getOffset();\n if (this.getMetadata(\"debug\")) {\n console.log(\"LHEAP V\" + lh.lh_ver + \" \" + lh.lh_dseg_len + \" \" +\n lh.lh_flst_len + \" \" + lh.lh_dseg_off);\n }\n return lh;\n }\n\n\n /**\n * [PRIVATE]\n *\n * Process a \"dataspace\" message. Dataspaces define the\n * dimensionality of a dataset or attribute. They define the\n * number of dimensions (rank) and the current length of each\n * dimension. It is possible to specify a \"maximum\" length that is\n * greater than or equal to the current length, but MINC doesn't\n * rely on that feature so these values are ignored. Finally it\n * is also possible to specify a \"permutation index\" that alters\n * storage order of the dataset, but again, MINC doesn't rely on\n * this feature, so the values are ignored.\n */\n hdf5MsgDataspace(sz, link) {\n var cb;\n var ver = this.getU8();\n var n_dim = this.getU8();\n var flag = this.getU8();\n if (ver <= 1) {\n this.skip(5);\n } else {\n this.skip(1);\n }\n\n var n_items = 1;\n var dlen = [];\n var i;\n for (i = 0; i < n_dim; i += 1) {\n dlen[i] = this.getLength();\n n_items *= dlen[i];\n }\n\n cb = (n_dim * this._superblk.lensz) + ((ver <= 1) ? 8 : 4);\n\n var dmax = [];\n if ((flag & 1) !== 0) {\n cb += n_dim * this._superblk.lensz;\n for (i = 0; i < n_dim; i += 1) {\n dmax[i] = this.getLength();\n }\n }\n\n var dind = [];\n if ((flag & 2) !== 0) {\n cb += n_dim * this._superblk.lensz;\n for (i = 0; i < n_dim; i += 1) {\n dind[i] = this.getLength();\n }\n }\n var msg = \"this.hdf5MsgDataspace V\" + ver + \" N\" + n_dim + \" F\" + flag;\n if (this.getMetadata(\"debug\")) {\n if (n_dim !== 0) {\n msg += \"[\" + dlen.join(', ') + \"]\";\n }\n console.log(msg);\n }\n if (cb < sz) {\n this.skip(sz - cb);\n }\n if (link) {\n link.dims = dlen;\n }\n return n_items;\n }\n\n\n /**\n * [PRIVATE]\n *\n *\n * link info messages may contain a fractal heap address where we\n * can find additional link messages for this object. This\n * happens, for example, when there are lots of links in a\n * particular group.\n */\n hdf5MsgLinkInfo(link) {\n var that = this;\n\n var ver = this.getU8();\n var flags = this.getU8();\n if ((flags & 1) !== 0) {\n this.getU64(); // max. creation index (IGNORE).\n }\n var fh_address = this.getOffset(); // fractal heap address\n var bt_address = this.getOffset(); // v2 btree for name index\n if ((flags & 2) !== 0) {\n this.getOffset(); // creation order index (IGNORE).\n }\n if (this.getMetadata(\"debug\")) {\n console.log(\"this.hdf5MsgLinkInfo V\" + ver + \" F\" + flags +\n \" FH \" + fh_address + \" BT \" + bt_address);\n }\n var spp = this.tell();\n if (fh_address < this._superblk.eof_addr) {\n this.seek(fh_address);\n /* If there is a valid fractal heap address in the link info message, that\n * means the fractal heap is a collection of link messages. We can ignore\n * the btree address because we can get the names from the link messages.\n */\n var fh = this.hdf5FractalHeapHeader();\n var n_msg = 0;\n this.hdf5FractalHeapEnumerate( fh, function(row, address, block_offset, block_length) {\n var end_address = address + block_length;\n while (n_msg < fh.heap_nobj && that.tell() < end_address) {\n that.hdf5MsgLink(link);\n n_msg += 1;\n }\n return true; // continue with enumeration.\n });\n }\n this.seek(spp);\n }\n\n\n /**\n * [PRIVATE]\n */\n dt_class_name(cls) {\n var names = [\n \"Fixed-Point\", \"Floating-Point\", \"Time\", \"String\",\n \"BitField\", \"Opaque\", \"Compound\", \"Reference\",\n \"Enumerated\", \"Variable-Length\", \"Array\"\n ];\n\n if (cls < names.length) {\n return names[cls];\n }\n throw new Error('Unknown datatype class: ' + cls);\n }\n\n\n /**\n * [PRIVATE]\n *\n * Process a \"datatype\" message. These messages specify the data\n * type of a single element within a dataset or attribute. Data\n * types are extremely flexible, HDF5 supports a range of options\n * for bit widths and organization atomic types. We support only\n * fixed, float, and string atomic types, and those only for\n * certain restricted (but common) cases. At this point we\n * provide no support for more exotic types such as bit field,\n * enumerated, array, opaque, compound, time, reference,\n * variable-length, etc.\n *\n * TODO: should support enumerated types, possibly a few others.\n */\n hdf5MsgDatatype(sz) {\n var type = {};\n var cb = 8;\n var msg = \"\";\n var bit_offs;\n var bit_prec;\n var exp_loc;\n var exp_sz;\n var mnt_loc;\n var mnt_sz;\n var exp_bias;\n\n var cv = this.getU8();\n var ver = cv >> 4;\n var cls = cv & 15;\n var bf = [];\n var i;\n for (i = 0; i < 3; i += 1) {\n bf[i] = this.getU8();\n }\n var dt_size = this.getU32();\n\n if (this.getMetadata(\"debug\")) {\n console.log(\"this.hdf5MsgDatatype V\" + ver + \" C\" + cls +\n \" \" + this.dt_class_name(cls) +\n \" \" + bf[0] + \".\" + bf[1] + \".\" + bf[2] +\n \" \" + dt_size);\n }\n\n switch (cls) {\n case 0: /* Fixed (integer): bit 0 for byte order, bit 3 for signed */\n bit_offs = this.getU16();\n bit_prec = this.getU16();\n switch (dt_size) {\n case 4:\n type.typ_type = (bf[0] & 8) ? this._type_enum.INT32 : this._type_enum.UINT32;\n break;\n case 2:\n type.typ_type = (bf[0] & 8) ? this._type_enum.INT16 : this._type_enum.UINT16;\n break;\n case 1:\n type.typ_type = (bf[0] & 8) ? this._type_enum.INT8 : this._type_enum.UINT8;\n break;\n default:\n throw new Error('Unknown type size ' + dt_size);\n }\n type.typ_length = dt_size;\n cb += 4;\n if (this.getMetadata(\"debug\")) {\n console.log(' (' + bit_offs + ' ' + bit_prec + ')');\n }\n break;\n case 1: /* Float: uses bits 0,6 for byte order */\n msg = \"\";\n if (this.getMetadata(\"debug\")) {\n switch (bf[0] & 0x41) {\n case 0:\n msg += \"LE \";\n break;\n case 1:\n msg += \"BE \";\n break;\n case 0x41:\n msg += \"VX \";\n break;\n default:\n throw new Error('Reserved fp byte order: ' + bf[0]);\n }\n }\n bit_offs = this.getU16();\n bit_prec = this.getU16();\n exp_loc = this.getU8();\n exp_sz = this.getU8();\n mnt_loc = this.getU8();\n mnt_sz = this.getU8();\n exp_bias = this.getU32();\n if (this.getMetadata(\"debug\")) {\n msg += (bit_offs + \" \" + bit_prec + \" \" + exp_loc + \" \" + exp_sz +\n \" \" + mnt_loc + \" \" + mnt_sz + \" \" + exp_bias);\n }\n /* See if it's one of the formats we recognize.\n IEEE 64-bit or IEEE 32-bit are the only two we handle.\n */\n if (bit_prec === 64 && bit_offs === 0 &&\n exp_loc === 52 && exp_sz === 11 &&\n mnt_loc === 0 && mnt_sz === 52 &&\n exp_bias === 1023 && dt_size === 8) {\n type.typ_type = this._type_enum.DBL;\n } else if (bit_prec === 32 && bit_offs === 0 &&\n exp_loc === 23 && exp_sz === 8 &&\n mnt_loc === 0 && mnt_sz === 23 &&\n exp_bias === 127 && dt_size === 4) {\n type.typ_type = this._type_enum.FLT;\n } else {\n throw new Error(\"Unsupported floating-point type\");\n }\n if (this.getMetadata(\"debug\")) {\n console.log(msg);\n }\n type.typ_length = dt_size;\n cb += 12;\n break;\n\n case 3: // string\n /* bits 0-3 = 0: null terminate, 1: null pad, 2: space pad */\n /* bits 4-7 = 0: ASCII, 1: UTF-8 */\n type.typ_type = this._type_enum.STR;\n type.typ_length = dt_size;\n break;\n\n default:\n throw new Error('Unimplemented HDF5 data class ' + cls);\n }\n if (sz > cb) {\n this.skip(sz - cb);\n }\n return type;\n }\n\n\n /**\n * [PRIVATE]\n *\n * Process a \"layout\" message. These messages specify the location and organization\n * of data in a dataset. The organization can be either compact, contiguous, or\n * chunked. Compact data is stored in the message as a contiguous block. Contiguous\n * data is stored elsewhere in the file in a single chunk. Chunked data is stored within\n * a V1 Btree as a series of possibly filtered (e.g. compressed) chunks.\n */\n hdf5MsgLayout(link) {\n var msg = \"\";\n\n var ver = this.getU8();\n var cls;\n var n_dim;\n var cdsz;\n var dim = [];\n var i;\n var dtadr;\n var dtsz;\n var elsz;\n\n var n_items = 1;\n if (ver === 1 || ver === 2) {\n n_dim = this.getU8();\n cls = this.getU8();\n this.skip(5);\n if (this.getMetadata(\"debug\")) {\n msg += \"this.hdf5MsgLayout V\" + ver + \" N\" + n_dim + \" C\" + cls;\n }\n if (cls === 1 || cls === 2) { // contiguous or chunked\n var addr = this.getOffset();\n if (this.getMetadata(\"debug\")) {\n msg += \" A\" + addr;\n }\n link.data_offset = addr;\n }\n\n for (i = 0; i < n_dim; i += 1) {\n dim[i] = this.getU32();\n n_items *= dim[i];\n }\n\n if (this.getMetadata(\"debug\")) {\n msg += \"[\" + dim.join(', ') + \"]\";\n }\n\n if (cls === 2) { // chunked\n elsz = this.getU32();\n link.chunk_size = n_items * elsz;\n if (this.getMetadata(\"debug\")) {\n msg += \" E\" + elsz;\n }\n }\n if (cls === 0) { // compact\n cdsz = this.getU32();\n if (this.getMetadata(\"debug\")) {\n msg += \"(\" + cdsz + \")\";\n }\n link.data_offset = this.tell();\n link.data_length = cdsz;\n } else if (cls === 1) {\n link.data_length = n_items;\n }\n } else if (ver === 3) {\n cls = this.getU8();\n msg = \"this.hdf5MsgLayout V\" + ver + \" C\" + cls;\n\n if (cls === 0) {\n cdsz = this.getU16();\n if (this.getMetadata(\"debug\")) {\n msg += \"(\" + cdsz + \")\";\n }\n link.data_offset = this.tell();\n link.data_length = cdsz;\n } else if (cls === 1) {\n dtadr = this.getOffset();\n dtsz = this.getLength();\n if (this.getMetadata(\"debug\")) {\n msg += \"(\" + dtadr + \", \" + dtsz + \")\";\n }\n link.data_offset = dtadr;\n link.data_length = dtsz;\n } else if (cls === 2) {\n n_dim = this.getU8();\n dtadr = this.getOffset();\n link.data_offset = dtadr;\n link.chunk_size = 1;\n for (i = 0; i < n_dim - 1; i += 1) {\n dim[i] = this.getU32();\n n_items *= dim[i];\n }\n if (this.getMetadata(\"debug\")) {\n msg += \"(N\" + n_dim + \", A\" + dtadr + \" [\" + dim.join(',') + \"]\";\n }\n elsz = this.getU32();\n link.chunk_size = n_items * elsz;\n if (this.getMetadata(\"debug\")) {\n msg += \" E\" + elsz;\n }\n }\n } else {\n throw new Error(\"Illegal layout version \" + ver);\n }\n if (this.getMetadata(\"debug\")) {\n console.log(msg);\n }\n }\n\n\n /**\n * [PRIVATE]\n *\n * Read a \"filter pipeline\" message. At the moment we _only_ handle\n * deflate/inflate. Anything else will cause us to throw an exception.\n */\n hdf5MsgPipeline(link) {\n var ver = this.getU8();\n var nflt = this.getU8();\n\n var msg = \"this.hdf5MsgPipeline V\" + ver + \" N\" + nflt;\n if (ver === 1) {\n this.skip(6);\n }\n\n if (this.getMetadata(\"debug\")) {\n console.log(msg);\n }\n\n var i;\n var fiv;\n var nlen;\n var flags;\n var ncdv;\n for (i = 0; i < nflt; i += 1) {\n fiv = this.getU16();\n if (fiv !== 1) { /* deflate */\n throw new Error(\"Unimplemented HDF5 filter \" + fiv);\n }\n else {\n if (typeof pako !== 'object') {\n throw new Error('Need pako to inflate data.');\n }\n link.inflate = true;\n }\n if (ver === 1 || fiv > 256) {\n nlen = this.getU16();\n } else {\n nlen = 0;\n }\n\n flags = this.getU16();\n ncdv = this.getU16();\n if ((ncdv & 1) !== 0) {\n ncdv += 1;\n }\n if (nlen !== 0) {\n this.skip(nlen); // ignore name.\n }\n\n this.skip(ncdv * 4);\n\n if (this.getMetadata(\"debug\")) {\n console.log(\" \" + i + \" ID\" + fiv + \" F\" + flags + \" \" + ncdv);\n }\n }\n }\n\n\n /**\n * [PRIVATE]\n *\n * Process an \"attribute\" message. This actually defines an attribute that is\n * to be associated with a group or dataset (what I generally call a \"link\"\n * in this code. Attributes include a name, a datatype, and a dataspace, followed\n * by the actual data.\n */\n hdf5MsgAttribute(sz, link) {\n var ver = this.getU8();\n var flags = this.getU8();\n var nm_len = this.getU16();\n var dt_len = this.getU16();\n var ds_len = this.getU16();\n var msg = \"this.hdf5MsgAttribute V\" + ver + \" F\" + flags + \" \" + sz + \": \";\n\n if ((flags & 3) !== 0) {\n throw new Error('Shared dataspaces and datatypes are not supported.');\n }\n\n if (ver === 3) {\n var cset = this.getU8();\n if (this.getMetadata(\"debug\")) {\n msg += (cset === 0) ? \"ASCII\" : \"UTF-8\";\n }\n }\n if (this.getMetadata(\"debug\")) {\n msg += \"(\" + nm_len + \" \" + dt_len + \" \" + ds_len + \")\";\n }\n if (ver < 3) {\n nm_len = Math.floor((nm_len + 7) / 8) * 8;\n dt_len = Math.floor((dt_len + 7) / 8) * 8;\n ds_len = Math.floor((ds_len + 7) / 8) * 8;\n\n if (this.getMetadata(\"debug\")) {\n msg += \"/(\" + nm_len + \" \" + dt_len + \" \" + ds_len + \")\";\n }\n }\n\n var att_name = this.getString(nm_len);\n if (this.getMetadata(\"debug\")) {\n msg += \" Name: \" + att_name;\n console.log(msg);\n }\n var val_type = this.hdf5MsgDatatype(dt_len);\n var n_items = this.hdf5MsgDataspace(ds_len);\n var val_len = 0;\n if (sz > 0) {\n if (ver < 3) {\n val_len = sz - (8 + nm_len + dt_len + ds_len);\n } else {\n val_len = sz - (9 + nm_len + dt_len + ds_len);\n }\n } else {\n val_len = val_type.typ_length * n_items;\n }\n if (this.getMetadata(\"debug\")) {\n console.log(\" attribute data size \" + val_len + \" \" + this.tell());\n }\n var att_value;\n if (val_type.typ_type === this._type_enum.STR) {\n att_value = this.getString(val_len);\n } else {\n att_value = this.getArray(val_type.typ_type, val_len);\n }\n link.attributes[att_name] = att_value;\n }\n\n\n /**\n * [PRIVATE]\n *\n * Process a \"group info\" message. We don't actually do anything with these.\n */\n hdf5MsgGroupInfo() {\n var n_ent = 4;\n var n_lnl = 8;\n var ver = this.getU8();\n var flags = this.getU8();\n if ((flags & 1) !== 0) {\n this.getU16(); // link phase change: max compact value (IGNORE)\n this.getU16(); // link phase cange: max dense value (IGNORE)\n }\n if ((flags & 2) !== 0) {\n n_ent = this.getU16();\n n_lnl = this.getU16();\n }\n if (this.getMetadata(\"debug\")) {\n console.log(\"this.hdf5MsgGroupInfo V\" + ver + \" F\" + flags + \" ENT \" + n_ent + \" LNL \" + n_lnl);\n }\n }\n\n\n /**\n * [PRIVATE]\n *\n * Process a \"link\" message. This specifies the name and header location of either a\n * group or a dataset within the current group. It is probably also used to implement\n * internal links but we don't really support that.\n */\n hdf5MsgLink(link) {\n var ver = this.getU8();\n var ltype = 0;\n if (ver !== 1) {\n throw new Error(\"Bad link message version \" + ver);\n }\n var flags = this.getU8();\n if ((flags & 8) !== 0) {\n ltype = this.getU8();\n }\n if ((flags & 4) !== 0) {\n this.getU64(); // creation order (IGNORE)\n }\n if ((flags & 16) !== 0) {\n this.getU8(); // link name character set (IGNORE)\n }\n var cb = 1 << (flags & 3);\n var lnsz = this.getUXX(cb);\n\n var child = this.createLink();\n\n child.name = this.getString(lnsz);\n\n if ((flags & 8) === 0) {\n child.hdr_offset = this.getOffset();\n }\n\n if (this.getMetadata(\"debug\")) {\n console.log(\"this.hdf5MsgLink V\" + ver + \" F\" + flags + \" T\" + ltype +\n \" NM \" + child.name + \" OF \" + child.hdr_offset);\n }\n link.children.push(child);\n }\n\n\n /**\n * [PRIVATE]\n *\n * The fractal heap direct block contains:\n * 1. A signature.\n * 2. a byte version.\n * 3. an offset pointing to the header (for integrity checking).\n * 4. A variably-sized block offset that gives (_I think_) the mininum block offset\n * associated with this block.\n * 5. Variably-sized data. Block size varies with row number in a slightly tricky\n * fashion. Each \"row\" consists of \"table_width\" blocks. The first two rows, row 0 and 1,\n * have blocks of the \"starting block size\". Row 2-N have blocks of size 2^(row-1) times\n * the starting block size.\n */\n hdf5FractalHeapDirectBlock(fh, row, address, callback) {\n if (!this.checkSignature(\"FHDB\")) {\n throw new Error(\"Bad or missing FHDB signature\");\n }\n var ver = this.getU8();\n if (ver !== 0) {\n throw new Error('Bad FHDB version: ' + ver);\n }\n this.getOffset(); // heap header address (IGNORE)\n var cb = Math.ceil(fh.max_heapsz / 8.0);\n var block_offset = this.getUXX(cb); // block offset\n if ((fh.flags & 2) !== 0) {\n this.getU32(); // checksum (IGNORE)\n }\n\n if (this.getMetadata(\"debug\")) {\n console.log(\"FHDB V:\" + ver + \" R:\" + row + \" O:\" + block_offset + \" A:\" + address);\n }\n var header_length = 5 + this._superblk.offsz + cb;\n if ((fh.flags & 2) !== 0) {\n header_length += 4;\n }\n var block_length;\n if (row <= 1) {\n block_length = fh.start_blksz;\n }\n else {\n block_length = Math.pow(2, row - 1) * fh.start_blksz;\n }\n if (callback) {\n return callback(row, address, block_offset, block_length);\n }\n else {\n return true; // continue enumeration.\n }\n }\n\n\n /**\n * [PRIVATE]\n *\n * The fractal heap indirect block contains:\n * 1. A signature.\n * 2. a byte version\n * 3. an offset pointing to the header (for integrity checking).\n * 4. a variably-sized block offset that gives (_I think_) the mininum block offset\n * associated with children of this block.\n * 5. pointers to K direct blocks\n * 6. pointers to N indirect blocks\n * 7. A checksum. This code completely ignores checksums.\n * See calculations of K and N in this.hdf5FractalHeapHeader(). Note that there can also\n * be additional information in the header if \"filtered\" direct blocks are used. I have\n * made no attempt to support this.\n */\n hdf5FractalHeapIndirectBlock(fh, callback) {\n if (!this.checkSignature(\"FHIB\")) {\n throw new Error(\"Bad or missing FHIB signature\");\n }\n var ver = this.getU8();\n if (ver !== 0) {\n throw new Error('Bad FHIB version: ' + ver);\n }\n this.getOffset(); // heap header address (IGNORE)\n var cb = Math.ceil(fh.max_heapsz / 8.0);\n var block_offset = this.getUXX(cb); // block offset\n\n if (this.getMetadata(\"debug\")) {\n console.log(\"FHIB V:\" + ver + \" O:\" + block_offset);\n }\n var i;\n var address;\n var db_addrs = [];\n for (i = 0; i < fh.K; i += 1) {\n address = this.getOffset();\n if (address < this._superblk.eof_addr) {\n if (this.getMetadata(\"debug\")) {\n console.log(\"direct block at \" + address);\n }\n db_addrs.push(address);\n }\n }\n\n var ib_addrs = [];\n for (i = 0; i < fh.N; i += 1) {\n address = this.getOffset();\n if (address < this._superblk.eof_addr) {\n if (this.getMetadata(\"debug\")) {\n console.log(\"indirect block at \" + address);\n }\n ib_addrs.push(address);\n }\n }\n this.getU32(); // checksum (IGNORE)\n\n /* Finished reading the indirect block, now go read its children.\n */\n for (i = 0; i < db_addrs.length; i++) {\n this.seek(db_addrs[i]);\n /* TODO: check row calculation!\n */\n if (!this.hdf5FractalHeapDirectBlock(fh, i / fh.table_width, db_addrs[i], callback)) {\n return false;\n }\n }\n for (i = 0; i < ib_addrs.length; i++) {\n this.seek(ib_addrs[i]);\n if (!this.hdf5FractalHeapIndirectBlock(fh, callback)) {\n return false;\n }\n }\n return true;\n }\n\n\n /**\n * [PRIVATE]\n *\n * enumerate over all of the direct blocks in the fractal heap.\n */\n hdf5FractalHeapEnumerate(fh, callback) {\n this.seek(fh.root_addr);\n if (fh.K === 0) {\n this.hdf5FractalHeapDirectBlock(fh, 0, fh.root_addr, callback);\n }\n else {\n this.hdf5FractalHeapIndirectBlock(fh, callback);\n }\n }\n\n\n /**\n * [PRIVATE]\n */\n hdf5FractalHeapOffset(fh, offset) {\n var location;\n this.hdf5FractalHeapEnumerate(fh, function(row, address, block_offset, block_length) {\n if (offset >= block_offset && offset < block_offset + block_length) {\n location = address + (offset - block_offset);\n return false; // stop enumeration.\n }\n return true; // continue enumeration.\n });\n return location;\n }\n\n\n /**\n * [PRIVATE]\n *\n * Attribute info messages contain pointers to a fractal heap and a v2 btree.\n * If these pointers are valid, we must follow them to find more attributes.\n * The attributes are indexed by records in the \"type 8\" btree. These btree\n * records\n */\n hdf5MsgAttrInfo(link) {\n var ver = this.getU8();\n if (ver !== 0) {\n throw new Error('Bad attribute information message version: ' + ver);\n }\n\n var flags = this.getU8();\n\n if ((flags & 1) !== 0) {\n this.getU16(); // maximum creation index (IGNORE)\n }\n var fh_addr = this.getOffset();\n var bt_addr = this.getOffset();\n if ((flags & 2) !== 0) {\n this.getOffset(); // attribute creation order (IGNORE)\n }\n\n if (this.getMetadata(\"debug\")) {\n console.log(\"this.hdf5MsgAttrInfo V\" + ver + \" F\" + flags + \" HP \" + fh_addr +\n \" AN \" + bt_addr);\n }\n\n var spp = this.tell();\n var fh; // fractal heap header.\n if (fh_addr < this._superblk.eof_addr) {\n this.seek(fh_addr);\n fh = this.hdf5FractalHeapHeader();\n }\n if (bt_addr < this._superblk.eof_addr) {\n this.seek(bt_addr);\n var bh = this.hdf5V2BtreeHeader();\n if (bh.type !== 8) {\n throw new Error(\"Can only handle indexed attributes.\");\n }\n this.seek(bh.root_addr);\n if (bh.depth > 0) {\n this.hdf5V2BtreeInternalNode(fh, bh.root_nrec, bh.depth, link);\n }\n else {\n this.hdf5V2BtreeLeafNode(fh, bh.root_nrec, link);\n }\n }\n this.seek(spp);\n }\n\n\n /**\n * [PRIVATE]\n *\n * Process a single message, given a message header. Assumes that\n * the data view offset is pointing to the remainder of the\n * message.\n *\n * V1 and V2 files use different sets of messages to accomplish\n * similar things. For example, V1 files tend to use \"symbol\n * table\" messages to describe links within a group, whereas V2\n * files use \"link\" and \"linkinfo\" messages.\n */\n hdf5ProcessMessage(msg, link) {\n var cq_new = {};\n var val_type;\n\n switch (msg.hm_type) {\n case 1:\n this.hdf5MsgDataspace(msg.hm_size, link);\n break;\n case 2:\n this.hdf5MsgLinkInfo(link);\n break;\n case 3:\n val_type = this.hdf5MsgDatatype(msg.hm_size);\n if (link) {\n link.type = val_type.typ_type;\n }\n break;\n case 6:\n this.hdf5MsgLink(link);\n break;\n case 8:\n this.hdf5MsgLayout(link);\n break;\n case 10:\n this.hdf5MsgGroupInfo();\n break;\n case 11:\n this.hdf5MsgPipeline(link);\n break;\n case 12:\n this.hdf5MsgAttribute(msg.hm_size, link);\n break;\n case 16:\n /* Process an object header continuation message. These\n * basically just say this header continues with a new segment\n * with a given location and length. They can come before the\n * end of the current message segment, and multiple\n * continuation messages can occur in any particular segment.\n * This means we have to enqueue them and shift them off the\n * queue when we finish processing the current segment.\n */\n cq_new.cq_off = this.getOffset();\n cq_new.cq_len = this.getLength();\n this._continuation_queue.push(cq_new);\n if (this.getMetadata(\"debug\")) {\n console.log(\"hdf5MsgObjHdrContinue \" + cq_new.cq_off + \" \" + cq_new.cq_len);\n }\n break;\n case 17: // SymbolTable\n link.sym_btree = this.getOffset();\n link.sym_lheap = this.getOffset();\n if (this.getMetadata(\"debug\")) {\n console.log(\"hdf5MsgSymbolTable \" + link.sym_btree + \" \" + link.sym_lheap);\n }\n break;\n case 21:\n this.hdf5MsgAttrInfo(link);\n break;\n case 0:\n case 4:\n case 5:\n case 7:\n case 18:\n case 19:\n case 20:\n case 22:\n case 24:\n this.skip(msg.hm_size);\n break;\n default:\n throw new Error('Unknown message type: ' + msg.hm_type);\n }\n }\n\n\n /**\n * [PRIVATE]\n *\n * Read a V2 object header. Object headers contain a series of messages that define\n * an HDF5 object, primarily a group or a dataset. V2 object headers, and V2 objects\n * generally, are much less concerned about alignment than V1 objects.\n */\n hdf5V2ObjectHeader(link) {\n if (!this.checkSignature(\"OHDR\")) {\n throw new Error('Bad or missing OHDR signature');\n }\n\n var ver = this.getU8();\n var flags = this.getU8();\n\n if ((flags & 0x20) !== 0) {\n this.getU32(); // access time (IGNORE)\n this.getU32(); // modify time (IGNORE)\n this.getU32(); // change time (IGNORE)\n this.getU32(); // birth time (IGNORE)\n }\n\n if ((flags & 0x10) !== 0) {\n this.getU16(); // maximum number of compact attributes (IGNORE)\n this.getU16(); // maximum number of dense attributes (IGNORE)\n }\n\n var cb = 1 << (flags & 3);\n var ck0_size = this.getUXX(cb);\n\n var msg_num = 0;\n var msg_offs = 0;\n var msg_bytes = ck0_size;\n\n if (this.getMetadata(\"debug\")) {\n console.log(\"this.hdf5V2ObjectHeader V\" + ver + \" F\" + flags + \" HS\" + ck0_size);\n }\n\n var hmsg;\n var cq_head;\n var spp;\n\n while (true) {\n while (msg_bytes - msg_offs >= 8) {\n hmsg = {};\n hmsg.hm_type = this.getU8();\n hmsg.hm_size = this.getU16();\n hmsg.hm_flags = this.getU8();\n if (this.getMetadata(\"debug\")) {\n console.log(\" msg\" + msg_num + \" F\" + hmsg.hm_flags + \" T \" +\n hmsg.hm_type + \" S \" + hmsg.hm_size +\n \" (\" + msg_offs + \"/\" + msg_bytes + \") \" +\n this.hdf5GetMsgName(hmsg.hm_type));\n }\n if ((flags & 0x04) !== 0) {\n hmsg.hm_corder = this.getU16();\n }\n spp = this.tell();\n this.hdf5ProcessMessage(hmsg, link);\n this.seek(spp + hmsg.hm_size); // this.skip past message.\n\n msg_offs += hmsg.hm_size + 4;\n\n msg_num += 1;\n }\n\n if ((msg_bytes - msg_offs) > 4) {\n this.skip(msg_bytes - (msg_offs + 4));\n }\n\n this.getU32(); // checksum (IGNORE)\n\n if (this._continuation_queue.length !== 0) {\n cq_head = this._continuation_queue.shift();\n this.seek(cq_head.cq_off);\n msg_bytes = cq_head.cq_len - 4;\n msg_offs = 0;\n if (this.getMetadata(\"debug\")) {\n console.log('continuing with ' + cq_head.cq_len + ' bytes at ' + this.tell());\n }\n if (!this.checkSignature(\"OCHK\")) {\n throw new Error(\"Bad v2 object continuation\");\n }\n } else {\n break;\n }\n }\n\n link.children.forEach(function (child, link_num) {\n that.seek(child.hdr_offset);\n if (that.getMetadata(\"debug\")) {\n console.log(link_num + \" \" + child.hdr_offset + \" \" + child.name);\n }\n if (this.checkSignature(\"OHDR\")) {\n that.seek(child.hdr_offset);\n that.hdf5V2ObjectHeader(child);\n }\n else {\n that.seek(child.hdr_offset);\n that.hdf5V1ObjectHeader(child);\n }\n });\n }\n\n\n /**\n * [PRIVATE]\n */\n loadData(link) {\n var that = this;\n\n if (link.chunk_size !== 0) {\n this.seek(link.data_offset);\n\n var n_bytes = 1;\n var i;\n for (i = 0; i < link.dims.length; i += 1) {\n n_bytes *= link.dims[i];\n }\n n_bytes *= this.typeSize(link.type);\n if (this.getMetadata(\"debug\")) {\n console.log('allocating ' + n_bytes + ' bytes');\n }\n var ab = new ArrayBuffer(n_bytes);\n link.n_filled = 0;\n switch (link.type) {\n case this._type_enum.INT8:\n link.array = new Int8Array(ab);\n break;\n case this._type_enum.UINT8:\n link.array = new Uint8Array(ab);\n break;\n case this._type_enum.INT16:\n link.array = new Int16Array(ab);\n break;\n case this._type_enum.UINT16:\n link.array = new Uint16Array(ab);\n break;\n case this._type_enum.INT32:\n link.array = new Int32Array(ab);\n break;\n case this._type_enum.UINT32:\n link.array = new Uint32Array(ab);\n break;\n case this._type_enum.FLT:\n link.array = new Float32Array(ab);\n break;\n case this._type_enum.DBL:\n link.array = new Float64Array(ab);\n break;\n default:\n throw new Error('Illegal type: ' + link.type);\n }\n this.hdf5V1BtreeNode(link);\n } else {\n if (link.data_offset > 0 && link.data_offset < this._superblk.eof_addr) {\n if (this.getMetadata(\"debug\")) {\n console.log('loading ' + link.data_length + ' bytes from ' + link.data_offset + ' to ' + link.name);\n }\n link.array = this.getArray(link.type, link.data_length,\n link.data_offset);\n } else {\n if (this.getMetadata(\"debug\")) {\n console.log('data not present for /' + link.name + '/');\n }\n }\n }\n\n link.children.forEach(function (child) {\n that.loadData(child);\n });\n }\n\n\n /**\n * [PRIVATE]\n *\n * Read a v1 object header. Object headers contain a series of\n * messages that define an HDF5 object, primarily a group or a\n * dataset. The v1 object header, like most of the v1 format, is\n * very careful about alignment. Every message must be on an\n * 8-byte alignment RELATIVE TO THE START OF THE HEADER. So if the\n * header starts on an odd boundary, messages may start on odd\n * boundaries as well. No, this doesn't make much sense.\n */\n hdf5V1ObjectHeader(link) {\n var that = this;\n var oh = {};\n this.startAlignment();\n oh.oh_ver = this.getU8();\n this.skip(1); // reserved\n oh.oh_n_msgs = this.getU16();\n oh.oh_ref_cnt = this.getU32();\n oh.oh_hdr_sz = this.getU32();\n if (oh.oh_ver !== 1) {\n throw new Error(\"Bad v1 object header version: \" + oh.oh_ver);\n }\n if (this.getMetadata(\"debug\")) {\n console.log(\"this.hdf5V1ObjectHeader V\" + oh.oh_ver +\n \" #M \" + oh.oh_n_msgs +\n \" RC \" + oh.oh_ref_cnt +\n \" HS \" + oh.oh_hdr_sz);\n }\n\n var msg_bytes = oh.oh_hdr_sz;\n var cq_head;\n var msg_num;\n var hmsg;\n var spp;\n\n for (msg_num = 0; msg_num < oh.oh_n_msgs; msg_num += 1) {\n if (msg_bytes <= 8) {\n if (this._continuation_queue.length !== 0) {\n cq_head = this._continuation_queue.shift();\n this.seek(cq_head.cq_off);\n msg_bytes = cq_head.cq_len;\n if (this.getMetadata(\"debug\")) {\n console.log('continuing with ' + msg_bytes + ' bytes at ' + this.tell());\n }\n this.startAlignment();\n } else {\n break;\n }\n }\n\n this.checkAlignment();\n\n hmsg = {};\n hmsg.hm_type = this.getU16();\n hmsg.hm_size = this.getU16();\n hmsg.hm_flags = this.getU8();\n\n if ((hmsg.hm_size % 8) !== 0) {\n throw new Error('Size is not 8-byte aligned: ' + hmsg.hm_size);\n }\n this.skip(3); // this.skip reserved\n msg_bytes -= (8 + hmsg.hm_size);\n if (this.getMetadata(\"debug\")) {\n console.log(\" msg\" + msg_num +\n \" F \" + hmsg.hm_flags +\n \" T \" + hmsg.hm_type +\n \" S \" + hmsg.hm_size +\n \"(\" + msg_bytes + \") \" + this.hdf5GetMsgName(hmsg.hm_type));\n }\n\n spp = this.tell();\n this.hdf5ProcessMessage(hmsg, link);\n this.seek(spp + hmsg.hm_size); // this.skip whole message.\n }\n\n if (link.sym_btree !== 0 && link.sym_lheap !== 0) {\n this.seek(link.sym_btree);\n var bt = this.hdf5V1BtreeNode();\n this.seek(link.sym_lheap);\n var lh = this.hdf5LocalHeap();\n var i;\n for (i = 0; i < bt.entries_used; i += 1) {\n this.seek(bt.keys[i].child_address);\n if (this.checkSignature(\"SNOD\")) {\n this.seek(bt.keys[i].child_address);\n this.hdf5GroupSymbolTable(lh, link);\n } else {\n this.seek(bt.keys[i].child_address);\n this.hdf5V1ObjectHeader(link);\n }\n }\n\n link.children.forEach(function (child) {\n that.seek(child.hdr_offset);\n that.hdf5V1ObjectHeader(child);\n });\n }\n }\n\n\n//------------------------------------------------------------------------------\n// FROM hdf5_tools.js\n\n getTypeMatchMinc(typeEnumVal){\n return this._type_matching[typeEnumVal - 1];\n }\n\n\n\n defined(x) {\n return typeof x !== 'undefined';\n }\n\n\n typeName(x) {\n if (! this.defined(x)) {\n return \"undefined\";\n }\n return x.constructor.name;\n }\n\n\n\n typeSize(typ) {\n if (typ >= this._type_enum.INT8 && typ < this.type_sizes.length) {\n return this.type_sizes[typ];\n }\n throw new Error('Unknown type ' + typ);\n }\n\n\n typeIsFloat(typ) {\n return (typ >= this._type_enum.FLT && typ <=this._type_enum.DBL);\n }\n\n\n /*\n * The remaining code after this point is not truly HDF5 specific -\n * it's mostly about converting the MINC file into the form\n * BrainBrowser is able to use. Therefore it is used for both HDF5\n * and NetCDF files.\n */\n\n /*\n * Join does not seem to be defined on the typed arrays in\n * javascript, so I've re-implemented it here, sadly.\n */\n join(array, string) {\n var result = \"\";\n if (array && array.length) {\n var i;\n for (i = 0; i < array.length - 1; i += 1) {\n result += array[i];\n result += string;\n }\n result += array[i];\n }\n return result;\n }\n\n /*\n * Recursively print out the structure and contents of the file.\n * Primarily useful for debugging.\n */\n printStructure(link, level) {\n var that = this;\n\n var i;\n var msg = \"\";\n for (i = 0; i < level * 2; i += 1) {\n msg += \" \";\n }\n msg += link.name + (link.children.length ? \"/\" : \"\");\n if (link.type > 0) {\n msg += ' ' + this.typeName(link.array);\n if (link.dims.length) {\n msg += '[' + link.dims.join(', ') + ']';\n }\n if (link.array) {\n msg += \":\" + link.array.length;\n } else {\n msg += \" NULL\";\n }\n }\n console.log(msg);\n\n Object.keys(link.attributes).forEach(function (name) {\n var value = link.attributes[name];\n\n msg = \"\";\n for (i = 0; i < level * 2 + 1; i += 1) {\n msg += \" \";\n }\n msg += link.name + ':' + name + \" \" +\n that.typeName(value) + \"[\" + value.length + \"] \";\n if (typeof value === \"string\") {\n msg += JSON.stringify(value);\n } else {\n msg += \"{\" + that.join(value.slice(0, 16), ', ');\n if (value.length > 16) {\n msg += \", ...\";\n }\n msg += \"}\";\n }\n console.log(msg);\n });\n\n link.children.forEach(function (child) {\n that.printStructure(child, level + 1);\n });\n }\n\n /* Find a dataset with a given name, by recursively searching through\n * the links. Groups will have 'type' fields of -1, since they contain\n * no data.\n * TODO (maybe): Use associative array for children?\n */\n findDataset(link, name, level) {\n var that = this;\n var result;\n if (link && link.name === name && link.type > 0) {\n result = link;\n } else {\n link.children.find( function( child ) {\n result = that.findDataset(child, name, level + 1);\n return that.defined(result);\n });\n }\n return result;\n }\n\n /* Find an attribute with a given name.\n */\n findAttribute(link, name, level) {\n var that = this;\n var result = link.attributes[name];\n if (result)\n return result;\n\n link.children.find( function (child ) {\n result = that.findAttribute( child, name, level + 1);\n return that.defined(result);\n });\n return result;\n }\n\n /**\n * @doc function\n * @name hdf5.this.scaleVoxels\n * @param {object} image The link object corresponding to the image data.\n * @param {object} image_min The link object corresponding to the image-min\n * data.\n * @param {object} image_max The link object corresponding to the image-max\n * data.\n * @param {object} valid_range An array of exactly two items corresponding\n * to the minimum and maximum valid _raw_ voxel values.\n * @param {boolean} debug True if we should print debugging information.\n * @returns A new ArrayBuffer containing the rescaled data.\n * @description\n * Convert the MINC data from voxel to real range. This returns a\n * new buffer that contains the \"real\" voxel values. It does less\n * work for floating-point volumes, since they don't need scaling.\n *\n * For debugging/testing purposes, also gathers basic voxel statistics,\n * for comparison against mincstats.\n */\n scaleVoxels(image, image_min, image_max, valid_range, debug) {\n /*\n var new_abuf = new ArrayBuffer(image.array.length *\n Float32Array.BYTES_PER_ELEMENT);\n var new_data = new Float32Array(new_abuf);\n\n */\n\n // 1D array to store the voxel data,\n // not initialized yet because it depends on the hdf5 type.\n var new_abuf = null;\n var new_data = null;\n\n // we could simply use image.type, but written types are easier to read...\n switch (this.getTypeMatchMinc(image.type)) {\n case 'int8':\n new_abuf = new ArrayBuffer(image.array.length * Int8Array.BYTES_PER_ELEMENT);\n new_data = new Int8Array(new_abuf);\n break;\n\n case 'int16':\n new_abuf = new ArrayBuffer(image.array.length * Int16Array.BYTES_PER_ELEMENT);\n new_data = new Int16Array(new_abuf);\n break;\n\n case 'int32':\n new_abuf = new ArrayBuffer(image.array.length * Int32Array.BYTES_PER_ELEMENT);\n new_data = new Int32Array(new_abuf);\n break;\n\n case 'float32':\n new_abuf = new ArrayBuffer(image.array.length * Float32Array.BYTES_PER_ELEMENT);\n new_data = new Float32Array(new_abuf);\n break;\n\n case 'float64':\n new_abuf = new ArrayBuffer(image.array.length * Float64Array.BYTES_PER_ELEMENT);\n new_data = new Float64Array(new_abuf);\n break;\n\n case 'uint8':\n new_abuf = new ArrayBuffer(image.array.length * Uint8Array.BYTES_PER_ELEMENT);\n new_data = new Uint8Array(new_abuf);\n break;\n\n case 'uint16':\n new_abuf = new ArrayBuffer(image.array.length * Uint16Array.BYTES_PER_ELEMENT);\n new_data = new Uint16Array(new_abuf);\n break;\n\n case 'uint32':\n new_abuf = new ArrayBuffer(image.array.length * Uint32Array.BYTES_PER_ELEMENT);\n new_data = new Uint32Array(new_abuf);\n break;\n\n default:\n var error_message = \"Unsupported data type: \" + header.datatype;\n console.log({ message: error_message } );\n //BrainBrowser.events.triggerEvent(\"error\", { message: error_message } );\n throw new Error(error_message);\n\n }\n\n\n var n_slice_dims = image.dims.length - image_min.dims.length;\n\n if (n_slice_dims < 1) {\n throw new Error(\"Too few slice dimensions: \" + image.dims.length +\n \" \" + image_min.dims.length);\n }\n var n_slice_elements = 1;\n var i;\n for (i = image_min.dims.length; i < image.dims.length; i += 1) {\n n_slice_elements *= image.dims[i];\n }\n if (debug) {\n console.log(n_slice_elements + \" voxels in slice.\");\n }\n var s = 0;\n var c = 0;\n var x = -Number.MAX_VALUE;\n var n = Number.MAX_VALUE;\n var im = image.array;\n var im_max = image_max.array;\n var im_min = image_min.array;\n if (debug) {\n console.log(\"valid range is \" + valid_range[0] + \" to \" + valid_range[1]);\n }\n\n var vrange;\n var rrange;\n var vmin = valid_range[0];\n var rmin;\n var j;\n var v;\n var is_float = this.typeIsFloat(image.type);\n for (i = 0; i < image_min.array.length; i += 1) {\n if (debug) {\n console.log(i + \" \" + im_min[i] + \" \" + im_max[i] + \" \" +\n im[i * n_slice_elements]);\n }\n if (is_float) {\n /* For floating-point volumes there is no scaling to be performed.\n * We do scan the data and make sure voxels are within the valid\n * range, and collect our statistics.\n */\n for (j = 0; j < n_slice_elements; j += 1) {\n v = im[c];\n if (v < valid_range[0] || v > valid_range[1]) {\n new_data[c] = 0.0;\n }\n else {\n new_data[c] = v;\n s += v;\n if (v > x) {\n x = v;\n }\n if (v < n) {\n n = v;\n }\n }\n c += 1;\n }\n }\n else {\n /* For integer volumes we have to scale each slice according to image-min,\n * image-max, and valid_range.\n */\n vrange = (valid_range[1] - valid_range[0]);\n rrange = (im_max[i] - im_min[i]);\n rmin = im_min[i];\n\n /*\n console.log(n_slice_elements);\n console.log(vrange);\n console.log(rrange);\n console.log(rmin);\n console.log(\"-----------------\");\n */\n\n\n for (j = 0; j < n_slice_elements; j += 1) {\n\n // v normalization to avoid \"flickering\".\n // v is scaled to the range [0, im_max[i]]\n // (possibly uint16 if the original per-slice min-max was not scaled up/down)\n v = (im[c] - vmin) / vrange * rrange + rmin;\n\n // we scale up/down to match the type of the target array\n v = v / im_max[i] * valid_range[1];\n\n\n new_data[c] = v;\n s += v;\n c += 1;\n if (v > x) {\n x = v;\n }\n if (v < n) {\n n = v;\n }\n\n }\n\n }\n }\n\n if (debug) {\n console.log(\"Min: \" + n);\n console.log(\"Max: \" + x);\n console.log(\"Sum: \" + s);\n console.log(\"Mean: \" + s / c);\n }\n\n return new_abuf;\n }\n\n /**\n * @doc function\n * @name hdf5.this.isRgbVolume\n * @param {object} header The header object representing the structure\n * of the MINC file.\n * @param {object} image The typed array object used to represent the\n * image data.\n * @returns {boolean} True if this is an RGB volume.\n * @description\n * A MINC volume is an RGB volume if all three are true:\n * 1. The voxel type is unsigned byte.\n * 2. It has a vector_dimension in the last (fastest-varying) position.\n * 3. The vector dimension has length 3.\n */\n isRgbVolume(header, image) {\n var order = header.order;\n return (image.array.constructor.name === 'Uint8Array' &&\n order.length > 0 &&\n order[order.length - 1] === \"vector_dimension\" &&\n header.vector_dimension.space_length === 3);\n }\n\n /**\n * @doc function\n * @name hdf5.this.rgbVoxels\n * @param {object} image The 'link' object created using createLink(),\n * that corresponds to the image within the HDF5 or NetCDF file.\n * @returns {object} A new ArrayBuffer that contains the original RGB\n * data augmented with alpha values.\n * @description\n * This function copies the RGB voxels to the destination buffer.\n * Essentially we just convert from 24 to 32 bits per voxel. This\n * is another MINC-specific function.\n */\n rgbVoxels(image) {\n var im = image.array;\n var n = im.length;\n var new_abuf = new ArrayBuffer(n / 3 * 4);\n var new_byte = new Uint8Array(new_abuf);\n var i, j = 0;\n for (i = 0; i < n; i += 3) {\n new_byte[j+0] = im[i+0];\n new_byte[j+1] = im[i+1];\n new_byte[j+2] = im[i+2];\n new_byte[j+3] = 255;\n j += 4;\n }\n return new_abuf;\n }\n\n\n //----------------------------------------------------------------------------\n // FROM minc_reader.js\n parseHeader(header_text) {\n var header;\n var error_message;\n\n try{\n header = JSON.parse(header_text);\n } catch(error) {\n error_message = \"server did not respond with valid JSON\" + \"\\n\" +\n \"Response was: \\n\" + header_text;\n\n console.log( { message: error_message });\n\n // BrainBrowser.events.triggerEvent(\"error\", { message: error_message });\n throw new Error(error_message);\n }\n\n if(header.order.length === 4) {\n header.order = header.order.slice(1);\n }\n\n header.datatype = header.datatype || \"uint8\";\n\n header.xspace.space_length = parseFloat(header.xspace.space_length);\n header.yspace.space_length = parseFloat(header.yspace.space_length);\n header.zspace.space_length = parseFloat(header.zspace.space_length);\n\n header.xspace.start = parseFloat(header.xspace.start);\n header.yspace.start = parseFloat(header.yspace.start);\n header.zspace.start = parseFloat(header.zspace.start);\n\n header.xspace.step = parseFloat(header.xspace.step);\n header.yspace.step = parseFloat(header.yspace.step);\n header.zspace.step = parseFloat(header.zspace.step);\n\n header.xspace.direction_cosines = header.xspace.direction_cosines || [1, 0, 0];\n header.yspace.direction_cosines = header.yspace.direction_cosines || [0, 1, 0];\n header.zspace.direction_cosines = header.zspace.direction_cosines || [0, 0, 1];\n\n header.xspace.direction_cosines = header.xspace.direction_cosines.map(parseFloat);\n header.yspace.direction_cosines = header.yspace.direction_cosines.map(parseFloat);\n header.zspace.direction_cosines = header.zspace.direction_cosines.map(parseFloat);\n\n /* Incrementation offsets for each dimension of the volume.\n * Note that this somewhat format-specific, so it does not\n * belong in the generic \"createVolume()\" code.\n */\n header[header.order[0]].offset = header[header.order[1]].space_length * header[header.order[2]].space_length;\n header[header.order[1]].offset = header[header.order[2]].space_length;\n header[header.order[2]].offset = 1;\n\n if(header.time) {\n header.time.space_length = parseFloat(header.time.space_length);\n header.time.start = parseFloat(header.time.start);\n header.time.step = parseFloat(header.time.step);\n header.time.offset = header.xspace.space_length * header.yspace.space_length * header.zspace.space_length;\n }\n\n return header;\n }\n\n\n/*\n createMincVolume(header, raw_data){\n var volume = createVolume(header, this.createMincData(header, raw_data));\n volume.type = \"minc\";\n\n volume.saveOriginAndTransform(header);\n volume.intensity_min = header.voxel_min;\n volume.intensity_max = header.voxel_max;\n\n return volume;\n\n }\n*/\n\n\n /*\n initialize the large 1D array of data depending on the type found.\n Rearange the original ArrayBuffer into a typed array.\n args:\n header: obj - header of the data\n raw_data: ArrayBuffer - sub object given by hdf5Loader\n */\n createMincData(header, raw_data){\n\n var native_data = null;\n\n switch (header.datatype) {\n case 'int8':\n native_data = new Int8Array(raw_data);\n break;\n case 'int16':\n native_data = new Int16Array(raw_data);\n break;\n case 'int32':\n native_data = new Int32Array(raw_data);\n break;\n case 'float32':\n native_data = new Float32Array(raw_data);\n break;\n case 'float64':\n native_data = new Float64Array(raw_data);\n break;\n case 'uint8':\n native_data = new Uint8Array(raw_data);\n break;\n case 'uint16':\n native_data = new Uint16Array(raw_data);\n break;\n case 'uint32':\n case 'rgb8':\n native_data = new Uint32Array(raw_data);\n break;\n default:\n var error_message = \"Unsupported data type: \" + header.datatype;\n console.log({ message: error_message } );\n //BrainBrowser.events.triggerEvent(\"error\", { message: error_message } );\n throw new Error(error_message);\n }\n\n return native_data;\n }\n\n\n\n\n //----------------------------------------------------------------------------\n\n _run(){\n var that = this;\n\n var inputBuffer = this._getInput(0);\n\n if(!inputBuffer){\n console.warn(\"Minc2Decoder requires an ArrayBuffer as input \\\"0\\\". Unable to continue.\");\n return;\n }\n\n this._dv = new DataView(inputBuffer);\n\n\n /* Patch in the missing function to get 64-bit integers.\n * Note: this won't really quite work b/c Javascript doesn't\n * have support for 64-bit integers.\n */\n this._dv.getUint64 = function (off, little_endian) {\n var l4 = that._dv.getUint32(off + 0, little_endian);\n var u4 = that._dv.getUint32(off + 4, little_endian);\n if (little_endian) {\n return (u4 << 32) + l4;\n } else {\n return (l4 << 32) + u4;\n }\n };\n\n\n var root = this.createLink();\n\n try{\n this._superblk = this.hdf5Superblock();\n }catch(e){\n //console.error(e);\n console.warn(\"The input file is not a Minc2 file.\");\n return;\n }\n\n\n this.seek(this._superblk.root_addr);\n\n if (this._superblk.sbver <= 1) {\n this.hdf5V1ObjectHeader(root);\n } else {\n this.hdf5V2ObjectHeader(root);\n }\n\n this.loadData(root);\n\n\n\n\n\n if (this.getMetadata(\"debug\")) {\n this.printStructure(root, 0);\n }\n\n /* The rest of this code is MINC-specific, so like some of the\n * functions above, it can migrate into minc.js once things have\n * stabilized.\n *\n * This code is responsible for collecting up the various pieces\n * of important data and metadata, and reorganizing them into the\n * form the volume viewer can handle.\n */\n var image = this.findDataset(root, \"image\");\n if (!this.defined(image)) {\n throw new Error(\"Can't find image dataset.\");\n }\n\n var valid_range = this.findAttribute(image, \"valid_range\", 0);\n /* If no valid_range is found, we substitute our own. */\n if (!this.defined(valid_range)) {\n var min_val;\n var max_val;\n switch (image.type) {\n case this._type_enum.INT8:\n min_val = -(1 << 7);\n max_val = (1 << 7) - 1;\n break;\n case this._type_enum.UINT8:\n min_val = 0;\n max_val = (1 << 8) - 1;\n break;\n case this._type_enum.INT16:\n min_val = -(1 << 15);\n max_val = (1 << 15) - 1;\n break;\n case this._type_enum.UINT16:\n min_val = 0;\n max_val = (1 << 16) - 1;\n break;\n case this._type_enum.INT32:\n min_val = -(1 << 31);\n max_val = (1 << 31) - 1;\n break;\n case this._type_enum.UINT32:\n min_val = 0;\n max_val = (1 << 32) - 1;\n break;\n }\n valid_range = Float32Array.of(min_val, max_val);\n }\n\n\n var image_min = this.findDataset(root, \"image-min\");\n if (!this.defined(image_min)) {\n image_min = {\n array: Float32Array.of(0),\n dims: []\n };\n }\n\n var image_max = this.findDataset(root, \"image-max\");\n if (!this.defined(image_max)) {\n image_max = {\n array: Float32Array.of(1),\n dims: []\n };\n }\n\n\n /* Create the header expected by the existing brainbrowser code.\n */\n var header = {};\n var tmp = this.findAttribute(image, \"dimorder\", 0);\n if (typeof tmp !== 'string') {\n throw new Error(\"Can't find dimension order.\");\n }\n header.order = tmp.split(',');\n\n header.order.forEach(function(dimname) {\n var dim = that.findDataset(root, dimname);\n if (!that.defined(dim)) {\n throw new Error(\"Can't find dimension variable \" + dimname);\n }\n\n header[dimname] = {};\n\n tmp = that.findAttribute(dim, \"step\", 0);\n if (!that.defined(tmp)) {\n tmp = Float32Array.of(1);\n }\n header[dimname].step = tmp[0];\n\n tmp = that.findAttribute(dim, \"start\", 0);\n if (!that.defined(tmp)) {\n tmp = Float32Array.of(0);\n }\n header[dimname].start = tmp[0];\n\n tmp = that.findAttribute(dim, \"length\", 0);\n if (!that.defined(tmp)) {\n throw new Error(\"Can't find length for \" + dimname);\n }\n header[dimname].space_length = tmp[0];\n\n tmp = that.findAttribute(dim, \"direction_cosines\", 0);\n if (that.defined(tmp)) {\n // why is the bizarre call to slice needed?? it seems to work, though!\n header[dimname].direction_cosines = Array.prototype.slice.call(tmp);\n }\n else {\n if (dimname === \"xspace\") {\n header[dimname].direction_cosines = [1, 0, 0];\n } else if (dimname === \"yspace\") {\n header[dimname].direction_cosines = [0, 1, 0];\n } else if (dimname === \"zspace\") {\n header[dimname].direction_cosines = [0, 0, 1];\n }\n }\n });\n\n var new_abuf;\n\n if (this.isRgbVolume(header, image)) {\n header.order.pop();\n header.datatype = 'rgb8';\n new_abuf = this.rgbVoxels(image);\n }\n else {\n\n //header.datatype = 'float32';\n header.datatype = this.getTypeMatchMinc(image.type)\n\n new_abuf = this.scaleVoxels(image, image_min, image_max, valid_range, this.getMetadata(\"debug\"));\n }\n\n var minc_header = this.parseHeader( JSON.stringify(header) );\n var dataArray = this.createMincData(minc_header, new_abuf)\n\n // add the output to this filter\n this._addOutput(MniVolume);\n var mniVol = this.getOutput();\n mniVol.setData(dataArray, minc_header);\n mniVol.setMetadata(\"format\", \"minc2\");\n }\n\n\n\n} /* END of class Hdf5Decoder */\n\nexport { Minc2Decoder }\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* Robert D. Vincent\n*\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\nimport pako from 'pako'\nimport { Filter } from '../core/Filter.js';\nimport { MniVolume } from '../core/MniVolume.js';\n\n\nclass NiftiDecoder extends Filter {\n\n constructor(){\n super();\n this.setMetadata(\"debug\", false);\n }\n\n\n /**\n * [PRIVATE]\n */\n parseNifti1Header(raw_data) {\n var header = {\n order: [\"zspace\", \"yspace\", \"xspace\"],\n xspace: {},\n yspace: {},\n zspace: {}\n };\n var error_message = null;\n var dview = new DataView(raw_data, 0, 348);\n var bytes = new Uint8Array(raw_data, 0, 348);\n var littleEndian = true;\n\n var sizeof_hdr = dview.getUint32(0, true);\n if (sizeof_hdr === 0x0000015c) {\n littleEndian = true;\n } else if (sizeof_hdr === 0x5c010000) {\n littleEndian = false;\n } else {\n error_message = \"This does not look like a NIfTI-1 file.\";\n }\n\n var ndims = dview.getUint16(40, littleEndian);\n if (ndims < 3 || ndims > 4) {\n error_message = \"Cannot handle \" + ndims + \"-dimensional images yet.\";\n }\n\n var magic = String.fromCharCode.apply(null, bytes.subarray(344, 348));\n if (magic !== \"n+1\\0\") {\n error_message = \"Bad magic number: '\" + magic + \"'\";\n }\n\n if (error_message) {\n //throw new Error(error_message);\n console.warn(\"The input file is not a NIfTI file.\");\n return null;\n }\n\n header.xspace.space_length = dview.getUint16(42, littleEndian);\n header.yspace.space_length = dview.getUint16(44, littleEndian);\n header.zspace.space_length = dview.getUint16(46, littleEndian);\n var tlength = dview.getUint16(48, littleEndian);\n\n var datatype = dview.getUint16(70, littleEndian);\n var bitpix = dview.getUint16(72, littleEndian);\n\n var xstep = dview.getFloat32(80, littleEndian);\n var ystep = dview.getFloat32(84, littleEndian);\n var zstep = dview.getFloat32(88, littleEndian);\n var tstep = dview.getFloat32(92, littleEndian);\n\n var vox_offset = dview.getFloat32(108, littleEndian);\n if (vox_offset < 352) {\n vox_offset = 352;\n }\n\n var scl_slope = dview.getFloat32(112, littleEndian);\n var scl_inter = dview.getFloat32(116, littleEndian);\n\n var qform_code = dview.getUint16(252, littleEndian);\n var sform_code = dview.getUint16(254, littleEndian);\n\n var transform = [\n [1, 0, 0, 0],\n [0, 1, 0, 0],\n [0, 0, 1, 0],\n [0, 0, 0, 1]\n ];\n\n if (tlength >= 1) {\n header.time = {};\n header.time.space_length = tlength;\n header.time.step = tstep;\n header.time.start = 0;\n header.time.name = \"time\";\n header.order = [\"time\", \"zspace\", \"yspace\", \"xspace\"];\n }\n\n /* Record the number of bytes per voxel, and note whether we need\n * to swap bytes in the voxel data.\n */\n header.bytes_per_voxel = bitpix / 8;\n header.must_swap_data = !littleEndian && header.bytes_per_voxel > 1;\n\n if (sform_code > 0) {\n /* The \"Sform\", if present, defines an affine transform which is\n * generally assumed to correspond to some standard coordinate\n * space (e.g. Talairach).\n */\n transform[0][0] = dview.getFloat32(280, littleEndian);\n transform[0][1] = dview.getFloat32(284, littleEndian);\n transform[0][2] = dview.getFloat32(288, littleEndian);\n transform[0][3] = dview.getFloat32(292, littleEndian);\n transform[1][0] = dview.getFloat32(296, littleEndian);\n transform[1][1] = dview.getFloat32(300, littleEndian);\n transform[1][2] = dview.getFloat32(304, littleEndian);\n transform[1][3] = dview.getFloat32(308, littleEndian);\n transform[2][0] = dview.getFloat32(312, littleEndian);\n transform[2][1] = dview.getFloat32(316, littleEndian);\n transform[2][2] = dview.getFloat32(320, littleEndian);\n transform[2][3] = dview.getFloat32(324, littleEndian);\n }\n else if (qform_code > 0) {\n /* The \"Qform\", if present, defines a quaternion which specifies\n * a less general transformation, often to scanner space.\n */\n var quatern_b = dview.getFloat32(256, littleEndian);\n var quatern_c = dview.getFloat32(260, littleEndian);\n var quatern_d = dview.getFloat32(264, littleEndian);\n var qoffset_x = dview.getFloat32(268, littleEndian);\n var qoffset_y = dview.getFloat32(272, littleEndian);\n var qoffset_z = dview.getFloat32(276, littleEndian);\n var qfac = (dview.getFloat32(76, littleEndian) < 0) ? -1.0 : 1.0;\n\n transform = this.niftiQuaternToMat44(quatern_b, quatern_c, quatern_d,\n qoffset_x, qoffset_y, qoffset_z,\n xstep, ystep, zstep, qfac);\n }\n else {\n transform[0][0] = xstep;\n transform[1][1] = ystep;\n transform[2][2] = zstep;\n }\n\n MniVolume.transformToMinc(transform, header);\n\n header.datatype = datatype;\n header.vox_offset = vox_offset;\n header.scl_slope = scl_slope;\n header.scl_inter = scl_inter;\n\n return header;\n }\n\n\n /**\n * [PRIVATE]\n * This function is a direct translation of the identical function\n * found in the standard NIfTI-1 library (nifti1_io.c).\n */\n niftiQuaternToMat44( qb, qc, qd,\n qx, qy, qz,\n dx, dy, dz, qfac )\n {\n var m = [ // 4x4 transform\n [0, 0, 0, 0],\n [0, 0, 0, 0],\n [0, 0, 0, 0],\n [0, 0, 0, 1]\n ];\n var b = qb;\n var c = qc;\n var d = qd;\n var a, xd, yd, zd;\n\n // compute a parameter from b,c,d\n\n a = 1.0 - (b * b + c * c + d * d);\n if ( a < 1.e-7 ) { // special case\n a = 1.0 / Math.sqrt(b * b + c * c + d * d);\n b *= a; // normalize (b,c,d) vector\n c *= a;\n d *= a;\n a = 0.0; // a = 0 ==> 180 degree rotation\n } else {\n a = Math.sqrt(a); // angle = 2*arccos(a)\n }\n\n // load rotation matrix, including scaling factors for voxel sizes\n\n xd = (dx > 0.0) ? dx : 1.0; // make sure are positive\n yd = (dy > 0.0) ? dy : 1.0;\n zd = (dz > 0.0) ? dz : 1.0;\n\n if ( qfac < 0.0 ) // left handedness?\n zd = -zd;\n\n m[0][0] = (a * a + b * b - c * c - d * d) * xd;\n m[0][1] = 2.0 * (b * c - a * d ) * yd;\n m[0][2] = 2.0 * (b * d + a * c ) * zd;\n m[1][0] = 2.0 * (b * c + a * d ) * xd;\n m[1][1] = (a * a + c * c - b * b - d * d) * yd;\n m[1][2] = 2.0 * (c * d - a * b ) * zd;\n m[2][0] = 2.0 * (b * d - a * c ) * xd;\n m[2][1] = 2.0 * (c * d + a * b ) * yd;\n m[2][2] = (a * a + d * d - c * c - b * b) * zd;\n\n // load offsets\n m[0][3] = qx;\n m[1][3] = qy;\n m[2][3] = qz;\n\n return m;\n }\n\n\n /**\n * [PRIVATE]\n */\n createNifti1Data(header, raw_data) {\n var native_data = null;\n\n if (header.must_swap_data) {\n MniVolume.swapn(\n new Uint8Array(raw_data, header.vox_offset),\n header.bytes_per_voxel\n );\n }\n\n switch (header.datatype) {\n case 2: // DT_UNSIGNED_CHAR\n // no translation necessary; could optimize this out.\n native_data = new Uint8Array(raw_data, header.vox_offset);\n break;\n case 4: // DT_SIGNED_SHORT\n native_data = new Int16Array(raw_data, header.vox_offset);\n break;\n case 8: // DT_SIGNED_INT\n native_data = new Int32Array(raw_data, header.vox_offset);\n break;\n case 16: // DT_FLOAT\n native_data = new Float32Array(raw_data, header.vox_offset);\n break;\n case 64: // DT_DOUBLE\n native_data = new Float64Array(raw_data, header.vox_offset);\n break;\n // Values above 256 are NIfTI-specific, and rarely used.\n case 256: // DT_INT8\n native_data = new Int8Array(raw_data, header.vox_offset);\n break;\n case 512: // DT_UINT16\n native_data = new Uint16Array(raw_data, header.vox_offset);\n break;\n case 768: // DT_UINT32\n native_data = new Uint32Array(raw_data, header.vox_offset);\n break;\n default:\n // We don't yet support 64-bit, complex, RGB, and float 128 types.\n throw new Error(\"Unsupported data type: \" + header.datatype);\n }\n\n var d = 0; // Generic loop counter.\n var slope = header.scl_slope;\n var inter = header.scl_inter;\n\n // According to the NIfTI specification, a slope value of zero means\n // that the data should _not_ be scaled. Otherwise, every voxel is\n // transformed according to value = value * slope + inter\n //\n if (slope !== 0.0) {\n var float_data = new Float32Array(native_data.length);\n\n for (d = 0; d < native_data.length; d++) {\n float_data[d] = native_data[d] * slope + inter;\n }\n native_data = float_data; // Return the new float buffer.\n }\n\n if(header.order.length === 4) {\n header.order = header.order.slice(1);\n }\n\n // Incrementation offsets for each dimension of the volume.\n header[header.order[0]].offset = header[header.order[1]].space_length * header[header.order[2]].space_length;\n header[header.order[1]].offset = header[header.order[2]].space_length;\n header[header.order[2]].offset = 1;\n\n if(header.time) {\n header.time.offset = header.xspace.space_length * header.yspace.space_length * header.zspace.space_length;\n }\n\n return native_data;\n }\n\n\n //----------------------------------------------------------------------------\n\n _run(){\n var that = this;\n var inputBuffer = this._getInput(0);\n\n if(!inputBuffer){\n console.warn(\"NiftiDecoder requires an ArrayBuffer as input \\\"0\\\". Unable to continue.\");\n return;\n }\n\n var header = this.parseNifti1Header( inputBuffer );\n\n // abort if header not valid\n if(!header)\n return;\n\n var dataArray = this.createNifti1Data(header, inputBuffer)\n\n // add the output to this filter\n this._addOutput(MniVolume);\n var mniVol = this.getOutput();\n mniVol.setData(dataArray, header);\n mniVol.setMetadata(\"format\", \"nifti\");\n\n }\n\n\n} /* END class NiftiDecoder */\n\nexport { NiftiDecoder }\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\nimport { Image2D } from '../core/Image2D.js';\nimport { PixelWiseImageFilter } from '../core/PixelWiseImageFilter.js';\n\n/**\n* A filter of type ForEachPixelImageFilter can perform a operation on evey pixel\n* of an Image2D with a simple interface. For this purpose, a per-pixel-callback\n* must be specified using method\n* .on( \"pixel\" , function( coord, color ){ ... })\n* where coord is of form {x, y} and color is of form [r, g, b, a] (with possibly)\n* a different number of components per pixel.\n* This callback must return, or null (original color not modified),\n* or a array of color (same dimension as the one in arguments).\n*\n* Usage: examples/forEachPixel.html\n*\n* @example\n* var forEachPixelFilter = new pixpipe.ForEachPixelImageFilter();\n* forEachPixelFilter.on( \"pixel\", function(position, color){\n*\n* return [\n* color[1], // red (takes the values from green)\n* color[0], // green (takes the values from red)\n* color[2] * 0.5, // blue get 50% darker\n* 255 // alpha, at max\n* ]\n*\n* }\n* );\n*\n*/\nclass ForEachPixelImageFilter extends PixelWiseImageFilter {\n\n constructor(){\n super();\n this._addOutput( Image2D );\n }\n\n\n /**\n * Run the filter\n */\n _run(){\n if( ! this.hasValidInput())\n return;\n\n var inputImage2D = this._getInput();\n var firstPixel = 0;\n var lastPixel = inputImage2D.getWidth() * inputImage2D.getHeight();\n var increment = 1;\n\n this._inputBuffer = inputImage2D.getDataCopy();\n\n this._forEachPixelOfSuch(firstPixel, lastPixel, increment );\n\n // 1 - init the output\n var outputImg = this.getOutput();\n console.log(outputImg.getUuid);\n\n // 2 - tune the output\n outputImg.setData(\n this._inputBuffer,\n inputImage2D.getWidth(),\n inputImage2D.getHeight(),\n inputImage2D.getComponentsPerPixel()\n );\n\n }\n\n} /* END class ForEachPixelImageFilter */\n\nexport { ForEachPixelImageFilter }\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\nimport { Image2D } from '../core/Image2D.js';\nimport { ImageToImageFilter } from '../core/ImageToImageFilter.js';\n\n/**\n* Multiply an image by the other, like a scaling function.\n* The image requires two inputs named \"0\" and \"1\".\n* Simply use `addInput( myImg1, \"0\" )`\n* and `addInput( myImg2, \"1\" )`. The input \"0\" can have 1 or more bands while\n* the input \"1\" can have only one band since the same scale is apply to each band.\n*\n* usage: examples/forEachPixelGadient.html\n*/\nclass SpectralScaleImageFilter extends ImageToImageFilter {\n\n constructor(){\n super();\n\n // both input are images.\n this._inputValidator[ 0 ] = Image2D.TYPE();\n this._inputValidator[ 1 ] = Image2D.TYPE();\n\n this._addOutput( Image2D );\n }\n\n\n /**\n * Run the filter\n */\n _run(){\n // filter must have valid input of the same size\n if( !this.hasSameSizeInput() || !this.hasValidInput()){\n return;\n }\n\n var dataImg0 = this._getInput(0);\n var dataImg1 = this._getInput(1);\n\n // the input \"1\" (aka. the scaling data) must be single band\n if( dataImg1.getComponentsPerPixel() != 1 ){\n console.warn(\"The scaling image must have one single band.\");\n return;\n }\n\n var nbOfPixels = dataImg0.getWidth() * dataImg0.getHeight();\n var ncpp = dataImg0.getComponentsPerPixel();\n\n var data0 = dataImg0.getDataCopy();\n var data1 = dataImg1.getData();\n\n // scale the spectral info\n for(var p=0; p 1) {\n n2 = nstack.pop();\n n1 = nstack.pop();\n f = binaryOps[item.value];\n item = new Instruction(INUMBER, f(n1.value, n2.value));\n nstack.push(item);\n } else if (type === IOP3 && nstack.length > 2) {\n n3 = nstack.pop();\n n2 = nstack.pop();\n n1 = nstack.pop();\n if (item.value === '?') {\n nstack.push(n1.value ? n2.value : n3.value);\n } else {\n f = ternaryOps[item.value];\n item = new Instruction(INUMBER, f(n1.value, n2.value, n3.value));\n nstack.push(item);\n }\n } else if (type === IOP1 && nstack.length > 0) {\n n1 = nstack.pop();\n f = unaryOps[item.value];\n item = new Instruction(INUMBER, f(n1.value));\n nstack.push(item);\n } else if (type === IEXPR) {\n while (nstack.length > 0) {\n newexpression.push(nstack.shift());\n }\n newexpression.push(new Instruction(IEXPR, simplify(item.value, unaryOps, binaryOps, ternaryOps, values)));\n } else if (type === IMEMBER && nstack.length > 0) {\n n1 = nstack.pop();\n nstack.push(new Instruction(INUMBER, n1.value[item.value]));\n } else {\n while (nstack.length > 0) {\n newexpression.push(nstack.shift());\n }\n newexpression.push(item);\n }\n }\n while (nstack.length > 0) {\n newexpression.push(nstack.shift());\n }\n return newexpression;\n}\n\nExpression.prototype.simplify = function (values) {\n values = values || {};\n return new Expression(simplify(this.tokens, this.unaryOps, this.binaryOps, this.ternaryOps, values), this.parser);\n};\n\nfunction substitute(tokens, variable, expr) {\n var newexpression = [];\n for (var i = 0, L = tokens.length; i < L; i++) {\n var item = tokens[i];\n var type = item.type;\n if (type === IVAR && item.value === variable) {\n for (var j = 0; j < expr.tokens.length; j++) {\n var expritem = expr.tokens[j];\n var replitem;\n if (expritem.type === IOP1) {\n replitem = unaryInstruction(expritem.value);\n } else if (expritem.type === IOP2) {\n replitem = binaryInstruction(expritem.value);\n } else if (expritem.type === IOP3) {\n replitem = ternaryInstruction(expritem.value);\n } else {\n replitem = new Instruction(expritem.type, expritem.value);\n }\n newexpression.push(replitem);\n }\n } else if (type === IEXPR) {\n newexpression.push(new Instruction(IEXPR, substitute(item.value, variable, expr)));\n } else {\n newexpression.push(item);\n }\n }\n return newexpression;\n}\n\nExpression.prototype.substitute = function (variable, expr) {\n if (!(expr instanceof Expression)) {\n expr = this.parser.parse(String(expr));\n }\n\n return new Expression(substitute(this.tokens, variable, expr), this.parser);\n};\n\nfunction evaluate(tokens, expr, values) {\n var nstack = [];\n var n1, n2, n3;\n var f;\n for (var i = 0, L = tokens.length; i < L; i++) {\n var item = tokens[i];\n var type = item.type;\n if (type === INUMBER) {\n nstack.push(item.value);\n } else if (type === IOP2) {\n n2 = nstack.pop();\n n1 = nstack.pop();\n f = expr.binaryOps[item.value];\n nstack.push(f(n1, n2));\n } else if (type === IOP3) {\n n3 = nstack.pop();\n n2 = nstack.pop();\n n1 = nstack.pop();\n if (item.value === '?') {\n nstack.push(evaluate(n1 ? n2 : n3, expr, values));\n } else {\n f = expr.ternaryOps[item.value];\n nstack.push(f(n1, n2, n3));\n }\n } else if (type === IVAR) {\n if (item.value in expr.functions) {\n nstack.push(expr.functions[item.value]);\n } else {\n var v = values[item.value];\n if (v !== undefined) {\n nstack.push(v);\n } else {\n throw new Error('undefined variable: ' + item.value);\n }\n }\n } else if (type === IOP1) {\n n1 = nstack.pop();\n f = expr.unaryOps[item.value];\n nstack.push(f(n1));\n } else if (type === IFUNCALL) {\n var argCount = item.value;\n var args = [];\n while (argCount-- > 0) {\n args.unshift(nstack.pop());\n }\n f = nstack.pop();\n if (f.apply && f.call) {\n nstack.push(f.apply(undefined, args));\n } else {\n throw new Error(f + ' is not a function');\n }\n } else if (type === IEXPR) {\n nstack.push(item.value);\n } else if (type === IMEMBER) {\n n1 = nstack.pop();\n nstack.push(n1[item.value]);\n } else {\n throw new Error('invalid Expression');\n }\n }\n if (nstack.length > 1) {\n throw new Error('invalid Expression (parity)');\n }\n return nstack[0];\n}\n\nExpression.prototype.evaluate = function (values) {\n values = values || {};\n return evaluate(this.tokens, this, values);\n};\n\nfunction expressionToString(tokens, toJS) {\n var nstack = [];\n var n1, n2, n3;\n var f;\n for (var i = 0, L = tokens.length; i < L; i++) {\n var item = tokens[i];\n var type = item.type;\n if (type === INUMBER) {\n if (typeof item.value === 'number' && item.value < 0) {\n nstack.push('(' + item.value + ')');\n } else {\n nstack.push(escapeValue(item.value));\n }\n } else if (type === IOP2) {\n n2 = nstack.pop();\n n1 = nstack.pop();\n f = item.value;\n if (toJS) {\n if (f === '^') {\n nstack.push('Math.pow(' + n1 + ', ' + n2 + ')');\n } else if (f === 'and') {\n nstack.push('(!!' + n1 + ' && !!' + n2 + ')');\n } else if (f === 'or') {\n nstack.push('(!!' + n1 + ' || !!' + n2 + ')');\n } else if (f === '||') {\n nstack.push('(String(' + n1 + ') + String(' + n2 + '))');\n } else if (f === '==') {\n nstack.push('(' + n1 + ' === ' + n2 + ')');\n } else if (f === '!=') {\n nstack.push('(' + n1 + ' !== ' + n2 + ')');\n } else {\n nstack.push('(' + n1 + ' ' + f + ' ' + n2 + ')');\n }\n } else {\n nstack.push('(' + n1 + ' ' + f + ' ' + n2 + ')');\n }\n } else if (type === IOP3) {\n n3 = nstack.pop();\n n2 = nstack.pop();\n n1 = nstack.pop();\n f = item.value;\n if (f === '?') {\n nstack.push('(' + n1 + ' ? ' + n2 + ' : ' + n3 + ')');\n } else {\n throw new Error('invalid Expression');\n }\n } else if (type === IVAR) {\n nstack.push(item.value);\n } else if (type === IOP1) {\n n1 = nstack.pop();\n f = item.value;\n if (f === '-' || f === '+') {\n nstack.push('(' + f + n1 + ')');\n } else if (toJS) {\n if (f === 'not') {\n nstack.push('(' + '!' + n1 + ')');\n } else if (f === '!') {\n nstack.push('fac(' + n1 + ')');\n } else {\n nstack.push(f + '(' + n1 + ')');\n }\n } else if (f === '!') {\n nstack.push('(' + n1 + '!)');\n } else {\n nstack.push('(' + f + ' ' + n1 + ')');\n }\n } else if (type === IFUNCALL) {\n var argCount = item.value;\n var args = [];\n while (argCount-- > 0) {\n args.unshift(nstack.pop());\n }\n f = nstack.pop();\n nstack.push(f + '(' + args.join(', ') + ')');\n } else if (type === IMEMBER) {\n n1 = nstack.pop();\n nstack.push(n1 + '.' + item.value);\n } else if (type === IEXPR) {\n nstack.push('(' + expressionToString(item.value, toJS) + ')');\n } else {\n throw new Error('invalid Expression');\n }\n }\n if (nstack.length > 1) {\n throw new Error('invalid Expression (parity)');\n }\n return nstack[0];\n}\n\nExpression.prototype.toString = function () {\n return expressionToString(this.tokens, false);\n};\n\nfunction getSymbols(tokens, symbols) {\n for (var i = 0, L = tokens.length; i < L; i++) {\n var item = tokens[i];\n if (item.type === IVAR && (indexOf(symbols, item.value) === -1)) {\n symbols.push(item.value);\n } else if (item.type === IEXPR) {\n getSymbols(item.value, symbols);\n }\n }\n}\n\nExpression.prototype.symbols = function () {\n var vars = [];\n getSymbols(this.tokens, vars);\n return vars;\n};\n\nExpression.prototype.variables = function () {\n var vars = [];\n getSymbols(this.tokens, vars);\n var functions = this.functions;\n return vars.filter(function (name) {\n return !(name in functions);\n });\n};\n\nExpression.prototype.toJSFunction = function (param, variables) {\n var expr = this;\n var f = new Function(param, 'with(this.functions) with (this.ternaryOps) with (this.binaryOps) with (this.unaryOps) { return ' + expressionToString(this.simplify(variables).tokens, true) + '; }'); // eslint-disable-line no-new-func\n return function () {\n return f.apply(expr, arguments);\n };\n};\n\nfunction add(a, b) {\n return Number(a) + Number(b);\n}\nfunction sub(a, b) {\n return a - b;\n}\nfunction mul(a, b) {\n return a * b;\n}\nfunction div(a, b) {\n return a / b;\n}\nfunction mod(a, b) {\n return a % b;\n}\nfunction concat(a, b) {\n return '' + a + b;\n}\nfunction equal(a, b) {\n return a === b;\n}\nfunction notEqual(a, b) {\n return a !== b;\n}\nfunction greaterThan(a, b) {\n return a > b;\n}\nfunction lessThan(a, b) {\n return a < b;\n}\nfunction greaterThanEqual(a, b) {\n return a >= b;\n}\nfunction lessThanEqual(a, b) {\n return a <= b;\n}\nfunction andOperator(a, b) {\n return Boolean(a && b);\n}\nfunction orOperator(a, b) {\n return Boolean(a || b);\n}\nfunction sinh(a) {\n return ((Math.exp(a) - Math.exp(-a)) / 2);\n}\nfunction cosh(a) {\n return ((Math.exp(a) + Math.exp(-a)) / 2);\n}\nfunction tanh(a) {\n if (a === Infinity) return 1;\n if (a === -Infinity) return -1;\n return (Math.exp(a) - Math.exp(-a)) / (Math.exp(a) + Math.exp(-a));\n}\nfunction asinh(a) {\n if (a === -Infinity) return a;\n return Math.log(a + Math.sqrt(a * a + 1));\n}\nfunction acosh(a) {\n return Math.log(a + Math.sqrt(a * a - 1));\n}\nfunction atanh(a) {\n return (Math.log((1 + a) / (1 - a)) / 2);\n}\nfunction log10(a) {\n return Math.log(a) * Math.LOG10E;\n}\nfunction neg(a) {\n return -a;\n}\nfunction not(a) {\n return !a;\n}\nfunction trunc(a) {\n return a < 0 ? Math.ceil(a) : Math.floor(a);\n}\nfunction random(a) {\n return Math.random() * (a || 1);\n}\nfunction factorial(a) { // a!\n return gamma(a + 1);\n}\nfunction stringLength(s) {\n return String(s).length;\n}\n\nfunction hypot() {\n var sum = 0;\n var larg = 0;\n for (var i = 0, L = arguments.length; i < L; i++) {\n var arg = Math.abs(arguments[i]);\n var div;\n if (larg < arg) {\n div = larg / arg;\n sum = sum * div * div + 1;\n larg = arg;\n } else if (arg > 0) {\n div = arg / larg;\n sum += div * div;\n } else {\n sum += arg;\n }\n }\n return larg === Infinity ? Infinity : larg * Math.sqrt(sum);\n}\n\nfunction condition(cond, yep, nope) {\n return cond ? yep : nope;\n}\n\nfunction isInteger(value) {\n return isFinite(value) && (value === Math.round(value));\n}\n\nvar GAMMA_G = 4.7421875;\nvar GAMMA_P = [\n 0.99999999999999709182,\n 57.156235665862923517, -59.597960355475491248,\n 14.136097974741747174, -0.49191381609762019978,\n 0.33994649984811888699e-4,\n 0.46523628927048575665e-4, -0.98374475304879564677e-4,\n 0.15808870322491248884e-3, -0.21026444172410488319e-3,\n 0.21743961811521264320e-3, -0.16431810653676389022e-3,\n 0.84418223983852743293e-4, -0.26190838401581408670e-4,\n 0.36899182659531622704e-5\n];\n\n// Gamma function from math.js\nfunction gamma(n) {\n var t, x;\n\n if (isInteger(n)) {\n if (n <= 0) {\n return isFinite(n) ? Infinity : NaN;\n }\n\n if (n > 171) {\n return Infinity; // Will overflow\n }\n\n var value = n - 2;\n var res = n - 1;\n while (value > 1) {\n res *= value;\n value--;\n }\n\n if (res === 0) {\n res = 1; // 0! is per definition 1\n }\n\n return res;\n }\n\n if (n < 0.5) {\n return Math.PI / (Math.sin(Math.PI * n) * gamma(1 - n));\n }\n\n if (n >= 171.35) {\n return Infinity; // will overflow\n }\n\n if (n > 85.0) { // Extended Stirling Approx\n var twoN = n * n;\n var threeN = twoN * n;\n var fourN = threeN * n;\n var fiveN = fourN * n;\n return Math.sqrt(2 * Math.PI / n) * Math.pow((n / Math.E), n) *\n (1 + 1 / (12 * n) + 1 / (288 * twoN) - 139 / (51840 * threeN) -\n 571 / (2488320 * fourN) + 163879 / (209018880 * fiveN) +\n 5246819 / (75246796800 * fiveN * n));\n }\n\n --n;\n x = GAMMA_P[0];\n for (var i = 1; i < GAMMA_P.length; ++i) {\n x += GAMMA_P[i] / (n + i);\n }\n\n t = n + GAMMA_G + 0.5;\n return Math.sqrt(2 * Math.PI) * Math.pow(t, n + 0.5) * Math.exp(-t) * x;\n}\n\nvar TEOF = 'TEOF';\nvar TOP = 'TOP';\nvar TNUMBER = 'TNUMBER';\nvar TSTRING = 'TSTRING';\nvar TPAREN = 'TPAREN';\nvar TCOMMA = 'TCOMMA';\nvar TNAME = 'TNAME';\n\nfunction Token(type, value, line, column) {\n this.type = type;\n this.value = value;\n this.line = line;\n this.column = column;\n}\n\nToken.prototype.toString = function () {\n return this.type + ': ' + this.value;\n};\n\nfunction TokenStream(expression, unaryOps, binaryOps, ternaryOps, consts) {\n this.pos = 0;\n this.line = 0;\n this.column = 0;\n this.current = null;\n this.unaryOps = unaryOps;\n this.binaryOps = binaryOps;\n this.ternaryOps = ternaryOps;\n this.consts = consts;\n this.expression = expression;\n this.savedPosition = 0;\n this.savedCurrent = null;\n this.savedLine = 0;\n this.savedColumn = 0;\n}\n\nTokenStream.prototype.newToken = function (type, value, line, column) {\n return new Token(type, value, line != null ? line : this.line, column != null ? column : this.column);\n};\n\nTokenStream.prototype.save = function () {\n this.savedPosition = this.pos;\n this.savedCurrent = this.current;\n this.savedLine = this.line;\n this.savedColumn = this.column;\n};\n\nTokenStream.prototype.restore = function () {\n this.pos = this.savedPosition;\n this.current = this.savedCurrent;\n this.line = this.savedLine;\n this.column = this.savedColumn;\n};\n\nTokenStream.prototype.next = function () {\n if (this.pos >= this.expression.length) {\n return this.newToken(TEOF, 'EOF');\n }\n\n if (this.isWhitespace() || this.isComment()) {\n return this.next();\n } else if (this.isNumber() ||\n this.isOperator() ||\n this.isString() ||\n this.isParen() ||\n this.isComma() ||\n this.isNamedOp() ||\n this.isConst() ||\n this.isName()) {\n return this.current;\n } else {\n this.parseError('Unknown character \"' + this.expression.charAt(this.pos) + '\"');\n }\n};\n\nTokenStream.prototype.isString = function () {\n var r = false;\n var startLine = this.line;\n var startColumn = this.column;\n var startPos = this.pos;\n var quote = this.expression.charAt(startPos);\n\n if (quote === '\\'' || quote === '\"') {\n this.pos++;\n this.column++;\n var index = this.expression.indexOf(quote, startPos + 1);\n while (index >= 0 && this.pos < this.expression.length) {\n this.pos = index + 1;\n if (this.expression.charAt(index - 1) !== '\\\\') {\n var rawString = this.expression.substring(startPos + 1, index);\n this.current = this.newToken(TSTRING, this.unescape(rawString), startLine, startColumn);\n var newLine = rawString.indexOf('\\n');\n var lastNewline = -1;\n while (newLine >= 0) {\n this.line++;\n this.column = 0;\n lastNewline = newLine;\n newLine = rawString.indexOf('\\n', newLine + 1);\n }\n this.column += rawString.length - lastNewline;\n r = true;\n break;\n }\n index = this.expression.indexOf(quote, index + 1);\n }\n }\n return r;\n};\n\nTokenStream.prototype.isParen = function () {\n var char = this.expression.charAt(this.pos);\n if (char === '(' || char === ')') {\n this.current = this.newToken(TPAREN, char);\n this.pos++;\n this.column++;\n return true;\n }\n return false;\n};\n\nTokenStream.prototype.isComma = function () {\n var char = this.expression.charAt(this.pos);\n if (char === ',') {\n this.current = this.newToken(TCOMMA, ',');\n this.pos++;\n this.column++;\n return true;\n }\n return false;\n};\n\nTokenStream.prototype.isConst = function () {\n var startPos = this.pos;\n var i = startPos;\n for (; i < this.expression.length; i++) {\n var c = this.expression.charAt(i);\n if (c.toUpperCase() === c.toLowerCase()) {\n if (i === this.pos || (c !== '_' && c !== '.' && (c < '0' || c > '9'))) {\n break;\n }\n }\n }\n if (i > startPos) {\n var str = this.expression.substring(startPos, i);\n if (str in this.consts) {\n this.current = this.newToken(TNUMBER, this.consts[str]);\n this.pos += str.length;\n this.column += str.length;\n return true;\n }\n }\n return false;\n};\n\nTokenStream.prototype.isNamedOp = function () {\n var startPos = this.pos;\n var i = startPos;\n for (; i < this.expression.length; i++) {\n var c = this.expression.charAt(i);\n if (c.toUpperCase() === c.toLowerCase()) {\n if (i === this.pos || (c !== '_' && (c < '0' || c > '9'))) {\n break;\n }\n }\n }\n if (i > startPos) {\n var str = this.expression.substring(startPos, i);\n if (str in this.binaryOps || str in this.unaryOps || str in this.ternaryOps) {\n this.current = this.newToken(TOP, str);\n this.pos += str.length;\n this.column += str.length;\n return true;\n }\n }\n return false;\n};\n\nTokenStream.prototype.isName = function () {\n var startPos = this.pos;\n var i = startPos;\n for (; i < this.expression.length; i++) {\n var c = this.expression.charAt(i);\n if (c.toUpperCase() === c.toLowerCase()) {\n if (i === this.pos || (c !== '_' && (c < '0' || c > '9'))) {\n break;\n }\n }\n }\n if (i > startPos) {\n var str = this.expression.substring(startPos, i);\n this.current = this.newToken(TNAME, str);\n this.pos += str.length;\n this.column += str.length;\n return true;\n }\n return false;\n};\n\nTokenStream.prototype.isWhitespace = function () {\n var r = false;\n var char = this.expression.charAt(this.pos);\n while (char === ' ' || char === '\\t' || char === '\\n' || char === '\\r') {\n r = true;\n this.pos++;\n this.column++;\n if (char === '\\n') {\n this.line++;\n this.column = 0;\n }\n if (this.pos >= this.expression.length) {\n break;\n }\n char = this.expression.charAt(this.pos);\n }\n return r;\n};\n\nvar codePointPattern = /^[0-9a-f]{4}$/i;\n\nTokenStream.prototype.unescape = function (v) {\n var index = v.indexOf('\\\\');\n if (index < 0) {\n return v;\n }\n\n var buffer = v.substring(0, index);\n while (index >= 0) {\n var c = v.charAt(++index);\n switch (c) {\n case '\\'':\n buffer += '\\'';\n break;\n case '\"':\n buffer += '\"';\n break;\n case '\\\\':\n buffer += '\\\\';\n break;\n case '/':\n buffer += '/';\n break;\n case 'b':\n buffer += '\\b';\n break;\n case 'f':\n buffer += '\\f';\n break;\n case 'n':\n buffer += '\\n';\n break;\n case 'r':\n buffer += '\\r';\n break;\n case 't':\n buffer += '\\t';\n break;\n case 'u':\n // interpret the following 4 characters as the hex of the unicode code point\n var codePoint = v.substring(index + 1, index + 5);\n if (!codePointPattern.test(codePoint)) {\n this.parseError('Illegal escape sequence: \\\\u' + codePoint);\n }\n buffer += String.fromCharCode(parseInt(codePoint, 16));\n index += 4;\n break;\n default:\n throw this.parseError('Illegal escape sequence: \"\\\\' + c + '\"');\n }\n ++index;\n var backslash = v.indexOf('\\\\', index);\n buffer += v.substring(index, backslash < 0 ? v.length : backslash);\n index = backslash;\n }\n\n return buffer;\n};\n\nTokenStream.prototype.isComment = function () {\n var char = this.expression.charAt(this.pos);\n if (char === '/' && this.expression.charAt(this.pos + 1) === '*') {\n var startPos = this.pos;\n this.pos = this.expression.indexOf('*/', this.pos) + 2;\n if (this.pos === 1) {\n this.pos = this.expression.length;\n }\n var comment = this.expression.substring(startPos, this.pos);\n var newline = comment.indexOf('\\n');\n while (newline >= 0) {\n this.line++;\n this.column = comment.length - newline;\n newline = comment.indexOf('\\n', newline + 1);\n }\n return true;\n }\n return false;\n};\n\nTokenStream.prototype.isNumber = function () {\n var valid = false;\n var pos = this.pos;\n var startPos = pos;\n var resetPos = pos;\n var column = this.column;\n var resetColumn = column;\n var foundDot = false;\n var foundDigits = false;\n var char;\n\n while (pos < this.expression.length) {\n char = this.expression.charAt(pos);\n if ((char >= '0' && char <= '9') || (!foundDot && char === '.')) {\n if (char === '.') {\n foundDot = true;\n } else {\n foundDigits = true;\n }\n pos++;\n column++;\n valid = foundDigits;\n } else {\n break;\n }\n }\n\n if (valid) {\n resetPos = pos;\n resetColumn = column;\n }\n\n if (char === 'e' || char === 'E') {\n pos++;\n column++;\n var acceptSign = true;\n var validExponent = false;\n while (pos < this.expression.length) {\n char = this.expression.charAt(pos);\n if (acceptSign && (char === '+' || char === '-')) {\n acceptSign = false;\n } else if (char >= '0' && char <= '9') {\n validExponent = true;\n acceptSign = false;\n } else {\n break;\n }\n pos++;\n column++;\n }\n\n if (!validExponent) {\n pos = resetPos;\n column = resetColumn;\n }\n }\n\n if (valid) {\n this.current = this.newToken(TNUMBER, parseFloat(this.expression.substring(startPos, pos)));\n this.pos = pos;\n this.column = column;\n } else {\n this.pos = resetPos;\n this.column = resetColumn;\n }\n return valid;\n};\n\nTokenStream.prototype.isOperator = function () {\n var char = this.expression.charAt(this.pos);\n\n if (char === '+' || char === '-' || char === '*' || char === '/' || char === '%' || char === '^' || char === '?' || char === ':' || char === '.') {\n this.current = this.newToken(TOP, char);\n } else if (char === '∙' || char === '•') {\n this.current = this.newToken(TOP, '*');\n } else if (char === '>') {\n if (this.expression.charAt(this.pos + 1) === '=') {\n this.current = this.newToken(TOP, '>=');\n this.pos++;\n this.column++;\n } else {\n this.current = this.newToken(TOP, '>');\n }\n } else if (char === '<') {\n if (this.expression.charAt(this.pos + 1) === '=') {\n this.current = this.newToken(TOP, '<=');\n this.pos++;\n this.column++;\n } else {\n this.current = this.newToken(TOP, '<');\n }\n } else if (char === '|') {\n if (this.expression.charAt(this.pos + 1) === '|') {\n this.current = this.newToken(TOP, '||');\n this.pos++;\n this.column++;\n } else {\n return false;\n }\n } else if (char === '=') {\n if (this.expression.charAt(this.pos + 1) === '=') {\n this.current = this.newToken(TOP, '==');\n this.pos++;\n this.column++;\n } else {\n return false;\n }\n } else if (char === '!') {\n if (this.expression.charAt(this.pos + 1) === '=') {\n this.current = this.newToken(TOP, '!=');\n this.pos++;\n this.column++;\n } else {\n this.current = this.newToken(TOP, char);\n }\n } else {\n return false;\n }\n this.pos++;\n this.column++;\n return true;\n};\n\nTokenStream.prototype.parseError = function (msg) {\n throw new Error('parse error [' + (this.line + 1) + ':' + (this.column + 1) + ']: ' + msg);\n};\n\nvar unaryInstructionCache = {};\nfunction unaryInstruction(value) {\n var inst = unaryInstructionCache[value];\n if (!inst) {\n inst = unaryInstructionCache[value] = new Instruction(IOP1, value);\n }\n return inst;\n}\n\nvar binaryInstructionCache = {};\nfunction binaryInstruction(value) {\n var inst = binaryInstructionCache[value];\n if (!inst) {\n inst = binaryInstructionCache[value] = new Instruction(IOP2, value);\n }\n return inst;\n}\n\nvar ternaryInstructionCache = {};\nfunction ternaryInstruction(value) {\n var inst = ternaryInstructionCache[value];\n if (!inst) {\n inst = ternaryInstructionCache[value] = new Instruction(IOP3, value);\n }\n return inst;\n}\n\nfunction ParserState(parser, tokenStream) {\n this.parser = parser;\n this.tokens = tokenStream;\n this.current = null;\n this.nextToken = null;\n this.next();\n this.savedCurrent = null;\n this.savedNextToken = null;\n}\n\nParserState.prototype.next = function () {\n this.current = this.nextToken;\n return (this.nextToken = this.tokens.next());\n};\n\nParserState.prototype.tokenMatches = function (token, value) {\n if (typeof value === 'undefined') {\n return true;\n } else if (Array.isArray(value)) {\n return indexOf(value, token.value) >= 0;\n } else if (typeof value === 'function') {\n return value(token);\n } else {\n return token.value === value;\n }\n};\n\nParserState.prototype.save = function () {\n this.savedCurrent = this.current;\n this.savedNextToken = this.nextToken;\n this.tokens.save();\n};\n\nParserState.prototype.restore = function () {\n this.tokens.restore();\n this.current = this.savedCurrent;\n this.nextToken = this.savedNextToken;\n};\n\nParserState.prototype.accept = function (type, value) {\n if (this.nextToken.type === type && this.tokenMatches(this.nextToken, value)) {\n this.next();\n return true;\n }\n return false;\n};\n\nParserState.prototype.expect = function (type, value) {\n if (!this.accept(type, value)) {\n throw new Error('parse error [' + this.tokens.line + ':' + this.tokens.column + ']: Expected ' + (value || type));\n }\n};\n\nParserState.prototype.parseAtom = function (instr) {\n if (this.accept(TNAME)) {\n instr.push(new Instruction(IVAR, this.current.value));\n } else if (this.accept(TNUMBER)) {\n instr.push(new Instruction(INUMBER, this.current.value));\n } else if (this.accept(TSTRING)) {\n instr.push(new Instruction(INUMBER, this.current.value));\n } else if (this.accept(TPAREN, '(')) {\n this.parseExpression(instr);\n this.expect(TPAREN, ')');\n } else {\n throw new Error('unexpected ' + this.nextToken);\n }\n};\n\nParserState.prototype.parseExpression = function (instr) {\n this.parseConditionalExpression(instr);\n};\n\nParserState.prototype.parseConditionalExpression = function (instr) {\n this.parseOrExpression(instr);\n while (this.accept(TOP, '?')) {\n var trueBranch = [];\n var falseBranch = [];\n this.parseConditionalExpression(trueBranch);\n this.expect(TOP, ':');\n this.parseConditionalExpression(falseBranch);\n instr.push(new Instruction(IEXPR, trueBranch));\n instr.push(new Instruction(IEXPR, falseBranch));\n instr.push(ternaryInstruction('?'));\n }\n};\n\nParserState.prototype.parseOrExpression = function (instr) {\n this.parseAndExpression(instr);\n while (this.accept(TOP, 'or')) {\n this.parseAndExpression(instr);\n instr.push(binaryInstruction('or'));\n }\n};\n\nParserState.prototype.parseAndExpression = function (instr) {\n this.parseComparison(instr);\n while (this.accept(TOP, 'and')) {\n this.parseComparison(instr);\n instr.push(binaryInstruction('and'));\n }\n};\n\nParserState.prototype.parseComparison = function (instr) {\n this.parseAddSub(instr);\n while (this.accept(TOP, ['==', '!=', '<', '<=', '>=', '>'])) {\n var op = this.current;\n this.parseAddSub(instr);\n instr.push(binaryInstruction(op.value));\n }\n};\n\nParserState.prototype.parseAddSub = function (instr) {\n this.parseTerm(instr);\n while (this.accept(TOP, ['+', '-', '||'])) {\n var op = this.current;\n this.parseTerm(instr);\n instr.push(binaryInstruction(op.value));\n }\n};\n\nParserState.prototype.parseTerm = function (instr) {\n this.parseFactor(instr);\n while (this.accept(TOP, ['*', '/', '%'])) {\n var op = this.current;\n this.parseFactor(instr);\n instr.push(binaryInstruction(op.value));\n }\n};\n\nParserState.prototype.parseFactor = function (instr) {\n var unaryOps = this.tokens.unaryOps;\n function isPrefixOperator(token) {\n return token.value in unaryOps;\n }\n\n this.save();\n if (this.accept(TOP, isPrefixOperator)) {\n if ((this.current.value !== '-' && this.current.value !== '+' && this.nextToken.type === TPAREN && this.nextToken.value === '(')) {\n this.restore();\n this.parseExponential(instr);\n } else {\n var op = this.current;\n this.parseFactor(instr);\n instr.push(unaryInstruction(op.value));\n }\n } else {\n this.parseExponential(instr);\n }\n};\n\nParserState.prototype.parseExponential = function (instr) {\n this.parsePostfixExpression(instr);\n while (this.accept(TOP, '^')) {\n this.parseFactor(instr);\n instr.push(binaryInstruction('^'));\n }\n};\n\nParserState.prototype.parsePostfixExpression = function (instr) {\n this.parseFunctionCall(instr);\n while (this.accept(TOP, '!')) {\n instr.push(unaryInstruction('!'));\n }\n};\n\nParserState.prototype.parseFunctionCall = function (instr) {\n var unaryOps = this.tokens.unaryOps;\n function isPrefixOperator(token) {\n return token.value in unaryOps;\n }\n\n if (this.accept(TOP, isPrefixOperator)) {\n var op = this.current;\n this.parseAtom(instr);\n instr.push(unaryInstruction(op.value));\n } else {\n this.parseMemberExpression(instr);\n while (this.accept(TPAREN, '(')) {\n if (this.accept(TPAREN, ')')) {\n instr.push(new Instruction(IFUNCALL, 0));\n } else {\n var argCount = this.parseArgumentList(instr);\n instr.push(new Instruction(IFUNCALL, argCount));\n }\n }\n }\n};\n\nParserState.prototype.parseArgumentList = function (instr) {\n var argCount = 0;\n\n while (!this.accept(TPAREN, ')')) {\n this.parseExpression(instr);\n ++argCount;\n while (this.accept(TCOMMA)) {\n this.parseExpression(instr);\n ++argCount;\n }\n }\n\n return argCount;\n};\n\nParserState.prototype.parseMemberExpression = function (instr) {\n this.parseAtom(instr);\n while (this.accept(TOP, '.')) {\n this.expect(TNAME);\n instr.push(new Instruction(IMEMBER, this.current.value));\n }\n};\n\nfunction Parser() {\n this.unaryOps = {\n sin: Math.sin,\n cos: Math.cos,\n tan: Math.tan,\n asin: Math.asin,\n acos: Math.acos,\n atan: Math.atan,\n sinh: Math.sinh || sinh,\n cosh: Math.cosh || cosh,\n tanh: Math.tanh || tanh,\n asinh: Math.asinh || asinh,\n acosh: Math.acosh || acosh,\n atanh: Math.atanh || atanh,\n sqrt: Math.sqrt,\n log: Math.log,\n ln: Math.log,\n lg: Math.log10 || log10,\n log10: Math.log10 || log10,\n abs: Math.abs,\n ceil: Math.ceil,\n floor: Math.floor,\n round: Math.round,\n trunc: Math.trunc || trunc,\n '-': neg,\n '+': Number,\n exp: Math.exp,\n not: not,\n length: stringLength,\n '!': factorial\n };\n\n this.binaryOps = {\n '+': add,\n '-': sub,\n '*': mul,\n '/': div,\n '%': mod,\n '^': Math.pow,\n '||': concat,\n '==': equal,\n '!=': notEqual,\n '>': greaterThan,\n '<': lessThan,\n '>=': greaterThanEqual,\n '<=': lessThanEqual,\n and: andOperator,\n or: orOperator\n };\n\n this.ternaryOps = {\n '?': condition\n };\n\n this.functions = {\n random: random,\n fac: factorial,\n min: Math.min,\n max: Math.max,\n hypot: Math.hypot || hypot,\n pyt: Math.hypot || hypot, // backward compat\n pow: Math.pow,\n atan2: Math.atan2,\n 'if': condition,\n gamma: gamma\n };\n\n this.consts = {\n E: Math.E,\n PI: Math.PI,\n 'true': true,\n 'false': false\n };\n}\n\nParser.parse = function (expr) {\n return new Parser().parse(expr);\n};\n\nParser.evaluate = function (expr, variables) {\n return Parser.parse(expr).evaluate(variables);\n};\n\nParser.prototype = {\n parse: function (expr) {\n var instr = [];\n var parserState = new ParserState(this, new TokenStream(expr, this.unaryOps, this.binaryOps, this.ternaryOps, this.consts));\n parserState.parseExpression(instr);\n parserState.expect(TEOF, 'EOF');\n\n return new Expression(instr, this);\n },\n\n evaluate: function (expr, variables) {\n return this.parse(expr).evaluate(variables);\n }\n};\n\nvar parser = {\n Parser: Parser,\n Expression: Expression\n};\n\nreturn parser;\n\n})));\n","/*\n* Author Jonathan Lurie - http://me.jonahanlurie.fr\n* License MIT\n* Link https://github.com/jonathanlurie/pixpipejs\n* Lab MCIN - Montreal Neurological Institute\n*/\n\n\nimport Parser from 'expr-eval'\nimport { Image2D } from '../core/Image2D.js';\nimport { ImageToImageFilter } from '../core/ImageToImageFilter.js';\n\n\n/**\n* An instance of ImageBlendExpressionFilter takes Image2D inputs, as many as\n* we need as long as they have the same size and the same number of components\n* per pixel.\n* This filter blends images pixel values using a literal expression. This expression\n* should be set using `setMetadata( \"expresssion\", \"A * B\" )` , where `A` and `B`\n* are the categories set in input.\n*\n* Using a blending expression is the aesiest way to test a blending but it is a\n* pretty slow process since the expresion has to be evaluated for every process.\n* To speed-up your process, it is recomended to develop a new filter that does\n* exactly (and only) the blending method you want.\n*\n* usage: examples/imageBlending.html\n* usage: examples/imageBlending2.html\n* usage: examples/forEachPixelGradientBlend.html\n*\n*/\nclass ImageBlendExpressionFilter extends ImageToImageFilter {\n\n constructor(){\n super();\n this._addOutput( Image2D );\n }\n\n\n\n _run(){\n\n // the metadata was not set\n if(!this.hasMetadata(\"expression\")){\n console.warn(\"A filter of type ImageBlendExpressionFilter requires a blending expression.\\nUse 'setMetadata(\\\"expression\\\", \\\"...\\\")' to set it.\" );\n return;\n }\n\n if( !this.hasSameNcppInput() || !this.hasSameSizeInput() ){\n return;\n }\n\n if(!this.getNumberOfInputs()){\n console.warn(\"A filter of type ImageBlendExpressionFilter requires at least one inpupt.\");\n return;\n }\n\n var inputCategories = this.getInputCategories();\n var firstInput = this._getInput( inputCategories[0] );\n var outputBuffer = firstInput.getDataCopy();\n var parser = new Parser.Parser();\n var expr = parser.parse( this.getMetadata(\"expression\") );\n\n for(var i=0; iPixpipe.js class='col12 block field' type='text' />
- - PixelWiseImageFilter - - - #_forEachPixelOfSuch - @@ -42,145 +32,260 @@

Pixpipe.js

class='regular block'> .TYPE
+ + #_addOutput + #_getInput + #_run + + - #_setOutput + #_updatePipeline #addInput + + #addTimeRecord + + + #forEachOutput + + + #getInputCategories + + + #getNumberOfInputs + + + #getNumberOfOutputs + #getOutput + + #getOutputCategories + + + #getTime + + + #hasInputWithUuid + #hasValidInput + + #on + + + #setMetadata + + + #setPipeline + #update - CanvasImageWriter + FileToArrayBufferReader - #_init - - - #constructor + #_fileLoadCount - #update + #_loadFile - Image2D + Image3D .TYPE - #clone + #_finishHeader - #constructor + #_scanDataRange - #get2dPositionFrom1dIndex + #clone - #getComponentsPerPixel + #constructor + #get1dIndexFrom3dPosition + + #getData #getDataCopy - #getHeight + #getIntensity_ijk - #getWidth + #getIntensity_xyz + #getPixel + + + #getSize + + + #getSlice + + #setData + + #setPixel + - FileImageReader + Pipeline - #constructor + .TYPE - #hasValidInput + #_forceUpdateAll + + + #_updateSmart + + + #addFilter #update - ForEachPixelImageFilter + PixelWiseImageFilter - #constructor + #_forEachPixelOfSuch + + CanvasImageWriter + - #update + #_init + + + #_run + + + #_stretchMinMax + + + #constructor Pixpipe.js UrlImageReader - #constructor + #_loadImage - #update + #_run + + + #constructor - PixpipeObject + FileImageReader - .TYPE + #_run - #getDescription + #hasValidInput + + SpectralScaleImageFilter + - #getName + #_run + + ForEachPixelImageFilter + - #getType + #_run + + + MniVolume + + + .swapn - #isOfType + .transformToMinc - #setDescription + #_saveOriginAndTransform - #setName + #constructor - #uuid + #setData - ImageToImageFilter + BS_BLOCK_DONE -
- - -
-
-
-

- PixelWiseImageFilter -

-

PixelWiseImageFilter is not supposed to be use as is and is just to -be inherited by other filters. -This class does not overload the update() method.

- -

Instance members

-
- - - #_forEachPixelOfSuch(firstPixel, lastPixel, increment, cb) - -
-

[PRIVATE] -generic function for painting row, colum or whole

- -
-
-
-
-

- _forEachPixelOfSuch(firstPixel, lastPixel, increment, cb) -

-

[PRIVATE] - generic function for painting row, colum or whole

- -

Parameters

-
    -
  • Number firstPixel - : -
    -

    Index of the first pixel in 1D array

    - -
    -
  • -
  • Number lastPixel - : -
    -

    Index of the last pixel in 1D array

    - -
    -
  • -
  • Number increment - : -
    -

    jump gap from a pixel to another (in a 1D style)

    - -
    -
  • -
  • function cb - : -
    -

    callback of what to do for each pixel to be processed. Called with 2 args: 2D position {x, y} and color {r, g, b, a}

    - -
    -
  • -
-
-
-
-
-
-

- Filter -

-

Filter is a base class and must be inherited to be used properly. -A filter takes one or more Image instances as input and returns one or more -instances of images as output. -Every filter has a addInput(), a getOutput() and a update() methods. -Every input and output can be arranged by category, so that internaly, a filter -can use and output diferent kind of data.

- -

Static members

-
- - - .TYPE - -
-

Hardcode the datatype

- -
+
+ BS_BLOCK_DONE + + + BS_BLOCK_DONE + + + BS_BLOCK_DONE + + + BS_FINISH_DONE + + + BS_FINISH_DONE + + + BS_FINISH_DONE + + + BS_FINISH_DONE + + + BS_FINISH_DONE + + + BS_NEED_MORE + + + Minc2Decoder + + + #checkAlignment + + + #checkSignature + + + #createLink + + + #dt_class_name + + + #getArray + + + #getF32 + + + #getF64 + + + #getLength + + + #getOffset + + + #getString + + + #getU16 + + + #getU32 + + + #getU64 + + + #getU8 + + + #getUXX + + + #hdf5.this.isRgbVolume + + + #hdf5.this.rgbVoxels + + + #hdf5.this.scaleVoxels + + + #hdf5FractalHeapDirectBlock + + + #hdf5FractalHeapEnumerate + + + #hdf5FractalHeapHeader + + + #hdf5FractalHeapIndirectBlock + + + #hdf5FractalHeapOffset + + + #hdf5GetMsgName + + + #hdf5GroupSymbolTable + + + #hdf5LocalHeap + + + #hdf5MsgAttribute + + + #hdf5MsgAttrInfo + + + #hdf5MsgDataspace + + + #hdf5MsgDatatype + + + #hdf5MsgGroupInfo + + + #hdf5MsgLayout + + + #hdf5MsgLink + + + #hdf5MsgLinkInfo + + + #hdf5MsgPipeline + + + #hdf5ProcessMessage + + + #hdf5Superblock + + + #hdf5V1BtreeNode + + + #hdf5V1ObjectHeader + + + #hdf5V2BtreeHeader + + + #hdf5V2BtreeInternalNode + + + #hdf5V2BtreeLeafNode + + + #hdf5V2BtreeRecords + + + #hdf5V2ObjectHeader + + + #loadData + + + #seek + + + #skip + + + #startAlignment + + + #tell + + + Image2D + + + .TYPE + + + #clone + + + #constructor + + + #get1dIndexFrom2dPosition + + + #get2dPositionFrom1dIndex + + + #getComponentsPerPixel + + + #getData + + + #getDataCopy + + + #getHeight + + + #getPixel + + + #getWidth + + + #setData + + + #setPixel + + + PixpipeObject + + + .TYPE + + + #copyMetadataFrom + + + #getMetadata + + + #getMetadataKeys + + + #getType + + + #getUuid + + + #hasMetadata + + + #isOfType + + + #setMetadata + + + createNifti1Data + + + niftiQuaternToMat44 + + + parseNifti1Header + + + deflate + + + Deflate + + + #onData + + + #onEnd + + + #push + + + Deflate + + + #onData + + + #onEnd + + + #push + + + Deflate + + + #onData + + + #onEnd + + + #push + + + Deflate + + + #onData + + + #onEnd + + + #push + + + Deflate + + + #onData + + + #onEnd + + + #push + + + deflateRaw + + + gzip + + + hash_head + + + ImageToImageFilter + + + #hasSameNcppInput + + + #hasSameSizeInput + + + Image3DToMosaicFilter + + + ImageBlendExpressionFilter + + + inflate + + + Inflate + + + #onData + + + #onEnd + + + #push + + + Inflate + + + #onData + + + #onEnd + + + #push + + + Inflate + + + #onData + + + #onEnd + + + #push + + + Inflate + + + #onData + + + #onEnd + + + #push + + + Inflate + + + #onData + + + #onEnd + + + #push + + + Inflate_1 + + + inflateRaw + + + insert + + + insert + + + insert + + + insert + + + prev_length + + + m + + + match_available + + + match_length + + + prev_length + + + setPipeline + + + TYPE + + + strstart + + + strstart + +
+
+
+
+
+
+

+ Filter +

+

Filter is a base class and must be inherited to be used properly. +A filter takes one or more Image instances as input and returns one or more +instances of images as output. +Every filter has a addInput(), a getOutput() and a update() methods. +Every input and output can be arranged by category, so that internaly, a filter +can use and output diferent kind of data.

+

usage: examples/fileToArrayBuffer.html

+ +

Static members

+
+ + + .TYPE + +
+

Hardcode the datatype

+ +
+
+
+
+

+ TYPE +

+

Hardcode the datatype

+ +
+
+
+

Instance members

+
+ + + #_addOutput(dataType, category) + +
+

[PRIVATE] +Internal way to setup an output for this filter. Acts like a singleton in a sens +that if an output of a given category was already Initialized, it returns it. +If no input was Initialized, it creates one. Then we are sure the pointer of the +output remain the same and does not break the pipeline.

+ +
+
+
+
+

+ _addOutput(dataType, category) +

+

[PRIVATE] + Internal way to setup an output for this filter. Acts like a singleton in a sens + that if an output of a given category was already Initialized, it returns it. + If no input was Initialized, it creates one. Then we are sure the pointer of the + output remain the same and does not break the pipeline.

+ +

Parameters

+
    +
  • type dataType + : +
    +

    type of object, i.e. Image2D (this is NOT a String!)

    + +
    +
  • +
  • Number category + : +
    +

    in case we want to get data from different categories.

    + +
    +
  • +
+

Returns

+ Object + : +
+

of given type.

+ +
+
+
+
+
+ + + #_getInput(category) + +
+

[PRIVATE] +should noly be used by the class that inherit Filter.

+ +
+
+
+
+

+ _getInput(category) +

+

[PRIVATE] + should noly be used by the class that inherit Filter.

+ +

Parameters

+
    +
  • Number category + : +
    +

    in case we want to get data from different categories.

    + +
    +
  • +
+

Returns

+ Object + : +
+

or null if no input can be returned

+ +
+
+
+
+
+ + + #_run + +
+ +
+
+
+
+

+ _run +

+ +
+
+
+
+ + + #_updatePipeline + +
+

Update the whole pipeline due to an update in the filter +(new input, new metadata)

+ +
+
+
+
+

+ _updatePipeline +

+

Update the whole pipeline due to an update in the filter + (new input, new metadata)

+ +
+
+
+
+ + + #addInput(inputObject, category) + +
+

Set an input, potentially associated to a category.

+ +
+
+
+
+

+ addInput(inputObject, category) +

+

Set an input, potentially associated to a category.

+ +

Parameters

+
    +
  • Image2D inputObject + : +
    +

    most likely an instance of Image2D but can also be HTML5 File or Image3D

    + +
    +
  • +
  • Number category + : +
    +

    in case we want to get data from diferent categories.

    + +
    +
  • +
+
+
+
+
+ + + #addTimeRecord(recordName) + +
+

Set a time measurement (from an arbitrary starting point)

+ +
+
+
+
+

+ addTimeRecord(recordName) +

+

Set a time measurement (from an arbitrary starting point)

+ +

Parameters

+
    +
  • String recordName + : +
    +

    name of the record

    + +
    +
  • +
+
+
+
+
+ + + #forEachOutput(cb) + +
+

Perform an action for each output.

+ +
+
+
+
+

+ forEachOutput(cb) +

+

Perform an action for each output.

+ +

Parameters

+
    +
  • function cb + : +
    +

    callback function called for evey single output + with 2 args: the output category and the outpub object.

    + +
    +
  • +
+
+
+
+
+ + + #getInputCategories + +
+ +
+
+
+
+

+ getInputCategories +

+ +

Returns

+ Array + : +
+

all the input categories as an array of string

+ +
+
+
+
+
+ + + #getNumberOfInputs + +
+ +
+
+
+
+

+ getNumberOfInputs +

+ +

Returns

+ Number + : +
+

the number of inputs

+ +
+
+
+
+
+ + + #getNumberOfOutputs + +
+ +
+
+
+
+

+ getNumberOfOutputs +

+ +

Returns

+ Number + : +
+

the number of outputs

+ +
+
+
+
+
+ + + #getOutput(category) + +
+

Return outputs from a category (default category: 0)

+ +
+
+
+
+

+ getOutput(category) +

+

Return outputs from a category (default category: 0)

+ +

Parameters

+
    +
  • Number category + : +
    +

    a category of output.

    + +
    +
  • +
+

Returns

+ Object + : +
+

or null if no output can be returned.

+ +
+
+
+
+
+ + + #getOutputCategories + +
+ +
+
+
+
+

+ getOutputCategories +

+ +

Returns

+ Array + : +
+

all the output categories as an array of string

+ +
+
+
+
+
+ + + #getTime(fromRecord, toRecord) + +
+ +
+
+
+
+

+ getTime(fromRecord, toRecord) +

+ +

Parameters

+
    +
  • fromRecord + : +
    + +
    +
  • +
  • toRecord + : +
    + +
    +
  • +
+

Returns

+ Number + : +
+

the elapsed time in ms between fromRecord and toRecord. + Return -1 if one or both time record

+ +
+
+
+
+
+ + + #hasInputWithUuid(uuid) + +
+ +
+
+
+
+

+ hasInputWithUuid(uuid) +

+ +

Parameters

+
    +
  • String uuid + : +
    +

    uuid to look for

    + +
    +
  • +
+

Returns

+ Boolean + : +
+

true if this filter uses an input with such uuid

+ +
+
+
+
+
+ + + #hasValidInput + +
+

Validate the input data using a model defined in _inputValidator. +Every class that implement Filter must implement their own _inputValidator. +Not mandatory to use, still a good practice.

+ +
+
+
+
+

+ hasValidInput +

+

Validate the input data using a model defined in _inputValidator. + Every class that implement Filter must implement their own _inputValidator. + Not mandatory to use, still a good practice.

+ +
+
+
+
+ + + #on(eventId, callback) + +
+

Defines a callback. By defautl, no callback is called.

+ +
+
+
+
+

+ on(eventId, callback) +

+

Defines a callback. By defautl, no callback is called.

+ +

Parameters

+
    +
  • eventId + : +
    + +
    +
  • +
  • callback + : +
    + +
    +
  • +
+
+
+
+
+ + + #setMetadata(key, value) + +
+

Same as PixpipeObject.setMetadata but add the _isOutputReady to false.

+ +
+
+
+
+

+ setMetadata(key, value) +

+

Same as PixpipeObject.setMetadata but add the _isOutputReady to false.

+ +

Parameters

+
    +
  • key + : +
    + +
    +
  • +
  • value + : +
    + +
    +
  • +
+
+
+
+
+ + + #setPipeline(p) + +
+

Associate a Pipeline instance to this filter. Not supposed to be called manually +because it is automatically called-back when adding a filter to a pipeline.

+ +
+
+
+
+

+ setPipeline(p) +

+

Associate a Pipeline instance to this filter. Not supposed to be called manually + because it is automatically called-back when adding a filter to a pipeline.

+ +

Parameters

+
    +
  • Pipeline p + : +
    +

    Pipeline object.

    + +
    +
  • +
+
+
+
+
+ + + #update + +
+

MUST be implemented by the class that inherit this. +Launch the process.

+ +
+
+
+
+

+ update +

+

MUST be implemented by the class that inherit this. + Launch the process.

+ +
+
+
+
+
+

+ FileToArrayBufferReader +

+

Takes the File inputs from a HTML input of type "file" (aka. a file dialog), and reads it as a ArrayBuffer. +Every File given in input should be added separately using addInput( file[i], 'uniqueID' ). +The event "ready" must be set up ( using .on("ready", function(){}) ) and will +be triggered when all the files given in input are translated into ArrayBuffers. +Once ready, all the outputs are accecible using the same uniqueID with the +method getOutput("uniqueID")

+

usage: examples/fileToArrayBuffer.html

+ +

Instance members

+
+ + + #_fileLoadCount + +
+

[PRIVATE] +Launch the "ready" event if all files are loaded

+ +
+
+
+
+

+ _fileLoadCount +

+

[PRIVATE] + Launch the "ready" event if all files are loaded

+ +
+
+
+
+ + + #_loadFile(category) + +
+

[PRIVATE] +Perform the loading for the input of the given category

+ +
+
+
+
+

+ _loadFile(category) +

+

[PRIVATE] + Perform the loading for the input of the given category

+ +

Parameters

+
    +
  • String category + : +
    +

    input category

    + +
    +
  • +
+
+
+
+
+
+

+ Image3D(options) +

+

Image3D class is one of the few base element of Pixpipejs. +It is always considered to be 4 channels (RGBA) and stored as a Float32Array +typed array.

+ +

Parameters

+
    +
  • options + (default null) + : +
    + +
    +
  • +
+

Static members

+
+ + + .TYPE + +
+

Hardcode the datatype

+ +
+
+
+
+

+ TYPE +

+

Hardcode the datatype

+ +
+
+
+

Instance members

+
+ + + #_finishHeader + +
+

[PRIVATE] +Creates common fields all headers must contain.

+ +
+
+
+
+

+ _finishHeader +

+

[PRIVATE] + Creates common fields all headers must contain.

+ +
+
+
+
+ + + #_scanDataRange + +
+

[PRIVATE] +Look for min and max on the dataset and add them to the header metadata

+ +
+
+
+
+

+ _scanDataRange +

+

[PRIVATE] + Look for min and max on the dataset and add them to the header metadata

+ +
+
+
+
+ + + #clone + +
+ +
+
+
+
+

+ clone +

+ +

Returns

+ Image3D + : +
+

a deep copy instance of this Image3D

+ +
+
+
+
+
+ + + #constructor(options) + +
+

Constructor of an Image3D instance. If no options, no array is allocated.

+ +
+
+
+
+

+ constructor(options) +

+

Constructor of an Image3D instance. If no options, no array is allocated.

+ +

Parameters

+
    +
  • Object options + : +
    +

    may contain the following:

    +
      +
    • options.xSize {Number} space length along x axis
    • +
    • options.ySize {Number} space length along y axis
    • +
    • option.zSize {Number} space length along z axis
    • +
    • options.ncpp {Number} number of components per pixel. Default = 1
    • +
    • options.order {Array} dimensionality order. default = ["zspace", "yspace", "xspace"]
    • +
    + +
    +
  • +
+
+
+
+
+ + + #get1dIndexFrom3dPosition(position) + +
+

Compute the 1D index within the data buffer from a 3D position {x, y, z}. +This has nothing to do with the number of components per pixel.

+ +
+
+
+
+

+ get1dIndexFrom3dPosition(position) +

+

Compute the 1D index within the data buffer from a 3D position {x, y, z}. + This has nothing to do with the number of components per pixel.

+ +

Parameters

+
    +
  • Object position + : +
    +

    3D coord like {x, y, z}

    + +
    +
  • +
+

Returns

+ Number + : +
+

the 1D position within the buffer

+ +
+
+
+
+
+ + + #getData + +
+ +
+
+
+
+

+ getData +

+ +

Returns

+ Float32Array + : +
+

the original data, dont mess up with this one. + in case of doubt, use getDataCopy()

+ +
+
+
+
+
+ + + #getDataCopy + +
+ +
+
+
+
+

+ getDataCopy +

+ +

Returns

+ Float32Array + : +
+

a deep copy of the data

+ +
+
+
+
+
+ + + #getIntensity_ijk(i, j, k, time) + +
+

Get the intensity of a given voxel, addressed by dimensionality order. +In case of doubt, use getIntensity_xyz instead.

+ +
+
+
+
+

+ getIntensity_ijk(i, j, k, time) +

+

Get the intensity of a given voxel, addressed by dimensionality order. + In case of doubt, use getIntensity_xyz instead.

+ +

Parameters

+
    +
  • Number i + : +
    +

    Position within the biggest dimensionality order

    + +
    +
  • +
  • Number j + : +
    +

    Position within the in-the-middle dimensionality order

    + +
    +
  • +
  • Number k + : +
    +

    Position within the smallest dimensionality order

    + +
    +
  • +
  • time + (default 0) + : +
    + +
    +
  • +
+
+
+
+
+ + + #getIntensity_xyz(x, y, z, time) + +
+

Get the intensity of a given voxel, addressed by dimension names.

+ +
+
+
+
+

+ getIntensity_xyz(x, y, z, time) +

+

Get the intensity of a given voxel, addressed by dimension names.

+ +

Parameters

+
    +
  • Number x + : +
    +

    position within xspace

    + +
    +
  • +
  • Number y + : +
    +

    position within yspace

    + +
    +
  • +
  • Number z + : +
    +

    position within zspace

    + +
    +
  • +
  • Number time + : +
    +

    position in time (optional)

    + +
    +
  • +
+
+
+
+
+ + + #getPixel(position) + +
+ +
+
+
+
+

+ getPixel(position) +

+ +

Parameters

+
    +
  • Object position + : +
    +

    3D position like {x, y, z}

    + +
    +
  • +
+

Returns

+ Array + : +
+

the color of the given pixel.

+ +
+
+
+
+
+ + + #getSize(space) + +
+ +
+
+
+
+

+ getSize(space) +

+ +

Parameters

+
    +
  • String space + : +
    +

    "xspace", "yspace" or "zspace"

    + +
    +
  • +
+

Returns

+ Number + : +
+

the size of the Image3D along the given space

+ +
+
+
+
+
+ + + #getSlice(axis, slice_num, time) + +
+

[PRIVATE] +Return a slice from the minc cube as a 1D typed array, +along with some relative data (slice size, step, etc.) +args:

+ +
+
+
+
+

+ getSlice(axis, slice_num, time) +

+

[PRIVATE] + Return a slice from the minc cube as a 1D typed array, + along with some relative data (slice size, step, etc.) + args:

+ +

Parameters

+
    +
  • String axis + : +
    +

    "xspace", "yspace" or zspace (mandatory)

    + +
    +
  • +
  • Number slice_num + : +
    +

    index of the slice [0; length-1] (optional, default: length-1)

    + +
    +
  • +
  • Number time + : +
    +

    index of time (optional, default: 0) + TODO: add some method to a slice (get value) because it's a 1D array... and compare with Python

    + +
    +
  • +
+
+
+
+
+ + + #setData(array, xSize, ySize, zSize, ncpp, deepCopy, options) + +
+

Set the data to this Image3D.

+ +
+
+
+
+

+ setData(array, xSize, ySize, zSize, ncpp, deepCopy, options) +

+

Set the data to this Image3D.

+ +

Parameters

+
    +
  • Float32Array array + : +
    +

    1D array of raw data stored as RGBARGBA...

    + +
    +
  • +
  • Number xSize + : +
    +

    length along x dimension of the Image3D

    + +
    +
  • +
  • Number ySize + : +
    +

    length along y dimension of the Image3D

    + +
    +
  • +
  • Number zSize + : +
    +

    length along z dimension of the Image3D

    + +
    +
  • +
  • Number ncpp + : +
    +

    number of components per pixel (default: 4)

    + +
    +
  • +
  • Boolean deepCopy + : +
    +

    if true, a copy of the data is given, if false we jsut give the pointer

    + +
    +
  • +
  • Object options + : +
    +

    , among them:

    +
      +
    • ncpp {Number} number of components per pixel. Default = 1
    • +
    • order {Array} dimensionality order. Default = ["zspace", "yspace", "xspace"]
    • +
    • deepCopy {Boolean} copy the whole array if true, or just the pointer if false. Default = false
    • +
    + +
    +
  • +
+
+
+
+
+ + + #setPixel(position, color) + +
+

Modify the color of a given pixel.

+ +
+
+
+
+

+ setPixel(position, color) +

+

Modify the color of a given pixel.

+ +

Parameters

+
    +
  • Object position + : +
    +

    3D position in the form {x, y, z}

    + +
    +
  • +
  • Array color + : +
    +

    color, must have the same number of components per pixel than the image

    + +
    +
  • +
+
+
+
+
+
+

+ Pipeline +

+

A Pipeline instance handles a cascade of filter when an input dataset is updated. +Using a Pipeline object is not mandatory and can be replaced by calling update().

+ +

Static members

+
+ + + .TYPE + +
+

Hardcode the datatype

+ +
+
+
+
+

+ TYPE +

+

Hardcode the datatype

+ +
+
+
+

Instance members

+
+ + + #_forceUpdateAll + +
+

Run an update on every single filter

+ +
+
+
+
+

+ _forceUpdateAll +

+

Run an update on every single filter

+ +
+
+
+
+ + + #_updateSmart + +
+

Update only starting from the step that was modified since the last update

+ +
+
+
+
+

+ _updateSmart +

+

Update only starting from the step that was modified since the last update

+ +
+
+
+
+ + + #addFilter(f) + +
+

Add a filter to the pipeline.

+ +
+
+
+
+

+ addFilter(f) +

+

Add a filter to the pipeline.

+ +

Parameters

+
    +
  • f + : +
    + +
    +
  • +
+
+
+
+
+ + + #update(forceAll) + +
+ +
+
+
+
+

+ update(forceAll) +

+ +

Parameters

+
    +
  • forceAll + (default true) + : +
    + +
    +
  • +
+
+
+
+
+
+

+ PixelWiseImageFilter +

+

PixelWiseImageFilter is not supposed to be use as is and is just to +be inherited by other filters. +This class does not overload the update() method.

+ +

Instance members

+
+ + + #_forEachPixelOfSuch(firstPixel, lastPixel, increment) + +
+

[PRIVATE] +generic function for painting row, colum or whole

+ +
+
+
+
+

+ _forEachPixelOfSuch(firstPixel, lastPixel, increment) +

+

[PRIVATE] + generic function for painting row, colum or whole

+ +

Parameters

+
    +
  • Number firstPixel + : +
    +

    Index of the first pixel in 1D array

    + +
    +
  • +
  • Number lastPixel + : +
    +

    Index of the last pixel in 1D array

    + +
    +
  • +
  • Number increment + : +
    +

    jump gap from a pixel to another (in a 1D style)

    + +
    +
  • +
+
+
+
+
+
+

+ CanvasImageWriter +

+

CanvasImageWriter is a filter to output an instance of Image into a +HTML5 canvas element. +The metadata "parentDivID" has to be set using setMetadata("parentDivID", "whatever") +The metadata "alpha", if true, enable transparency. Default: false. +If the input Image2D has values not in [0, 255], you can remap/stretch using +setMetadata("min", xxx ) default: 0 +setMetadata("max", xxx ) default: 255

+

usage: examples/imageToCanvasFilter.html

+ +

Examples

+
// create an image
+var myImage = new pixpipe.Image2D({width: 100, height: 250, color: [255, 128, 64, 255]})
+
+// create a filter to write the image into a canvas
+var imageToCanvasFilter = new pixpipe.CanvasImageWriter( "myDiv" );
+imageToCanvasFilter.addInput( myImage );
+imageToCanvasFilter.update();
+

Instance members

+
+ + + #_init + +
+

[PRIVATE] +Initialize a new canvas object

+ +
+
+
+
+

+ _init +

+

[PRIVATE] + Initialize a new canvas object

+ +
+
+
+
+ + + #_run + +
+

Overwrite the generic (empty) method.

+ +
+
+
+
+

+ _run +

+

Overwrite the generic (empty) method.

+ +
+
+
+
+ + + #_stretchMinMax(intensity) + +
+

[PRIVATE] +remap the intensity between getMetadata("min") and getMetadata("max")

+ +
+
+
+
+

+ _stretchMinMax(intensity) +

+

[PRIVATE] + remap the intensity between getMetadata("min") and getMetadata("max")

+ +

Parameters

+
    +
  • Number intensity + : +
    +

    input pixel value

    + +
    +
  • +
+

Returns

+ Number + : +
+

the adjusted number

+ +
+
+
+
+
+ + + #constructor(parentDivID) + +
+ +
+
+
+
+

+ constructor(parentDivID) +

+ +

Parameters

+
    +
  • String parentDivID + : +
    +

    dom id of the future canvas' parent. + (most likely the ID of a div)

    + +
    +
  • +
+
+
+
+
+
+

+ UrlImageReader(callback) +

+

An instance of UrlImageReader takes an image URL as input and +returns an Image2D as output. Use the regular addInput() and getOuput() +with no argument for that. +Reading a file from URL takes an AJAX request, which is asynchronous. For this +reason, what happens next, once the Image2D is created must take place in the +callback defined by the event .on("ready", function(){ ... }). +Usage: examples/urlToImage2D.html

+

UrlImageReader can also load multiple images and call the "ready" event +only when all of them are loaded. +Usage: examples/urlToImage2D_multiple.html

+ +

Parameters

+
    +
  • callback + : +
    + +
    +
  • +
+

Examples

+
var url2ImgFilter = new pixpipe.UrlImageReader( ... );
+url2ImgFilter.addInput( "images/sd.jpg" );
+url2ImgFilter.update();
+

Instance members

+
+ + + #_loadImage(inputCategory) + +
+

[PRIVATE] +Loading task for a single category (aka file, in this case)

+ +
+
+
+
+

+ _loadImage(inputCategory) +

+

[PRIVATE] + Loading task for a single category (aka file, in this case)

+ +

Parameters

+
    +
  • inputCategory + : +
    + +
    +
  • +
+
+
+
+
+ + + #_run + +
+

Overload the function

+ +
+
+
+
+

+ _run +

+

Overload the function

+ +
+
+
+
+ + + #constructor(callback) + +
+ +
+
+
+
+

+ constructor(callback) +

+ +

Parameters

+
    +
  • function callback + : +
    +

    function to call when the image is loaded. + The this object will be in argument of this callback.

    + +
    +
  • +
+
+
+
+
+
+

+ FileImageReader +

+

An instance of FileImageReader takes a HTML5 File object as input and +returns an Image2D as output. The point is mainly to use it with a file dialog. +Use the regular addInput() and getOuput() with no argument for that. +Reading a local file is an asynchronous process. For this +reason, what happens next, once the Image2D is created must take place in the +callback defined by the event .on("ready", function(){ ... }).

+

Usage: examples/fileToImage2D.html

+ +

Examples

+
var file2ImgFilter = new pixpipe.file2ImgFilter( ... );
+file2ImgFilter.addInput( fileInput.files[0] );
+file2ImgFilter.update();
+

Instance members

+
+ + + #_run + +
+

Run the reading

+ +
+
+
+
+

+ _run +

+

Run the reading

+ +
+
+
+
+ + + #hasValidInput + +
+

Overload the default method because HTML5 File is not a Pixpipe type

+ +
+
+
+
+

+ hasValidInput +

+

Overload the default method because HTML5 File is not a Pixpipe type

+ +
+
+
+
+
+

+ SpectralScaleImageFilter +

+

Multiply an image by the other, like a scaling function. +The image requires two inputs named "0" and "1". +Simply use addInput( myImg1, "0" ) +and addInput( myImg2, "1" ). The input "0" can have 1 or more bands while +the input "1" can have only one band since the same scale is apply to each band.

+

usage: examples/forEachPixelGadient.html

+ +

Instance members

+
+ + + #_run + +
+

Run the filter

+ +
+
+
+
+

+ _run +

+

Run the filter

+ +
+
+
+
+
+

+ ForEachPixelImageFilter +

+

A filter of type ForEachPixelImageFilter can perform a operation on evey pixel +of an Image2D with a simple interface. For this purpose, a per-pixel-callback +must be specified using method +.on( "pixel" , function( coord, color ){ ... }) +where coord is of form {x, y} and color is of form [r, g, b, a] (with possibly) +a different number of components per pixel. +This callback must return, or null (original color not modified), +or a array of color (same dimension as the one in arguments).

+

Usage: examples/forEachPixel.html

+ +

Examples

+
var forEachPixelFilter = new pixpipe.ForEachPixelImageFilter();
+forEachPixelFilter.on( "pixel", function(position, color){
+
+    return [
+      color[1], // red (takes the values from green)
+      color[0], // green (takes the values from red)
+      color[2] * 0.5, // blue get 50% darker
+      255 // alpha, at max
+    ]
+
+  }
+);
+

Instance members

+
+ + + #_run + +
+

Run the filter

+ +
+
+
+
+

+ _run +

+

Run the filter

+ +
+
+
+
+
+

+ MniVolume(options) +

+

MniVolume instance are like Image3D but include some brain things

+ +

Parameters

+
    +
  • options + (default null) + : +
    + +
    +
  • +
+

Static members

+
+ + + .swapn(byte_data, n_per_item) + +
+

[STATIC] +swap the data to be used from the outside (ie. nifti)

+ +
+
+
+
+

+ swapn(byte_data, n_per_item) +

+

[STATIC] + swap the data to be used from the outside (ie. nifti)

+ +

Parameters

+
    +
  • byte_data + : +
    + +
    +
  • +
  • n_per_item + : +
    + +
    +
  • +
+
+
+
+
+ + + .transformToMinc(transform, header) + +
+

[STATIC] +mainly used by the ouside world (like from Nifti)

+ +
+
+
+
+

+ transformToMinc(transform, header) +

+

[STATIC] + mainly used by the ouside world (like from Nifti)

+ +

Parameters

+
    +
  • transform + : +
    + +
    +
  • +
  • header + : +
    + +
    +
  • +
+
+
+
+

Instance members

+
+ + + #_saveOriginAndTransform + + + +
+
+

+ _saveOriginAndTransform +

+

[PRIVATE} + Calculate the world to voxel transform and save it, so we + can access it efficiently. The transform is: + cxx / stepx | cxy / stepx | cxz / stepx | (-o.x cxx - o.y cxy - o.z cxz) / stepx + cyx / stepy | cyy / stepy | cyz / stepy | (-o.x cyx - o.y cyy - o.z cyz) / stepy + czx / stepz | czy / stepz | czz / stepz | (-o.x czx - o.y czy - o.z * czz) / stepz + 0 | 0 | 0 | 1

+

Origin equation taken from (http://www.bic.mni.mcgill.ca/software/minc/minc2_format/node4.html)

+ +
+
+
+
+ + + #constructor(options) + +
+

Constructor of an Image3D instance. If no options, no array is allocated.

+ +
+
+
+
+

+ constructor(options) +

+

Constructor of an Image3D instance. If no options, no array is allocated.

+ +

Parameters

+
    +
  • Object options + : +
    +

    if present, must have options.xSize, options.ySize, option.zSize. + Also options.ncpp to set the number of components per pixel. (possibly for using time series)

    + +
    +
  • +
+
+
+
+
+ + + #setData(data, header) + +
+

Initialize a MniVolume with the data and the header.

+ +
+
+
+
+

+ setData(data, header) +

+

Initialize a MniVolume with the data and the header.

+ +

Parameters

+
    +
  • Array data + : +
    +

    TypedArray containing the data

    + +
    +
  • +
  • header + : +
    + +
    +
  • +
+
+
+
+
+
+

+ BS_BLOCK_DONE +

+ +
+
+

+ BS_BLOCK_DONE +

+ +
+
+

+ BS_BLOCK_DONE +

+ +
+
+

+ BS_BLOCK_DONE +

+ +
+
+

+ BS_FINISH_DONE +

+ +
+
+

+ BS_FINISH_DONE +

+ +
+
+

+ BS_FINISH_DONE +

+ +
+
+

+ BS_FINISH_DONE +

+ +
+
+

+ BS_FINISH_DONE +

+ +
+
+

+ BS_NEED_MORE +

+ +
+
+

+ Minc2Decoder +

+

Decode a HDF5 file, but is most likely to be restricted to the features that are +used for Minc2 file format. +The input "0" is an array buffer, the metadata "debug" can be set to true to +enable a verbose mode.

+ +

Instance members

+
+ + + #checkAlignment + +
+

[PRIVATE]

+ +
+
+
+
+

+ checkAlignment +

+

[PRIVATE]

+ +
+
+
+
+ + + #checkSignature(str) + +
+

[PRIVATE]

+

Verify that the expected signature is found at this offset.

+ +
+
+
+
+

+ checkSignature(str) +

+

[PRIVATE]

+

Verify that the expected signature is found at this offset.

+ +

Parameters

+
    +
  • str + : +
    + +
    +
  • +
+
+
+
+ +
+ + + #dt_class_name(cls) + +
+

[PRIVATE]

+ +
+
+
+
+

+ dt_class_name(cls) +

+

[PRIVATE]

+ +

Parameters

+
    +
  • cls + : +
    + +
    +
  • +
+
+
+
+
+ + + #getArray(typ, n_bytes, new_off) + +
+

[PRIVATE]

+ +
+
+
+
+

+ getArray(typ, n_bytes, new_off) +

+

[PRIVATE]

+ +

Parameters

+
    +
  • typ + : +
    + +
    +
  • +
  • n_bytes + : +
    + +
    +
  • +
  • new_off + : +
    + +
    +
  • +
+
+
+
+
+ + + #getF32 + +
+

[PRIVATE]

+ +
+
+
+
+

+ getF32 +

+

[PRIVATE]

+ +
+
+
+
+ + + #getF64 + +
+

[PRIVATE]

+ +
+
+
+
+

+ getF64 +

+

[PRIVATE]

+ +
+
+
+
+ + + #getLength + +
+

[PRIVATE]

+ +
+
+
+
+

+ getLength +

+

[PRIVATE]

+ +
+
+
+
+ + + #getOffset(offsz) + +
+

[PRIVATE]

+ +
+
+
+
+

+ getOffset(offsz) +

+

[PRIVATE]

+ +

Parameters

+
    +
  • offsz + : +
    + +
    +
  • +
+
+
+
+
+ + + #getString(length) + +
+

[PRIVATE]

+ +
+
+
+
+

+ getString(length) +

+

[PRIVATE]

+ +

Parameters

+
    +
  • length + : +
    + +
    +
  • +
+
+
+
+
+ + + #getU16 + +
+

[PRIVATE]

+ +
+
+
+
+

+ getU16 +

+

[PRIVATE]

+ +
+
+
+
+ + + #getU32 + +
+

[PRIVATE]

+ +
+
+
+
+

+ getU32 +

+

[PRIVATE]

+ +
+
+
+
+ + + #getU64 + +
+

[PRIVATE]

+ +
+
+
+
+

+ getU64 +

+

[PRIVATE]

+ +
+
+
+
+ + + #getU8 + +
+

[PRIVATE]

+

helper functions for access to our DataView.

+ +
+
+
+
+

+ getU8 +

+

[PRIVATE]

+

helper functions for access to our DataView.

+ +
+
+
+
+ + + #getUXX(n) + +
+

[PRIVATE]

+

Get a variably-sized integer from the DataView.

+ +
+
+
+
+

+ getUXX(n) +

+

[PRIVATE]

+

Get a variably-sized integer from the DataView.

+ +

Parameters

+
    +
  • n + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5.this.isRgbVolume(header, image) + +
+ +
+
+
+
+

+ hdf5.this.isRgbVolume(header, image) +

+ +

Parameters

+
    +
  • object header + : +
    +

    The header object representing the structure + of the MINC file.

    + +
    +
  • +
  • object image + : +
    +

    The typed array object used to represent the + image data.

    + +
    +
  • +
+

Returns

+ boolean + : +
+

True if this is an RGB volume.

+ +
+
+
+
+
+ + + #hdf5.this.rgbVoxels(image) + +
+ +
+
+
+
+

+ hdf5.this.rgbVoxels(image) +

+ +

Parameters

+
    +
  • object image + : +
    +

    The 'link' object created using createLink(), + that corresponds to the image within the HDF5 or NetCDF file.

    + +
    +
  • +
+

Returns

+ object + : +
+

A new ArrayBuffer that contains the original RGB + data augmented with alpha values.

+ +
+
+
+
+
+ + + #hdf5.this.scaleVoxels(image, image_min, image_max, valid_range, debug) + +
+ +
+
+
+
+

+ hdf5.this.scaleVoxels(image, image_min, image_max, valid_range, debug) +

+ +

Parameters

+
    +
  • object image + : +
    +

    The link object corresponding to the image data.

    + +
    +
  • +
  • object image_min + : +
    +

    The link object corresponding to the image-min + data.

    + +
    +
  • +
  • object image_max + : +
    +

    The link object corresponding to the image-max + data.

    + +
    +
  • +
  • object valid_range + : +
    +

    An array of exactly two items corresponding + to the minimum and maximum valid raw voxel values.

    + +
    +
  • +
  • boolean debug + : +
    +

    True if we should print debugging information.

    + +
    +
  • +
+

Returns

+ + : +
+

A new ArrayBuffer containing the rescaled data.

+ +
+
+
+
+
+ + + #hdf5FractalHeapDirectBlock(fh, row, address, callback) + +
+

[PRIVATE]

+

The fractal heap direct block contains:

+
    +
  1. A signature.
  2. +
  3. a byte version.
  4. +
  5. an offset pointing to the header (for integrity checking).
  6. +
  7. A variably-sized block offset that gives (I think) the mininum block offset +associated with this block.
  8. +
  9. Variably-sized data. Block size varies with row number in a slightly tricky +fashion. Each "row" consists of "table_width" blocks. The first two rows, row 0 and 1, +have blocks of the "starting block size". Row 2-N have blocks of size 2^(row-1) times +the starting block size.
  10. +
+ +
+
+
+
+

+ hdf5FractalHeapDirectBlock(fh, row, address, callback) +

+

[PRIVATE]

+

The fractal heap direct block contains:

+
    +
  1. A signature.
  2. +
  3. a byte version.
  4. +
  5. an offset pointing to the header (for integrity checking).
  6. +
  7. A variably-sized block offset that gives (I think) the mininum block offset + associated with this block.
  8. +
  9. Variably-sized data. Block size varies with row number in a slightly tricky + fashion. Each "row" consists of "table_width" blocks. The first two rows, row 0 and 1, + have blocks of the "starting block size". Row 2-N have blocks of size 2^(row-1) times + the starting block size.
  10. +
+ +

Parameters

+
    +
  • fh + : +
    + +
    +
  • +
  • row + : +
    + +
    +
  • +
  • address + : +
    + +
    +
  • +
  • callback + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5FractalHeapEnumerate(fh, callback) + +
+

[PRIVATE]

+

enumerate over all of the direct blocks in the fractal heap.

+ +
+
+
+
+

+ hdf5FractalHeapEnumerate(fh, callback) +

+

[PRIVATE]

+

enumerate over all of the direct blocks in the fractal heap.

+ +

Parameters

+
    +
  • fh + : +
    + +
    +
  • +
  • callback + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5FractalHeapHeader + +
+

[PRIVATE]

+

read the v2 fractal heap header

+ +
+
+
+
+

+ hdf5FractalHeapHeader +

+

[PRIVATE]

+

read the v2 fractal heap header

+ +
+
+
+
+ + + #hdf5FractalHeapIndirectBlock(fh, callback) + +
+

[PRIVATE]

+

The fractal heap indirect block contains:

+
    +
  1. A signature.
  2. +
  3. a byte version
  4. +
  5. an offset pointing to the header (for integrity checking).
  6. +
  7. a variably-sized block offset that gives (I think) the mininum block offset +associated with children of this block.
  8. +
  9. pointers to K direct blocks
  10. +
  11. pointers to N indirect blocks
  12. +
  13. A checksum. This code completely ignores checksums. +See calculations of K and N in this.hdf5FractalHeapHeader(). Note that there can also +be additional information in the header if "filtered" direct blocks are used. I have +made no attempt to support this.
  14. +
+ +
+
+
+
+

+ hdf5FractalHeapIndirectBlock(fh, callback) +

+

[PRIVATE]

+

The fractal heap indirect block contains:

+
    +
  1. A signature.
  2. +
  3. a byte version
  4. +
  5. an offset pointing to the header (for integrity checking).
  6. +
  7. a variably-sized block offset that gives (I think) the mininum block offset + associated with children of this block.
  8. +
  9. pointers to K direct blocks
  10. +
  11. pointers to N indirect blocks
  12. +
  13. A checksum. This code completely ignores checksums. + See calculations of K and N in this.hdf5FractalHeapHeader(). Note that there can also + be additional information in the header if "filtered" direct blocks are used. I have + made no attempt to support this.
  14. +
+ +

Parameters

+
    +
  • fh + : +
    + +
    +
  • +
  • callback + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5FractalHeapOffset(fh, offset) + +
+

[PRIVATE]

+ +
+
+
+
+

+ hdf5FractalHeapOffset(fh, offset) +

+

[PRIVATE]

+ +

Parameters

+
    +
  • fh + : +
    + +
    +
  • +
  • offset + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5GetMsgName(n) + +
+

[PRIVATE]

+ +
+
+
+
+

+ hdf5GetMsgName(n) +

+

[PRIVATE]

+ +

Parameters

+
    +
  • n + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5GroupSymbolTable(lh, link) + +
+

[PRIVATE]

+ +
+
+
+
+

+ hdf5GroupSymbolTable(lh, link) +

+

[PRIVATE]

+ +

Parameters

+
    +
  • lh + : +
    + +
    +
  • +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5LocalHeap + +
+

[PRIVATE]

+

Read a v1 local heap header. These define relatively small +regions used primarily for storing symbol names associated with +a symbol table message.

+ +
+
+
+
+

+ hdf5LocalHeap +

+

[PRIVATE]

+

Read a v1 local heap header. These define relatively small + regions used primarily for storing symbol names associated with + a symbol table message.

+ +
+
+
+
+ + + #hdf5MsgAttribute(sz, link) + +
+

[PRIVATE]

+

Process an "attribute" message. This actually defines an attribute that is +to be associated with a group or dataset (what I generally call a "link" +in this code. Attributes include a name, a datatype, and a dataspace, followed +by the actual data.

+ +
+
+
+
+

+ hdf5MsgAttribute(sz, link) +

+

[PRIVATE]

+

Process an "attribute" message. This actually defines an attribute that is + to be associated with a group or dataset (what I generally call a "link" + in this code. Attributes include a name, a datatype, and a dataspace, followed + by the actual data.

+ +

Parameters

+
    +
  • sz + : +
    + +
    +
  • +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5MsgAttrInfo(link) + +
+

[PRIVATE]

+

Attribute info messages contain pointers to a fractal heap and a v2 btree. +If these pointers are valid, we must follow them to find more attributes. +The attributes are indexed by records in the "type 8" btree. These btree +records

+ +
+
+
+
+

+ hdf5MsgAttrInfo(link) +

+

[PRIVATE]

+

Attribute info messages contain pointers to a fractal heap and a v2 btree. + If these pointers are valid, we must follow them to find more attributes. + The attributes are indexed by records in the "type 8" btree. These btree + records

+ +

Parameters

+
    +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5MsgDataspace(sz, link) + +
+

[PRIVATE]

+

Process a "dataspace" message. Dataspaces define the +dimensionality of a dataset or attribute. They define the +number of dimensions (rank) and the current length of each +dimension. It is possible to specify a "maximum" length that is +greater than or equal to the current length, but MINC doesn't +rely on that feature so these values are ignored. Finally it +is also possible to specify a "permutation index" that alters +storage order of the dataset, but again, MINC doesn't rely on +this feature, so the values are ignored.

+ +
+
+
+
+

+ hdf5MsgDataspace(sz, link) +

+

[PRIVATE]

+

Process a "dataspace" message. Dataspaces define the + dimensionality of a dataset or attribute. They define the + number of dimensions (rank) and the current length of each + dimension. It is possible to specify a "maximum" length that is + greater than or equal to the current length, but MINC doesn't + rely on that feature so these values are ignored. Finally it + is also possible to specify a "permutation index" that alters + storage order of the dataset, but again, MINC doesn't rely on + this feature, so the values are ignored.

+ +

Parameters

+
    +
  • sz + : +
    + +
    +
  • +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5MsgDatatype(sz) + +
+

[PRIVATE]

+

Process a "datatype" message. These messages specify the data +type of a single element within a dataset or attribute. Data +types are extremely flexible, HDF5 supports a range of options +for bit widths and organization atomic types. We support only +fixed, float, and string atomic types, and those only for +certain restricted (but common) cases. At this point we +provide no support for more exotic types such as bit field, +enumerated, array, opaque, compound, time, reference, +variable-length, etc.

+

TODO: should support enumerated types, possibly a few others.

+ +
+
+
+
+

+ hdf5MsgDatatype(sz) +

+

[PRIVATE]

+

Process a "datatype" message. These messages specify the data + type of a single element within a dataset or attribute. Data + types are extremely flexible, HDF5 supports a range of options + for bit widths and organization atomic types. We support only + fixed, float, and string atomic types, and those only for + certain restricted (but common) cases. At this point we + provide no support for more exotic types such as bit field, + enumerated, array, opaque, compound, time, reference, + variable-length, etc.

+

TODO: should support enumerated types, possibly a few others.

+ +

Parameters

+
    +
  • sz + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5MsgGroupInfo + +
+

[PRIVATE]

+

Process a "group info" message. We don't actually do anything with these.

+ +
+
+
+
+

+ hdf5MsgGroupInfo +

+

[PRIVATE]

+

Process a "group info" message. We don't actually do anything with these.

+ +
+
+
+
+ + + #hdf5MsgLayout(link) + +
+

[PRIVATE]

+

Process a "layout" message. These messages specify the location and organization +of data in a dataset. The organization can be either compact, contiguous, or +chunked. Compact data is stored in the message as a contiguous block. Contiguous +data is stored elsewhere in the file in a single chunk. Chunked data is stored within +a V1 Btree as a series of possibly filtered (e.g. compressed) chunks.

+ +
+
+
+
+

+ hdf5MsgLayout(link) +

+

[PRIVATE]

+

Process a "layout" message. These messages specify the location and organization + of data in a dataset. The organization can be either compact, contiguous, or + chunked. Compact data is stored in the message as a contiguous block. Contiguous + data is stored elsewhere in the file in a single chunk. Chunked data is stored within + a V1 Btree as a series of possibly filtered (e.g. compressed) chunks.

+ +

Parameters

+
    +
  • link + : +
    + +
    +
  • +
+
+
+
+ +
+ + + #hdf5MsgLinkInfo(link) + +
+

[PRIVATE]

+

link info messages may contain a fractal heap address where we +can find additional link messages for this object. This +happens, for example, when there are lots of links in a +particular group.

+ +
+
+
+
+

+ hdf5MsgLinkInfo(link) +

+

[PRIVATE]

+

link info messages may contain a fractal heap address where we + can find additional link messages for this object. This + happens, for example, when there are lots of links in a + particular group.

+ +

Parameters

+
    +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5MsgPipeline(link) + +
+

[PRIVATE]

+

Read a "filter pipeline" message. At the moment we only handle +deflate/inflate. Anything else will cause us to throw an exception.

+ +
+
+
+
+

+ hdf5MsgPipeline(link) +

+

[PRIVATE]

+

Read a "filter pipeline" message. At the moment we only handle + deflate/inflate. Anything else will cause us to throw an exception.

+ +

Parameters

+
    +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5ProcessMessage(msg, link) + +
+

[PRIVATE]

+

Process a single message, given a message header. Assumes that +the data view offset is pointing to the remainder of the +message.

+

V1 and V2 files use different sets of messages to accomplish +similar things. For example, V1 files tend to use "symbol +table" messages to describe links within a group, whereas V2 +files use "link" and "linkinfo" messages.

+ +
+
+
+
+

+ hdf5ProcessMessage(msg, link) +

+

[PRIVATE]

+

Process a single message, given a message header. Assumes that + the data view offset is pointing to the remainder of the + message.

+

V1 and V2 files use different sets of messages to accomplish + similar things. For example, V1 files tend to use "symbol + table" messages to describe links within a group, whereas V2 + files use "link" and "linkinfo" messages.

+ +

Parameters

+
    +
  • msg + : +
    + +
    +
  • +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5Superblock + +
+

[PRIVATE]

+ +
+
+
+
+

+ hdf5Superblock +

+

[PRIVATE]

+ +
+
+
+
+ + + #hdf5V1BtreeNode(link) + +
+

[PRIVATE]

+ +
+
+
+
+

+ hdf5V1BtreeNode(link) +

+

[PRIVATE]

+ +

Parameters

+
    +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5V1ObjectHeader(link) + +
+

[PRIVATE]

+

Read a v1 object header. Object headers contain a series of +messages that define an HDF5 object, primarily a group or a +dataset. The v1 object header, like most of the v1 format, is +very careful about alignment. Every message must be on an +8-byte alignment RELATIVE TO THE START OF THE HEADER. So if the +header starts on an odd boundary, messages may start on odd +boundaries as well. No, this doesn't make much sense.

+ +
+
+
+
+

+ hdf5V1ObjectHeader(link) +

+

[PRIVATE]

+

Read a v1 object header. Object headers contain a series of + messages that define an HDF5 object, primarily a group or a + dataset. The v1 object header, like most of the v1 format, is + very careful about alignment. Every message must be on an + 8-byte alignment RELATIVE TO THE START OF THE HEADER. So if the + header starts on an odd boundary, messages may start on odd + boundaries as well. No, this doesn't make much sense.

+ +

Parameters

+
    +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5V2BtreeHeader + +
+

[PRIVATE]

+

read the v2 btree header

+ +
+
+
+
+

+ hdf5V2BtreeHeader +

+

[PRIVATE]

+

read the v2 btree header

+ +
+
+
+
+ + + #hdf5V2BtreeInternalNode(fh, nrec, depth, link) + +
+

[PRIVATE]

+

read the hdf5 v2 btree internal node

+ +
+
+
+
+

+ hdf5V2BtreeInternalNode(fh, nrec, depth, link) +

+

[PRIVATE]

+

read the hdf5 v2 btree internal node

+ +

Parameters

+
    +
  • fh + : +
    + +
    +
  • +
  • nrec + : +
    + +
    +
  • +
  • depth + : +
    + +
    +
  • +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5V2BtreeLeafNode(fh, nrec, link) + +
+

[PRIVATE]

+

read a v2 btree leaf node

+ +
+
+
+
+

+ hdf5V2BtreeLeafNode(fh, nrec, link) +

+

[PRIVATE]

+

read a v2 btree leaf node

+ +

Parameters

+
    +
  • fh + : +
    + +
    +
  • +
  • nrec + : +
    + +
    +
  • +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5V2BtreeRecords(fh, bt_type, nrec, link) + +
+

[PRIVATE]

+

Enumerates btree records in a block. Records are found both in direct +and indirect v2 btree blocks.

+ +
+
+
+
+

+ hdf5V2BtreeRecords(fh, bt_type, nrec, link) +

+

[PRIVATE]

+

Enumerates btree records in a block. Records are found both in direct + and indirect v2 btree blocks.

+ +

Parameters

+
    +
  • fh + : +
    + +
    +
  • +
  • bt_type + : +
    + +
    +
  • +
  • nrec + : +
    + +
    +
  • +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #hdf5V2ObjectHeader(link) + +
+

[PRIVATE]

+

Read a V2 object header. Object headers contain a series of messages that define +an HDF5 object, primarily a group or a dataset. V2 object headers, and V2 objects +generally, are much less concerned about alignment than V1 objects.

+ +
+
+
+
+

+ hdf5V2ObjectHeader(link) +

+

[PRIVATE]

+

Read a V2 object header. Object headers contain a series of messages that define + an HDF5 object, primarily a group or a dataset. V2 object headers, and V2 objects + generally, are much less concerned about alignment than V1 objects.

+ +

Parameters

+
    +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #loadData(link) + +
+

[PRIVATE]

+ +
+
+
+
+

+ loadData(link) +

+

[PRIVATE]

+ +

Parameters

+
    +
  • link + : +
    + +
    +
  • +
+
+
+
+
+ + + #seek(new_offset) + +
+

[PRIVATE]

+ +
+
+
+
+

+ seek(new_offset) +

+

[PRIVATE]

+ +

Parameters

+
    +
  • new_offset + : +
    + +
    +
  • +
+
+
+
+
+ + + #skip(n_bytes) + +
+

[PRIVATE]

+

helper functions to manipulate the current DataView offset.

+ +
+
+
+
+

+ skip(n_bytes) +

+

[PRIVATE]

+

helper functions to manipulate the current DataView offset.

+ +

Parameters

+
    +
  • n_bytes + : +
    + +
    +
  • +
+
+
+
+
+ + + #startAlignment + +
+

[PRIVATE]

+

Turns out that alignment of the messages in at least the +version 1 object header is actually relative to the start +of the header. So we update the start position of the +header here, so we can refer to it when calculating the +alignment in this.checkAlignment().

+ +
+
+
+
+

+ startAlignment +

+

[PRIVATE]

+

Turns out that alignment of the messages in at least the + version 1 object header is actually relative to the start + of the header. So we update the start position of the + header here, so we can refer to it when calculating the + alignment in this.checkAlignment().

+ +
+
+
+
+ + + #tell + +
+

[PRIVATE]

+ +
+
+
+
+

+ tell +

+

[PRIVATE]

+ +
+
+
+
+
+

+ Image2D(options) +

+

Image2D class is one of the few base element of Pixpipejs. +It is always considered to be 4 channels (RGBA) and stored as a Float32Array +typed array.

+ +

Parameters

+
    +
  • options + (default null) + : +
    + +
    +
  • +
+

Static members

+
+ + + .TYPE + +
+

Hardcode the datatype

+ +
+
+
+
+

+ TYPE +

+

Hardcode the datatype

+ +
+
+
+

Instance members

+
+ + + #clone + +
+ +
+
+
+
+

+ clone +

+ +

Returns

+ Image2D + : +
+

a deep copy instance of this Image2D

+ +
+
+
+
+
+ + + #constructor(options) + +
+

Constructor of an Image2D instance. If no options, no array is allocated.

+ +
+
+
+
+

+ constructor(options) +

+

Constructor of an Image2D instance. If no options, no array is allocated.

+ +

Parameters

+
    +
  • Object options + : +
    +

    if present:

    +
      +
    • options.width {Number} width in pixel
    • +
    • options.height {Number} height in pixel
    • +
    • options.color {Array} can be [r, g, b, a] or just [i]. Optional.
    • +
    + +
    +
  • +
+
+
+
+
+ + + #get1dIndexFrom2dPosition(position) + +
+

Compute the 1D index within the data buffer from a 2D position {x, y}. +This has nothing to do with the number of components per pixel.

+ +
+
+
+
+

+ get1dIndexFrom2dPosition(position) +

+

Compute the 1D index within the data buffer from a 2D position {x, y}. + This has nothing to do with the number of components per pixel.

+ +

Parameters

+
    +
  • Object position + : +
    +

    2D coord like {x, y}

    + +
    +
  • +
+

Returns

+ Number + : +
+

the 1D position within the buffer

+ +
+
+
+
+
+ + + #get2dPositionFrom1dIndex(i) + +
+

Compute the (x, y) position from a position in a 1D array. +This has nothing to do with the number of components per pixel.

+ +
+
+
+
+

+ get2dPositionFrom1dIndex(i) +

+

Compute the (x, y) position from a position in a 1D array. + This has nothing to do with the number of components per pixel.

+ +

Parameters

+
    +
  • Number i + : +
    +

    the index of a pixel.

    + +
    +
  • +
+

Returns

+ Object + : +
+

coordinate as {x, y}

+ +
+
+
+
+
+ + + #getComponentsPerPixel + +
+ +
+
+
+
+

+ getComponentsPerPixel +

+ +

Returns

+ Number + : +
+

the number of components per pixel

+ +
+
+
+
+
+ + + #getData + +
+ +
+
+
+
+

+ getData +

+ +

Returns

+ Float32Array + : +
+

the original data, dont mess up with this one. + in case of doubt, use getDataCopy()

+ +
+
+
+
+
+ + + #getDataCopy + +
+ +
+
+
+
+

+ getDataCopy +

+ +

Returns

+ Float32Array + : +
+

a deep copy of the data

+ +
+
+
+
+
+ + + #getHeight + +
+ +
+
+
+
+

+ getHeight +

+ +

Returns

+ Number + : +
+

the height of the Image2D

+ +
+
+
+
+
+ + + #getPixel(position) + +
+ +
+
+
+
+

+ getPixel(position) +

+ +

Parameters

+
    +
  • Object position + : +
    +

    2D positoin like {x, y}

    + +
    +
  • +
+

Returns

+ Array + : +
+

the color of the given pixel.

+ +
+
+
+
+
+ + + #getWidth + +
+ +
+
+
+
+

+ getWidth +

+ +

Returns

+ Number + : +
+

the width of the Image2D

+ +
+
+
+
+
+ + + #setData(array, width, height, ncpp, deepCopy) + +
+

Set the data to this Image2D.

+ +
+
+
+
+

+ setData(array, width, height, ncpp, deepCopy) +

+

Set the data to this Image2D.

+ +

Parameters

+
    +
  • Float32Array array + : +
    +

    1D array of raw data stored as RGBARGBA...

    + +
    +
  • +
  • Number width + : +
    +

    width of the Image2D

    + +
    +
  • +
  • Number height + : +
    +

    height of the Image2D

    + +
    +
  • +
  • Number ncpp + : +
    +

    number of components per pixel (default: 4)

    + +
    +
  • +
  • Boolean deepCopy + : +
    +

    if true, a copy of the data is given, if false we jsut give the pointer

    + +
    +
  • +
+
+
+
+
+ + + #setPixel(position, color) + +
+

Modify the color of a given pixel.

+ +
+
+
+
+

+ setPixel(position, color) +

+

Modify the color of a given pixel.

+ +

Parameters

+
    +
  • Object position + : +
    +

    2D position in form {x, y}

    + +
    +
  • +
  • Array color + : +
    +

    color, must have the same numb of components per pix than the image

    + +
    +
  • +
+
+
+
+
+
+

+ PixpipeObject +

+

PixpipeObject is the base object of all. It creates a uuid and has few +generic attributes like type, name and description. Not all these attributes +always useful;

+ +

Static members

+
+ + + .TYPE + +
+

Acces it like a static attribute. +Must be overloaded.

+ +
-

+

TYPE

-

Hardcode the datatype

+

Acces it like a static attribute. + Must be overloaded.

+ +
+
+
+

Instance members

+
+ + + #copyMetadataFrom(otherObject) + +
+

Copy all the metadata from the object in argument to this. +A deep copy by serialization is perform. +The metadata that exist only in this are kept.

+ +
+
+
+
+

+ copyMetadataFrom(otherObject) +

+

Copy all the metadata from the object in argument to this. + A deep copy by serialization is perform. + The metadata that exist only in this are kept.

+ +

Parameters

+
    +
  • PixpipeObject otherObject + : +
    +

    the object to copy metadata from

    + +
    +
  • +
+
+
+
+
+ + + #getMetadata(key) + +
+

Retrieve a metadata using a key.

+ +
+
+
+
+

+ getMetadata(key) +

+

Retrieve a metadata using a key.

+ +

Parameters

+
    +
  • String key + : +
    +

    the ID of the metadata

    + +
    +
  • +
+

Returns

+ Object + : +
+

the metadata object - or null if non existent

+ +
+
+
+
+
+ + + #getMetadataKeys + +
+ +
+
+
+
+

+ getMetadataKeys +

+ +

Returns

+ Array + : +
+

of Strings where each is a key of an existing metadata record

+ +
+
+
+
+
+ + + #getType + +
+

Get type of object.

+ +
+
+
+
+

+ getType +

+

Get type of object.

+ +

Returns

+ String + : +
+

the type

+ +
+
+
+
+
+ + + #getUuid + +
+

Return a copy of the uuid

+ +
+
+
+
+

+ getUuid +

+

Return a copy of the uuid

+ +
+
+
+
+ + + #hasMetadata(key) + +
+

Check if the metadata with the given key exists.

+ +
+
+
+
+

+ hasMetadata(key) +

+

Check if the metadata with the given key exists.

+ +

Parameters

+
    +
  • String key + : +
    +

    the key to look up in the metadata collection

    + +
    +
  • +
+

Returns

+ Boolean + : +
+

true if the metadata with the given is present, false if not.

+ +
+
+
+
+
+ + + #isOfType(t) + +
+

Compare a give type to the type of this object.

+ +
+
+
+
+

+ isOfType(t) +

+

Compare a give type to the type of this object.

+ +

Parameters

+
    +
  • String t + : +
    +

    a type, better to call the static method of each object, like Image.TYPE()

    + +
    +
  • +
+
+
+
+
+ + + #setMetadata(key, value) + +
+

Set a metadata using a pair of key and value.

+ +
+
+
+
+

+ setMetadata(key, value) +

+

Set a metadata using a pair of key and value.

+ +

Parameters

+
    +
  • String key + : +
    +

    the ID of the metadata

    + +
    +
  • +
  • Object value + : +
    +

    can be a string, Number or Object

    +
    +
  • +
+
+
+

+ createNifti1Data(header, raw_data) +

+

[PRIVATE]

+ +

Parameters

+
    +
  • header + : +
    + +
    +
  • +
  • raw_data + : +
    + +
    +
  • +
+
+
+

+ niftiQuaternToMat44(qb, qc, qd, qx, qy, qz, dx, dy, dz, qfac) +

+

[PRIVATE] +This function is a direct translation of the identical function +found in the standard NIfTI-1 library (nifti1_io.c).

+ +

Parameters

+
    +
  • qb + : +
    + +
    +
  • +
  • qc + : +
    + +
    +
  • +
  • qd + : +
    + +
    +
  • +
  • qx + : +
    + +
    +
  • +
  • qy + : +
    + +
    +
  • +
  • qz + : +
    + +
    +
  • +
  • dx + : +
    + +
    +
  • +
  • dy + : +
    + +
    +
  • +
  • dz + : +
    + +
    +
  • +
  • qfac + : +
    + +
    +
  • +
+
+
+

+ parseNifti1Header(raw_data) +

+

[PRIVATE]

+ +

Parameters

+
    +
  • raw_data + : +
    + +
    +
  • +
+
+
+

+ deflate(input, options) +

+

deflate(data[, options]) -> Uint8Array|Array|String

+
    +
  • data (Uint8Array|Array|String): input data to compress.
  • +
  • options (Object): zlib deflate options.
  • +
+

Compress data with deflate algorithm and options.

+

Supported options are:

+
    +
  • level
  • +
  • windowBits
  • +
  • memLevel
  • +
  • strategy
  • +
  • dictionary
  • +
+

http://zlib.net/manual.html#Advanced +for more information on these.

+

Sugar (options):

+
    +
  • raw (Boolean) - say that we work with raw stream, if you don't wish to specify +negative windowBits implicitly.
  • +
  • to (String) - if equal to 'string', then result will be "binary string" +(each char code [0..255])
  • +
+
Example:
+
var pako = require('pako')
+  , data = Uint8Array([1,2,3,4,5,6,7,8,9]);
+
+console.log(pako.deflate(data));
+
+ +

Parameters

+
    +
  • input + : +
    + +
    +
  • +
  • options + : +
    + +
    +
  • +
+
+
+

+ Deflate(options) +

+

class Deflate

+

Generic JS-style wrapper for zlib calls. If you don't need +streaming behaviour - use more simple functions: [[deflate]], +[[deflateRaw]] and [[gzip]].

+ +

Parameters

+
    +
  • options + : +
    + +
    +
  • +

Instance members

-
- +
+ - #_getInput(category) + #onData(chunk)
-

[PRIVATE] -should noly be used by the class that inherit Filter.

+

Deflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends +on js engine support. When string output requested, each chunk +will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue +those in onEnd. Override this handler, if you need another behaviour.

-

- _getInput(category) +

+ onData(chunk)

-

[PRIVATE] - should noly be used by the class that inherit Filter.

+

Deflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends + on js engine support. When string output requested, each chunk + will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue + those in onEnd. Override this handler, if you need another behaviour.

Parameters

    -
  • Number category +
  • chunk :
    -

    in case we want to get data from different categories.

    - +
-

Returns

- Object - : -
-

or null if no input can be returned

- -
-
- +
+ - #_setOutput(imageObject, data, category) + #onEnd(status)
-

[PRIVATE] -should noly be used by the class that inherit Filter. -This is just a wraper to not access the raw _output object.

+

Deflate#onEnd(status) -> Void

+
    +
  • status (Number): deflate status. 0 (Z_OK) on success, +other if not.
  • +
+

Called once after you tell deflate that the input stream is +complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) +or if an error happened. By default - join collected chunks, +free memory and fill results / err properties.

-

- _setOutput(imageObject, data, category) +

+ onEnd(status)

-

[PRIVATE] - should noly be used by the class that inherit Filter. - This is just a wraper to not access the raw _output object.

+

Deflate#onEnd(status) -> Void

+
    +
  • status (Number): deflate status. 0 (Z_OK) on success, + other if not.
  • +
+

Called once after you tell deflate that the input stream is + complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) + or if an error happened. By default - join collected chunks, + free memory and fill results / err properties.

Parameters

    -
  • Image2D imageObject +
  • status :
    -

    instance of an image

    - +
  • +
+
+
+
+
+ + + #push(data, mode) + +
+

Deflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be +converted to utf8 byte sequence.
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. +See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to deflate pipe, generating [[Deflate#onData]] calls with +new compressed chunks. Returns true on success. The last data block must have +mode Z_FINISH (or true). That will flush internal pending buffers and call +[[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you +can use mode Z_SYNC_FLUSH, keeping the compression context.

+

On fail call [[Deflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output +array format is detected automatically). Also, don't skip last param and always +use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+...
+push(chunk, true);  // push last chunk
+
+ +
+
+
+
+

+ push(data, mode) +

+

Deflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be + converted to utf8 byte sequence.
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to deflate pipe, generating [[Deflate#onData]] calls with + new compressed chunks. Returns true on success. The last data block must have + mode Z_FINISH (or true). That will flush internal pending buffers and call + [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you + can use mode Z_SYNC_FLUSH, keeping the compression context.

+

On fail call [[Deflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output + array format is detected automatically). Also, don't skip last param and always + use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+            ...
+            push(chunk, true);  // push last chunk
+            
+ +

Parameters

+
  • data :
  • -
  • Number category +
  • mode :
    -

    in case we want to get data from different categories.

    + +
    +
  • +
+
+
+
+
+
+

+ Deflate(options) +

+

Deflate.result -> Uint8Array|Array

+

Compressed result, generated by default [[Deflate#onData]] +and [[Deflate#onEnd]] handlers. Filled after you push last chunk +(call [[Deflate#push]] with Z_FINISH / true param) or if you +push a chunk with explicit flush (call [[Deflate#push]] with +Z_SYNC_FLUSH param).

+ +

Parameters

+
    +
  • options + : +
    + +
    +
  • +
+

Instance members

+
+ + + #onData(chunk) + +
+

Deflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends +on js engine support. When string output requested, each chunk +will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue +those in onEnd. Override this handler, if you need another behaviour.

+ +
+
+
+
+

+ onData(chunk) +

+

Deflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends + on js engine support. When string output requested, each chunk + will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue + those in onEnd. Override this handler, if you need another behaviour.

+

Parameters

+
    +
  • chunk + : +
    +
-
- +
+ - #addInput(inputObject, category) + #onEnd(status)
-

Set an input, potentially associated to a category.

+

Deflate#onEnd(status) -> Void

+
    +
  • status (Number): deflate status. 0 (Z_OK) on success, +other if not.
  • +
+

Called once after you tell deflate that the input stream is +complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) +or if an error happened. By default - join collected chunks, +free memory and fill results / err properties.

-

- addInput(inputObject, category) +

+ onEnd(status)

-

Set an input, potentially associated to a category.

+

Deflate#onEnd(status) -> Void

+
    +
  • status (Number): deflate status. 0 (Z_OK) on success, + other if not.
  • +
+

Called once after you tell deflate that the input stream is + complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) + or if an error happened. By default - join collected chunks, + free memory and fill results / err properties.

Parameters

    -
  • Image2D inputObject +
  • status :
    -

    most likely an instance of Image2D but can also be HTML5 File or Image3D

    + +
    +
  • +
+
+
+
+
+ + + #push(data, mode) + +
+

Deflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be +converted to utf8 byte sequence.
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. +See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to deflate pipe, generating [[Deflate#onData]] calls with +new compressed chunks. Returns true on success. The last data block must have +mode Z_FINISH (or true). That will flush internal pending buffers and call +[[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you +can use mode Z_SYNC_FLUSH, keeping the compression context.

+

On fail call [[Deflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output +array format is detected automatically). Also, don't skip last param and always +use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+...
+push(chunk, true);  // push last chunk
+
+ +
+
+
+
+

+ push(data, mode) +

+

Deflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be + converted to utf8 byte sequence.
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to deflate pipe, generating [[Deflate#onData]] calls with + new compressed chunks. Returns true on success. The last data block must have + mode Z_FINISH (or true). That will flush internal pending buffers and call + [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you + can use mode Z_SYNC_FLUSH, keeping the compression context.

+

On fail call [[Deflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output + array format is detected automatically). Also, don't skip last param and always + use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+            ...
+            push(chunk, true);  // push last chunk
+            
+

Parameters

+
    +
  • data + : +
    +
  • -
  • Number category +
  • mode :
    -

    in case we want to get data from diferent categories.

    - +
-
- +
+
+

+ Deflate(options) +

+

Deflate.err -> Number

+

Error code after deflate finished. 0 (Z_OK) on success. +You will not need it in real life, because deflate errors +are possible only on wrong options or bad onData / onEnd +custom handlers.

+ +

Parameters

+
    +
  • options + : +
    + +
    +
  • +
+

Instance members

+
+ - #getOutput(category) + #onData(chunk)
-

Return outputs from a category (default category: 0)

+

Deflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends +on js engine support. When string output requested, each chunk +will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue +those in onEnd. Override this handler, if you need another behaviour.

-

- getOutput(category) +

+ onData(chunk)

-

Return outputs from a category (default category: 0)

+

Deflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends + on js engine support. When string output requested, each chunk + will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue + those in onEnd. Override this handler, if you need another behaviour.

Parameters

    -
  • Number category +
  • chunk :
    -

    a category of output.

    - +
-

Returns

- Object - : -
-

or null if no output can be returned.

- -
-
- +
+ - #hasValidInput + #onEnd(status)
-

Validate the input data using a model defined in _inputValidator. -Every class that implement Filter must implement their own _inputValidator. -Not mandatory to use, still a good practice.

+

Deflate#onEnd(status) -> Void

+
    +
  • status (Number): deflate status. 0 (Z_OK) on success, +other if not.
  • +
+

Called once after you tell deflate that the input stream is +complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) +or if an error happened. By default - join collected chunks, +free memory and fill results / err properties.

-

- hasValidInput +

+ onEnd(status)

-

Validate the input data using a model defined in _inputValidator. - Every class that implement Filter must implement their own _inputValidator. - Not mandatory to use, still a good practice.

+

Deflate#onEnd(status) -> Void

+
    +
  • status (Number): deflate status. 0 (Z_OK) on success, + other if not.
  • +
+

Called once after you tell deflate that the input stream is + complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) + or if an error happened. By default - join collected chunks, + free memory and fill results / err properties.

+

Parameters

+
    +
  • status + : +
    + +
    +
  • +
-
- +
+ - #update + #push(data, mode)
-

MUST be implemented by the class that inherit this. -Launch the process.

+

Deflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be +converted to utf8 byte sequence.
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. +See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to deflate pipe, generating [[Deflate#onData]] calls with +new compressed chunks. Returns true on success. The last data block must have +mode Z_FINISH (or true). That will flush internal pending buffers and call +[[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you +can use mode Z_SYNC_FLUSH, keeping the compression context.

+

On fail call [[Deflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output +array format is detected automatically). Also, don't skip last param and always +use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+...
+push(chunk, true);  // push last chunk
+
-

- update +

+ push(data, mode)

-

MUST be implemented by the class that inherit this. - Launch the process.

+

Deflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be + converted to utf8 byte sequence.
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to deflate pipe, generating [[Deflate#onData]] calls with + new compressed chunks. Returns true on success. The last data block must have + mode Z_FINISH (or true). That will flush internal pending buffers and call + [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you + can use mode Z_SYNC_FLUSH, keeping the compression context.

+

On fail call [[Deflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output + array format is detected automatically). Also, don't skip last param and always + use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+            ...
+            push(chunk, true);  // push last chunk
+            
+

Parameters

+
    +
  • data + : +
    + +
    +
  • +
  • mode + : +
    + +
    +
  • +
-

- CanvasImageWriter(idOfParent) +

+ Deflate(options)

-

CanvasImageWriter is a filter to output an instance of Image into a -HTML5 canvas element. -usage: examples/imageToCanvasFilter.html

+

Deflate.msg -> String

+

Error message, if [[Deflate.err]] != 0

Parameters

    -
  • idOfParent +
  • options :
-

Examples

-
// create an image
-var myImage = new pixpipe.Image2D({width: 100, height: 250, color: [255, 128, 64, 255]})
-
-// create a filter to write the image into a canvas
-var imageToCanvasFilter = new pixpipe.CanvasImageWriter( "myDiv" );
-imageToCanvasFilter.addInput( myImage );
-imageToCanvasFilter.update();

Instance members

-
- +
+ - #_init + #onData(chunk)
-

[PRIVATE] -Initialize a new canvas object

+

Deflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends +on js engine support. When string output requested, each chunk +will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue +those in onEnd. Override this handler, if you need another behaviour.

-

- _init +

+ onData(chunk)

-

[PRIVATE] - Initialize a new canvas object

+

Deflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends + on js engine support. When string output requested, each chunk + will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue + those in onEnd. Override this handler, if you need another behaviour.

+

Parameters

+
    +
  • chunk + : +
    + +
    +
  • +
-
- +
+ - #constructor(idOfParent) + #onEnd(status)
- +

Deflate#onEnd(status) -> Void

+
    +
  • status (Number): deflate status. 0 (Z_OK) on success, +other if not.
  • +
+

Called once after you tell deflate that the input stream is +complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) +or if an error happened. By default - join collected chunks, +free memory and fill results / err properties.

+
-

- constructor(idOfParent) +

+ onEnd(status)

- +

Deflate#onEnd(status) -> Void

+
    +
  • status (Number): deflate status. 0 (Z_OK) on success, + other if not.
  • +
+

Called once after you tell deflate that the input stream is + complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) + or if an error happened. By default - join collected chunks, + free memory and fill results / err properties.

+

Parameters

    -
  • String idOfParent +
  • status :
    -

    dom id of the future canvas' parent. - (most likely the ID of a div)

    - +
-
- +
+ - #update + #push(data, mode)
-

Overwrite the generic (empty) method.

+

Deflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be +converted to utf8 byte sequence.
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. +See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to deflate pipe, generating [[Deflate#onData]] calls with +new compressed chunks. Returns true on success. The last data block must have +mode Z_FINISH (or true). That will flush internal pending buffers and call +[[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you +can use mode Z_SYNC_FLUSH, keeping the compression context.

+

On fail call [[Deflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output +array format is detected automatically). Also, don't skip last param and always +use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+...
+push(chunk, true);  // push last chunk
+
-

- update +

+ push(data, mode)

-

Overwrite the generic (empty) method.

+

Deflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be + converted to utf8 byte sequence.
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to deflate pipe, generating [[Deflate#onData]] calls with + new compressed chunks. Returns true on success. The last data block must have + mode Z_FINISH (or true). That will flush internal pending buffers and call + [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you + can use mode Z_SYNC_FLUSH, keeping the compression context.

+

On fail call [[Deflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output + array format is detected automatically). Also, don't skip last param and always + use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+            ...
+            push(chunk, true);  // push last chunk
+            
+

Parameters

+
    +
  • data + : +
    + +
    +
  • +
  • mode + : +
    + +
    +
  • +
-

- Image2D(options) +

+ Deflate(options)

-

Image2D class is one of the few base element of Pixpipejs. -It is always considered to be 4 channels (RGBA) and stored as a Float32Array -typed array.

+

new Deflate(options)

+
    +
  • options (Object): zlib deflate options.
  • +
+

Creates new deflator instance with specified params. Throws exception +on bad params. Supported options:

+
    +
  • level
  • +
  • windowBits
  • +
  • memLevel
  • +
  • strategy
  • +
  • dictionary
  • +
+

http://zlib.net/manual.html#Advanced +for more information on these.

+

Additional options, for internal needs:

+
    +
  • chunkSize - size of generated data chunks (16K by default)
  • +
  • raw (Boolean) - do raw deflate
  • +
  • gzip (Boolean) - create gzip wrapper
  • +
  • to (String) - if equal to 'string', then result will be "binary string" +(each char code [0..255])
  • +
  • +

    header (Object) - custom header for gzip

    +
      +
    • text (Boolean) - true if compressed data believed to be text
    • +
    • time (Number) - modification time, unix timestamp
    • +
    • os (Number) - operation system code
    • +
    • extra (Array) - array of bytes with extra data (max 65536)
    • +
    • name (String) - file name (binary string)
    • +
    • comment (String) - comment (binary string)
    • +
    • hcrc (Boolean) - true if header crc should be added
    • +
    +
  • +
+
Example:
+
var pako = require('pako')
+  , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9])
+  , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]);
+
+var deflate = new pako.Deflate({ level: 3});
+
+deflate.push(chunk1, false);
+deflate.push(chunk2, true);  // true -> last chunk
+
+if (deflate.err) { throw new Error(deflate.err); }
+
+console.log(deflate.result);
+

Parameters

  • options - (default null) :
-

Static members

-
- - - .TYPE - -
-

Hardcode the datatype

- -
-
-
-
-

- TYPE -

-

Hardcode the datatype

- -
-
-

Instance members

-
- +
+ - #clone + #onData(chunk)
- +

Deflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends +on js engine support. When string output requested, each chunk +will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue +those in onEnd. Override this handler, if you need another behaviour.

+
-

- clone +

+ onData(chunk)

- -

Returns

- Image2D - : -
-

a deep copy instance of this Image2D

+

Deflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends + on js engine support. When string output requested, each chunk + will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue + those in onEnd. Override this handler, if you need another behaviour.

-
+

Parameters

+
    +
  • chunk + : +
    + +
    +
  • +
-
- +
+ - #constructor(options) + #onEnd(status)
-

Constructor of an Image2D instance. If no options, no array is allocated.

+

Deflate#onEnd(status) -> Void

+
    +
  • status (Number): deflate status. 0 (Z_OK) on success, +other if not.
  • +
+

Called once after you tell deflate that the input stream is +complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) +or if an error happened. By default - join collected chunks, +free memory and fill results / err properties.

-

- constructor(options) +

+ onEnd(status)

-

Constructor of an Image2D instance. If no options, no array is allocated.

+

Deflate#onEnd(status) -> Void

+
    +
  • status (Number): deflate status. 0 (Z_OK) on success, + other if not.
  • +
+

Called once after you tell deflate that the input stream is + complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) + or if an error happened. By default - join collected chunks, + free memory and fill results / err properties.

Parameters

    -
  • Object options +
  • status :
    -

    if present, must have options.width, options.height. Also options.color = [r, g, b, a] is possible but not mandatory, this sets the default color.

    - +
-
- +
+ - #get2dPositionFrom1dIndex(i) + #push(data, mode)
-

Compute the (x, y) position from a position in a 1D array.

+

Deflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be +converted to utf8 byte sequence.
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. +See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to deflate pipe, generating [[Deflate#onData]] calls with +new compressed chunks. Returns true on success. The last data block must have +mode Z_FINISH (or true). That will flush internal pending buffers and call +[[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you +can use mode Z_SYNC_FLUSH, keeping the compression context.

+

On fail call [[Deflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output +array format is detected automatically). Also, don't skip last param and always +use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+...
+push(chunk, true);  // push last chunk
+
-

- get2dPositionFrom1dIndex(i) +

+ push(data, mode)

-

Compute the (x, y) position from a position in a 1D array.

+

Deflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be + converted to utf8 byte sequence.
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to deflate pipe, generating [[Deflate#onData]] calls with + new compressed chunks. Returns true on success. The last data block must have + mode Z_FINISH (or true). That will flush internal pending buffers and call + [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you + can use mode Z_SYNC_FLUSH, keeping the compression context.

+

On fail call [[Deflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output + array format is detected automatically). Also, don't skip last param and always + use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+            ...
+            push(chunk, true);  // push last chunk
+            

Parameters

    -
  • Number i +
  • data :
    -

    the index of a pixel. This has nothing to do with - the number of components per pixel.

    - + +
    +
  • +
  • mode + : +
    +
-

Returns

- Object - : -
-

coordinate as {x, y}

- -
-
- - - #getComponentsPerPixel - -
- -
-
-
-
-

- getComponentsPerPixel -

- -

Returns

- Number - : -
-

the number of components per pixel

+
+
+

+ deflateRaw(input, options) +

+

deflateRaw(data[, options]) -> Uint8Array|Array|String

+
    +
  • data (Uint8Array|Array|String): input data to compress.
  • +
  • options (Object): zlib deflate options.
  • +
+

The same as [[deflate]], but creates raw data, without wrapper +(header and adler32 crc).

+ +

Parameters

+
    +
  • input + : +
    -
    -
-
-
+
+

+ ImageToImageFilter +

+

ImageToImageFilter is not to be used as-is but rather as a base class for any +filter that input a single Image2D and output a single Image2D. +This class does not overload the update() method.

+ +

Instance members

+
+ - #getData + #hasSameNcppInput
- +

Check if all the inputs have the same number of component per pixel.

+
-

- getData +

+ hasSameNcppInput

- +

Check if all the inputs have the same number of component per pixel.

+

Returns

- Float32Array + Boolean :
-

the original data, dont mess up with this one. - in case of doubt, use getDataCopy()

+

true if the ncpp are the same for all input image

-
- +
+ - #getDataCopy + #hasSameSizeInput
- +

Check if all input image have the same size.

+
-

- getDataCopy +

+ hasSameSizeInput

- +

Check if all input image have the same size.

+

Returns

- Float32Array + Boolean :
-

a deep copy of the data

+

true is same size, false if not.

-
- +
+
+

+ inflate(input, options) +

+

inflate(data[, options]) -> Uint8Array|Array|String

+
    +
  • data (Uint8Array|Array|String): input data to decompress.
  • +
  • options (Object): zlib inflate options.
  • +
+

Decompress data with inflate/ungzip and options. Autodetect +format via wrapper header by default. That's why we don't provide +separate ungzip method.

+

Supported options are:

+
    +
  • windowBits
  • +
+

http://zlib.net/manual.html#Advanced +for more information.

+

Sugar (options):

+
    +
  • raw (Boolean) - say that we work with raw stream, if you don't wish to specify +negative windowBits implicitly.
  • +
  • to (String) - if equal to 'string', then result will be converted +from utf8 to utf16 (javascript) string. When string output requested, +chunk length can differ from chunkSize, depending on content.
  • +
+
Example:
+
var pako = require('pako')
+  , input = pako.deflate([1,2,3,4,5,6,7,8,9])
+  , output;
+
+try {
+  output = pako.inflate(input);
+} catch (err)
+  console.log(err);
+}
+
+ +

Parameters

+
    +
  • input + : +
    + +
    +
  • +
  • options + : +
    + +
    +
  • +
+
+
+

+ Inflate(options) +

+

new Inflate(options)

+
    +
  • options (Object): zlib inflate options.
  • +
+

Creates new inflator instance with specified params. Throws exception +on bad params. Supported options:

+
    +
  • windowBits
  • +
  • dictionary
  • +
+

http://zlib.net/manual.html#Advanced +for more information on these.

+

Additional options, for internal needs:

+
    +
  • chunkSize - size of generated data chunks (16K by default)
  • +
  • raw (Boolean) - do raw inflate
  • +
  • to (String) - if equal to 'string', then result will be converted +from utf8 to utf16 (javascript) string. When string output requested, +chunk length can differ from chunkSize, depending on content.
  • +
+

By default, when no options set, autodetect deflate/gzip data format via +wrapper header.

+
Example:
+
var pako = require('pako')
+  , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9])
+  , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]);
+
+var inflate = new pako.Inflate({ level: 3});
+
+inflate.push(chunk1, false);
+inflate.push(chunk2, true);  // true -> last chunk
+
+if (inflate.err) { throw new Error(inflate.err); }
+
+console.log(inflate.result);
+
+ +

Parameters

+
    +
  • options + : +
    + +
    +
  • +
+

Instance members

+
+ - #getHeight + #onData(chunk)
- +

Inflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends +on js engine support. When string output requested, each chunk +will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue +those in onEnd. Override this handler, if you need another behaviour.

+
-

- getHeight +

+ onData(chunk)

- -

Returns

- Number - : -
-

the height of the Image2D

+

Inflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends + on js engine support. When string output requested, each chunk + will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue + those in onEnd. Override this handler, if you need another behaviour.

-
+

Parameters

+
    +
  • chunk + : +
    + +
    +
  • +
-
- +
+ - #getWidth + #onEnd(status)
- +

Inflate#onEnd(status) -> Void

+
    +
  • status (Number): inflate status. 0 (Z_OK) on success, +other if not.
  • +
+

Called either after you tell inflate that the input stream is +complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) +or if an error happened. By default - join collected chunks, +free memory and fill results / err properties.

+
-

- getWidth +

+ onEnd(status)

- -

Returns

- Number - : -
-

the width of the Image2D

+

Inflate#onEnd(status) -> Void

+
    +
  • status (Number): inflate status. 0 (Z_OK) on success, + other if not.
  • +
+

Called either after you tell inflate that the input stream is + complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) + or if an error happened. By default - join collected chunks, + free memory and fill results / err properties.

-
+

Parameters

+
    +
  • status + : +
    + +
    +
  • +
-
- +
+ - #setData(array, width, height) + #push(data, mode)
-

Set the data to this Image2D.

+

Inflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. +See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to inflate pipe, generating [[Inflate#onData]] calls with +new output chunks. Returns true on success. The last data block must have +mode Z_FINISH (or true). That will flush internal pending buffers and call +[[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you +can use mode Z_SYNC_FLUSH, keeping the decompression context.

+

On fail call [[Inflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output +format is detected automatically). Also, don't skip last param and always +use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+...
+push(chunk, true);  // push last chunk
+
-

- setData(array, width, height) +

+ push(data, mode)

-

Set the data to this Image2D.

+

Inflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to inflate pipe, generating [[Inflate#onData]] calls with + new output chunks. Returns true on success. The last data block must have + mode Z_FINISH (or true). That will flush internal pending buffers and call + [[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you + can use mode Z_SYNC_FLUSH, keeping the decompression context.

+

On fail call [[Inflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output + format is detected automatically). Also, don't skip last param and always + use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+            ...
+            push(chunk, true);  // push last chunk
+            

Parameters

    -
  • Float32Array array - : -
    -

    1D array of raw data stored as RGBARGBA...

    - -
    -
  • -
  • Number width +
  • data :
    -

    width of the Image2D

    - +
  • -
  • Number height +
  • mode :
    -

    height of the Image2D

    - +
@@ -958,474 +7180,868 @@

Parameters

-

- FileImageReader(callback) +

+ Inflate(options)

-

An instance of FileImageReader takes a HTML5 File object as input and -returns an Image2D as output. The point is mainly to use it with a file dialog. -Use the regular addInput() and getOuput() with no argument for that. -Reading a local file is an asynchronous process. For this -reason, what happens next, once the Image2D is created must take place in the -callback defined in the constructor.

-

Usage: examples/fileToImage2D.html

+

Inflate.msg -> String

+

Error message, if [[Inflate.err]] != 0

Parameters

    -
  • callback +
  • options :
-

Examples

-
var file2ImgFilter = new pixpipe.file2ImgFilter( ... );
-file2ImgFilter.addInput( fileInput.files[0] );
-file2ImgFilter.update();

Instance members

-
- +
+ - #constructor(callback) + #onData(chunk)
- +

Inflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends +on js engine support. When string output requested, each chunk +will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue +those in onEnd. Override this handler, if you need another behaviour.

+
-

- constructor(callback) +

+ onData(chunk)

- +

Inflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends + on js engine support. When string output requested, each chunk + will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue + those in onEnd. Override this handler, if you need another behaviour.

+

Parameters

    -
  • function callback +
  • chunk :
    -

    function to call when the image is loaded. - The this object will be in argument of this callback.

    - +
-
- - - #hasValidInput - -
-

Overload the default method because HTML5 File is not a Pixpipe type

- -
-
-
-
-

- hasValidInput -

-

Overload the default method because HTML5 File is not a Pixpipe type

- -
-
-
-
- +
+ - #update + #onEnd(status)
-

Run the reading

+

Inflate#onEnd(status) -> Void

+
    +
  • status (Number): inflate status. 0 (Z_OK) on success, +other if not.
  • +
+

Called either after you tell inflate that the input stream is +complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) +or if an error happened. By default - join collected chunks, +free memory and fill results / err properties.

-

- update +

+ onEnd(status)

-

Run the reading

+

Inflate#onEnd(status) -> Void

+
    +
  • status (Number): inflate status. 0 (Z_OK) on success, + other if not.
  • +
+

Called either after you tell inflate that the input stream is + complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) + or if an error happened. By default - join collected chunks, + free memory and fill results / err properties.

-
-
-
-
-
-

- ForEachPixelImageFilter(cb) -

- -

Parameters

-
    -
  • cb - (default null) - : -
    - -
    -
  • -
-

Instance members

-
- - - #constructor(cb) - -
- -
-
-
-
-

- constructor(cb) -

-

Parameters

    -
  • function cb +
  • status :
    -

    callback of what to do for each pixel

    - +
-
- +
+ - #update + #push(data, mode)
-

Run the filter

+

Inflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. +See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to inflate pipe, generating [[Inflate#onData]] calls with +new output chunks. Returns true on success. The last data block must have +mode Z_FINISH (or true). That will flush internal pending buffers and call +[[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you +can use mode Z_SYNC_FLUSH, keeping the decompression context.

+

On fail call [[Inflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output +format is detected automatically). Also, don't skip last param and always +use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+...
+push(chunk, true);  // push last chunk
+
-

- update +

+ push(data, mode)

-

Run the filter

+

Inflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to inflate pipe, generating [[Inflate#onData]] calls with + new output chunks. Returns true on success. The last data block must have + mode Z_FINISH (or true). That will flush internal pending buffers and call + [[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you + can use mode Z_SYNC_FLUSH, keeping the decompression context.

+

On fail call [[Inflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output + format is detected automatically). Also, don't skip last param and always + use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+            ...
+            push(chunk, true);  // push last chunk
+            
+

Parameters

+
    +
  • data + : +
    + +
    +
  • +
  • mode + : +
    + +
    +
  • +
-

- UrlImageReader(callback) +

+ Inflate(options)

-

An instance of UrlImageReader takes an image URL as input and -returns an Image2D as output. Use the regular addInput() and getOuput() -with no argument for that. -Reading a file from URL takes an AJAX request, which is asynchronous. For this -reason, what happens next, once the Image2D is created must take place in the -callback defined in the constructor.

-

Usage: examples/urlToImage2D.html

+

Inflate.err -> Number

+

Error code after inflate finished. 0 (Z_OK) on success. +Should be checked if broken data possible.

Parameters

    -
  • callback +
  • options :
-

Examples

-
var url2ImgFilter = new pixpipe.UrlImageReader( ... );
-url2ImgFilter.addInput( "images/sd.jpg" );
-url2ImgFilter.update();

Instance members

-
- +
+ - #constructor(callback) + #onData(chunk)
- +

Inflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends +on js engine support. When string output requested, each chunk +will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue +those in onEnd. Override this handler, if you need another behaviour.

+
-

- constructor(callback) +

+ onData(chunk)

- +

Inflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends + on js engine support. When string output requested, each chunk + will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue + those in onEnd. Override this handler, if you need another behaviour.

+

Parameters

    -
  • function callback +
  • chunk :
    -

    function to call when the image is loaded. - The this object will be in argument of this callback.

    - +
-
- +
+ - #update + #onEnd(status)
-

Run the reading

+

Inflate#onEnd(status) -> Void

+
    +
  • status (Number): inflate status. 0 (Z_OK) on success, +other if not.
  • +
+

Called either after you tell inflate that the input stream is +complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) +or if an error happened. By default - join collected chunks, +free memory and fill results / err properties.

-

- update +

+ onEnd(status)

-

Run the reading

+

Inflate#onEnd(status) -> Void

+
    +
  • status (Number): inflate status. 0 (Z_OK) on success, + other if not.
  • +
+

Called either after you tell inflate that the input stream is + complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) + or if an error happened. By default - join collected chunks, + free memory and fill results / err properties.

+

Parameters

+
    +
  • status + : +
    + +
    +
  • +
-
-
-

- PixpipeObject -

-

PixpipeObject is the base object of all. It creates a uuid and has few -generic attributes like type, name and description. Not all these attributes -always useful;

- -

Static members

-
- +
+ - .TYPE + #push(data, mode)
-

Acces it like a static attribute. -Must be overloaded.

+

Inflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. +See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to inflate pipe, generating [[Inflate#onData]] calls with +new output chunks. Returns true on success. The last data block must have +mode Z_FINISH (or true). That will flush internal pending buffers and call +[[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you +can use mode Z_SYNC_FLUSH, keeping the decompression context.

+

On fail call [[Inflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output +format is detected automatically). Also, don't skip last param and always +use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+...
+push(chunk, true);  // push last chunk
+
-
+
-

- TYPE +

+ push(data, mode)

-

Acces it like a static attribute. - Must be overloaded.

+

Inflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to inflate pipe, generating [[Inflate#onData]] calls with + new output chunks. Returns true on success. The last data block must have + mode Z_FINISH (or true). That will flush internal pending buffers and call + [[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you + can use mode Z_SYNC_FLUSH, keeping the decompression context.

+

On fail call [[Inflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output + format is detected automatically). Also, don't skip last param and always + use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+            ...
+            push(chunk, true);  // push last chunk
+            
+

Parameters

+
    +
  • data + : +
    + +
    +
  • +
  • mode + : +
    + +
    +
  • +
+
+
+

+ Inflate(options) +

+

Inflate.result -> Uint8Array|Array|String

+

Uncompressed result, generated by default [[Inflate#onData]] +and [[Inflate#onEnd]] handlers. Filled after you push last chunk +(call [[Inflate#push]] with Z_FINISH / true param) or if you +push a chunk with explicit flush (call [[Inflate#push]] with +Z_SYNC_FLUSH param).

+ +

Parameters

+
    +
  • options + : +
    + +
    +
  • +

Instance members

-
- +
+ - #getDescription + #onData(chunk)
-

Getter for the description

+

Inflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends +on js engine support. When string output requested, each chunk +will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue +those in onEnd. Override this handler, if you need another behaviour.

-

- getDescription +

+ onData(chunk)

-

Getter for the description

+

Inflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends + on js engine support. When string output requested, each chunk + will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue + those in onEnd. Override this handler, if you need another behaviour.

-

Returns

- String - : -
-

description

- -
+

Parameters

+
    +
  • chunk + : +
    + +
    +
  • +
-
- +
+ - #getName + #onEnd(status)
-

Getter for the name

+

Inflate#onEnd(status) -> Void

+
    +
  • status (Number): inflate status. 0 (Z_OK) on success, +other if not.
  • +
+

Called either after you tell inflate that the input stream is +complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) +or if an error happened. By default - join collected chunks, +free memory and fill results / err properties.

-

- getName +

+ onEnd(status)

-

Getter for the name

- -

Returns

- String - : -
-

name

+

Inflate#onEnd(status) -> Void

+
    +
  • status (Number): inflate status. 0 (Z_OK) on success, + other if not.
  • +
+

Called either after you tell inflate that the input stream is + complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) + or if an error happened. By default - join collected chunks, + free memory and fill results / err properties.

-
+

Parameters

+
    +
  • status + : +
    + +
    +
  • +
-
- +
+ - #getType + #push(data, mode)
-

Get type of object.

+

Inflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. +See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to inflate pipe, generating [[Inflate#onData]] calls with +new output chunks. Returns true on success. The last data block must have +mode Z_FINISH (or true). That will flush internal pending buffers and call +[[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you +can use mode Z_SYNC_FLUSH, keeping the decompression context.

+

On fail call [[Inflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output +format is detected automatically). Also, don't skip last param and always +use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+...
+push(chunk, true);  // push last chunk
+
-

- getType +

+ push(data, mode)

-

Get type of object.

- -

Returns

- String - : -
-

the type

+

Inflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to inflate pipe, generating [[Inflate#onData]] calls with + new output chunks. Returns true on success. The last data block must have + mode Z_FINISH (or true). That will flush internal pending buffers and call + [[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you + can use mode Z_SYNC_FLUSH, keeping the decompression context.

+

On fail call [[Inflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output + format is detected automatically). Also, don't skip last param and always + use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+            ...
+            push(chunk, true);  // push last chunk
+            
-
+

Parameters

+
    +
  • data + : +
    + +
    +
  • +
  • mode + : +
    + +
    +
  • +
-
- +
+
+

+ Inflate(options) +

+

class Inflate

+

Generic JS-style wrapper for zlib calls. If you don't need +streaming behaviour - use more simple functions: [[inflate]] +and [[inflateRaw]].

+ +

Parameters

+
    +
  • options + : +
    + +
    +
  • +
+

Instance members

+
+ - #isOfType(t) + #onData(chunk)
-

Compare a give type to the type of this object.

+

Inflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends +on js engine support. When string output requested, each chunk +will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue +those in onEnd. Override this handler, if you need another behaviour.

-

- isOfType(t) +

+ onData(chunk)

-

Compare a give type to the type of this object.

+

Inflate#onData(chunk) -> Void

+
    +
  • chunk (Uint8Array|Array|String): ouput data. Type of array depends + on js engine support. When string output requested, each chunk + will be string.
  • +
+

By default, stores data blocks in chunks[] property and glue + those in onEnd. Override this handler, if you need another behaviour.

Parameters

    -
  • String t +
  • chunk :
    -

    a type, better to call the static method of each object, like Image.TYPE()

    - +
-
- +
+ - #setDescription(d) + #onEnd(status)
-

Setter fo the description.

+

Inflate#onEnd(status) -> Void

+
    +
  • status (Number): inflate status. 0 (Z_OK) on success, +other if not.
  • +
+

Called either after you tell inflate that the input stream is +complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) +or if an error happened. By default - join collected chunks, +free memory and fill results / err properties.

-

- setDescription(d) +

+ onEnd(status)

-

Setter fo the description.

+

Inflate#onEnd(status) -> Void

+
    +
  • status (Number): inflate status. 0 (Z_OK) on success, + other if not.
  • +
+

Called either after you tell inflate that the input stream is + complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) + or if an error happened. By default - join collected chunks, + free memory and fill results / err properties.

Parameters

    -
  • String d +
  • status :
    -

    description

    - +
-
- +
+ - #setName(n) + #push(data, mode)
-

Setter fo the name.

+

Inflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. +See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to inflate pipe, generating [[Inflate#onData]] calls with +new output chunks. Returns true on success. The last data block must have +mode Z_FINISH (or true). That will flush internal pending buffers and call +[[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you +can use mode Z_SYNC_FLUSH, keeping the decompression context.

+

On fail call [[Inflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output +format is detected automatically). Also, don't skip last param and always +use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+...
+push(chunk, true);  // push last chunk
+
-

- setName(n) +

+ push(data, mode)

-

Setter fo the name.

+

Inflate#push(data[, mode]) -> Boolean

+
    +
  • data (Uint8Array|Array|ArrayBuffer|String): input data
  • +
  • mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. + See constants. Skipped or false means Z_NO_FLUSH, true meansh Z_FINISH.
  • +
+

Sends input data to inflate pipe, generating [[Inflate#onData]] calls with + new output chunks. Returns true on success. The last data block must have + mode Z_FINISH (or true). That will flush internal pending buffers and call + [[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you + can use mode Z_SYNC_FLUSH, keeping the decompression context.

+

On fail call [[Inflate#onEnd]] with error code and return false.

+

We strongly recommend to use Uint8Array on input for best speed (output + format is detected automatically). Also, don't skip last param and always + use the same type in your code (boolean or number). That will improve JS speed.

+

For regular Array-s make sure all elements are [0..255].

+
Example
+
push(chunk, false); // push one of data chunks
+            ...
+            push(chunk, true);  // push last chunk
+            

Parameters

    -
  • String n +
  • data :
    -

    name

    - + +
    +
  • +
  • mode + : +
    +
-
+
- -
-
-

- uuid -

-

Return a copy of the uuid

+
+
+

+ inflateRaw(input, options) +

+

inflateRaw(data[, options]) -> Uint8Array|Array|String

+
    +
  • data (Uint8Array|Array|String): input data to decompress.
  • +
  • options (Object): zlib inflate options.
  • +
+

The same as [[inflate]], but creates raw data, without wrapper +(header and adler32 crc).

+ +

Parameters

+
    +
  • input + : +
    -
-
+ +
  • options + : +
    + +
    +
  • +
    -

    - ImageToImageFilter +

    + insert

    -

    ImageToImageFilter is not to be used as-is but rather as a base class for any -filter that input a single Image2D and output a single Image2D. -This class does not overload the update() method.

    + +
    +
    +

    + insert +

    + +
    +
    +

    + insert +

    + +
    +
    +

    + insert +

    + +
    +
    +

    + prev_length +

    + +
    +
    +

    + m +

    + +
    +
    +

    + match_available +

    + +
    +
    +

    + match_length +

    + +
    +
    +

    + prev_length +

    + +
    +
    +

    + setPipeline(p) +

    +

    Associate a Pipeline instance to this image. Not supposed to be called manually +because it is automatically called-back when adding a filter to a pipeline.

    + +

    Parameters

    +
      +
    • Pipeline p + : +
      +

      Pipeline object.

      +
      +
    • +
    +
    +
    +

    + TYPE +

    +

    Acces it like a static attribute. +Must be overloaded.

    + +
    +
    +

    + strstart +

    + +
    +
    +

    + strstart +

    +
    diff --git a/examples/css/style.css b/examples/css/style.css index 1200aa0..a29a5e6 100644 --- a/examples/css/style.css +++ b/examples/css/style.css @@ -19,3 +19,11 @@ code { border-radius: 3px; font-family: monospace; } + +a{ + text-decoration: none; +} + +.canvasDiv{ + margin-bottom: 10px; +} diff --git a/examples/fileToArrayBuffer.html b/examples/fileToArrayBuffer.html new file mode 100644 index 0000000..c173e6e --- /dev/null +++ b/examples/fileToArrayBuffer.html @@ -0,0 +1,69 @@ + + + FileToArrayBufferReader to ArrayBuffer + + + + + + +

    Pixpipejs

    +

    + This does the following : +

      +
    • opening a local file, using pixpipe.FileToArrayBufferReader
    • +
    • display the length of the ArrayBuffer in Bytes
    • +
    + +

    + +
    + Select an file: + +
    + +
    + + + + + diff --git a/examples/fileToImage2D.html b/examples/fileToImage2D.html index 615a545..5dd1336 100644 --- a/examples/fileToImage2D.html +++ b/examples/fileToImage2D.html @@ -1,13 +1,13 @@ - URL to Image2D + File to Image2D -

    Pixpipejs

    +

    Pixpipejs

    This does the following :

      @@ -39,7 +39,7 @@

      Pixpipejs

      // the image is loaded... // here, filter = url2ImgFilter - file2ImgFilter.on("imageLoaded", function( filter ){ + file2ImgFilter.on("ready", function( filter ){ // use the output of the UrlImageReader as the input for CanvasImageWriter imageToCanvasFilter.addInput( filter.getOutput() ); // actually copy the data from the Image2D into the inner HTML5 canvas diff --git a/examples/fileToMinc2.html b/examples/fileToMinc2.html new file mode 100644 index 0000000..583deee --- /dev/null +++ b/examples/fileToMinc2.html @@ -0,0 +1,102 @@ + + + File to Minc2 + + + + + + +

      Pixpipejs

      +

      + This does the following : +

        +
      • open a local Minc2 file, using pixpipe.FileToArrayBufferReader
      • +
      • redirect the file buffer into a pixpipe.Minc2Decoder to extract Minc dataset and metadata
      • +
      • get the output as a generique pixpipe.MniVolume object
      • +
      • slice() the volume 3 times, along 3 given axis to get 3 pixpipe.Image2D objects
      • +
      • display the images in separate canvas using a single instance of pixpipe.CanvasImageWriter
      • +
      + +

      + +
      + Select an file: + +
      + +
      + +
      +
      +
      + + + + + diff --git a/examples/fileToNifti.html b/examples/fileToNifti.html new file mode 100644 index 0000000..d0d392f --- /dev/null +++ b/examples/fileToNifti.html @@ -0,0 +1,104 @@ + + + File to Nifti + + + + + + +

      Pixpipejs

      +

      + This does the following : +

        +
      • open a local NIfTI file, using pixpipe.FileToArrayBufferReader
      • +
      • redirect the file buffer into a pixpipe.NiftiDecoder to extract NIfTI dataset and metadata
      • +
      • get the output as a generique pixpipe.MniVolume object
      • +
      • slice() the volume 3 times, along 3 given axis to get 3 pixpipe.Image2D objects
      • +
      • display the images in separate canvas using a single instance of pixpipe.CanvasImageWriter
      • +
      + +

      + +
      + Select an file: + +
      + +
      + +
      +
      +
      + + + + + diff --git a/examples/forEachPixel.html b/examples/forEachPixel.html index 5bbb0d7..39be28c 100644 --- a/examples/forEachPixel.html +++ b/examples/forEachPixel.html @@ -9,7 +9,7 @@ -

      Pixpipejs

      +

      Pixpipejs

      This does the following :

        @@ -41,7 +41,7 @@

        Pixpipejs

        // the image is loaded... // here, filter = url2ImgFilter - url2ImgFilter.on( "imageLoaded", function(filter){ + url2ImgFilter.on( "ready", function(filter){ var forEachPixelFilter = new pixpipe.ForEachPixelImageFilter(); diff --git a/examples/forEachPixelGradient.html b/examples/forEachPixelGradient.html index d1a1c45..b0c6838 100644 --- a/examples/forEachPixelGradient.html +++ b/examples/forEachPixelGradient.html @@ -9,7 +9,7 @@ -

        Pixpipejs

        +

        Pixpipejs

        This does the following :

          @@ -41,7 +41,7 @@

          Pixpipejs

          // the image is loaded... // here, filter = url2ImgFilter - url2ImgFilter.on( "imageLoaded", function(filter){ + url2ImgFilter.on( "ready", function(filter){ var loadedImage = url2ImgFilter.getOutput(); // create an image, monoband, init to black (0) diff --git a/examples/forEachPixelGradientBlend.html b/examples/forEachPixelGradientBlend.html index a6e3c82..322da40 100644 --- a/examples/forEachPixelGradientBlend.html +++ b/examples/forEachPixelGradientBlend.html @@ -9,7 +9,7 @@ -

          Pixpipejs

          +

          Pixpipejs

          This does the following :

            @@ -41,7 +41,7 @@

            Pixpipejs

            // the image is loaded... // here, filter = url2ImgFilter - url2ImgFilter.on( "imageLoaded", function(filter){ + url2ImgFilter.on( "ready", function(filter){ var loadedImage = url2ImgFilter.getOutput(); // create an image, monoband, init to black (0) diff --git a/examples/forEachPixelGradient_pipeline.html b/examples/forEachPixelGradient_pipeline.html index 9873c88..9e89b37 100644 --- a/examples/forEachPixelGradient_pipeline.html +++ b/examples/forEachPixelGradient_pipeline.html @@ -9,7 +9,7 @@ -

            Pixpipejs

            +

            Pixpipejs

            This does the following :

              @@ -44,7 +44,7 @@

              Pixpipejs

              // the image is loaded... // here, filter = url2ImgFilter - url2ImgFilter.on( "imageLoaded", function(filter){ + url2ImgFilter.on( "ready", function(filter){ var loadedImage = url2ImgFilter.getOutput(); diff --git a/examples/image2DToCanvas.html b/examples/image2DToCanvas.html index e49d3c1..6f323d0 100644 --- a/examples/image2DToCanvas.html +++ b/examples/image2DToCanvas.html @@ -9,7 +9,7 @@ -

              Pixpipejs

              +

              Pixpipejs

              This does the following :

                diff --git a/examples/imageBlending.html b/examples/imageBlending.html index c660f34..d7ad7f4 100644 --- a/examples/imageBlending.html +++ b/examples/imageBlending.html @@ -9,7 +9,7 @@ -

                Pixpipejs

                +

                Pixpipejs

                This does the following :

                  @@ -43,7 +43,7 @@

                  Pixpipejs

                  // the image is loaded... // here, filter = url2ImgFilter - url2ImgFilter.on( "imageLoaded", function(filter){ + url2ImgFilter.on( "ready", function(filter){ var loadedImage = url2ImgFilter.getOutput(); diff --git a/examples/imageBlending2.html b/examples/imageBlending2.html index ceae0bc..4bdfea9 100644 --- a/examples/imageBlending2.html +++ b/examples/imageBlending2.html @@ -9,7 +9,7 @@ -

                  Pixpipejs

                  +

                  Pixpipejs

                  This does the following :

                    @@ -43,7 +43,7 @@

                    Pixpipejs

                    // the image is loaded... // here, filter = url2ImgFilter - url2ImgFilter.on( "imageLoaded", function(filter){ + url2ImgFilter.on( "ready", function(filter){ var loadedImage = url2ImgFilter.getOutput(); diff --git a/examples/images/ABIDEII-KUL_3+29656+session_1+anat_1_t1_final.mnc b/examples/images/ABIDEII-KUL_3+29656+session_1+anat_1_t1_final.mnc new file mode 100644 index 0000000..138e898 Binary files /dev/null and b/examples/images/ABIDEII-KUL_3+29656+session_1+anat_1_t1_final.mnc differ diff --git a/examples/images/functional.nii b/examples/images/functional.nii new file mode 100644 index 0000000..0ac7370 Binary files /dev/null and b/examples/images/functional.nii differ diff --git a/examples/images/ibis_171651_living_phantom_UNC_SD_RES_20140714_Scan1_t2w_001.mnc b/examples/images/ibis_171651_living_phantom_UNC_SD_RES_20140714_Scan1_t2w_001.mnc new file mode 100644 index 0000000..4850fbc Binary files /dev/null and b/examples/images/ibis_171651_living_phantom_UNC_SD_RES_20140714_Scan1_t2w_001.mnc differ diff --git a/examples/images/structural.nii b/examples/images/structural.nii new file mode 100644 index 0000000..eef80f2 Binary files /dev/null and b/examples/images/structural.nii differ diff --git a/examples/niftiToMosaic.html b/examples/niftiToMosaic.html new file mode 100644 index 0000000..8fcd29b --- /dev/null +++ b/examples/niftiToMosaic.html @@ -0,0 +1,133 @@ + + + Nifti to mosaic + + + + + + +

                    Pixpipejs

                    +

                    + This does the following : +

                      +
                    • open a local NIfTI file, using pixpipe.FileToArrayBufferReader
                    • +
                    • redirect the file buffer into a pixpipe.NiftiDecoder to extract NIfTI dataset and metadata
                    • +
                    • get the output as a generique pixpipe.MniVolume object
                    • +
                    • produce multiple 10x10 mosaics (Image2Ds) of slices using pixpipe.Image3DToMosaicFilter
                    • +
                    • display the mosaics in a canvas using a single instance of pixpipe.CanvasImageWriter
                    • +
                    + +

                    + +
                    + Select an file: + +
                    + +
                    + +
                    + +
                    + + + + + diff --git a/examples/urlToImage2D.html b/examples/urlToImage2D.html index 4af2bcf..297f04e 100644 --- a/examples/urlToImage2D.html +++ b/examples/urlToImage2D.html @@ -9,7 +9,7 @@ -

                    Pixpipejs

                    +

                    Pixpipejs

                    This does the following :

                      @@ -34,7 +34,7 @@

                      Pixpipejs

                      // the image is loaded... // here, filter = url2ImgFilter - url2ImgFilter.on("imageLoaded", function( filter ){ + url2ImgFilter.on("ready", function( filter ){ // use the output of the UrlImageReader as the input for CanvasImageWriter imageToCanvasFilter.addInput( filter.getOutput() ); // actually copy the data from the Image2D into the inner HTML5 canvas diff --git a/examples/urlToImage2D_multiple.html b/examples/urlToImage2D_multiple.html index a550653..7fb49f4 100644 --- a/examples/urlToImage2D_multiple.html +++ b/examples/urlToImage2D_multiple.html @@ -9,7 +9,7 @@ -

                      Pixpipejs

                      +

                      Pixpipejs

                      This does the following :

                        @@ -33,7 +33,7 @@

                        Pixpipejs

                        // the image is loaded... // here, filter = url2ImgFilter - url2ImgFilter.on("imageLoaded", function( filter ){ + url2ImgFilter.on("ready", function( filter ){ // Image 1 // create a filter to write the image into a canvas diff --git a/header.txt b/header.txt new file mode 100644 index 0000000..2ecfa7d --- /dev/null +++ b/header.txt @@ -0,0 +1,6 @@ +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ diff --git a/package.json b/package.json index 47a4746..e36c5d2 100644 --- a/package.json +++ b/package.json @@ -9,6 +9,8 @@ "scripts": { "test": "echo \"Error: no test specified\" && exit 1", "build": "rollup -c", + "build-min": "npm run build && printf \"// Build date: $(date '+%Y-%m%-dT%H:%M:%S')\n\n\" > dist/pixpipe.min.js && cat header.txt >> dist/pixpipe.min.js && google-closure-compiler-js --languageOut ES5 dist/pixpipe.js >> dist/pixpipe.min.js", + "doc": "documentation build -o ./doc/ -f html", "doc": "documentation dist/pixpipe.js --name Pixpipe.js -o ./doc/ -f html" }, "repository": { @@ -29,10 +31,12 @@ }, "homepage": "https://github.com/jonathanlurie/pixpipejs#readme", "dependencies": { - "expr-eval": "^1.0.0" + "expr-eval": "^1.0.0", + "pako": "^1.0.4" }, "devDependencies": { "documentation": "^3.0.4", + "google-closure-compiler-js": "^20170218.0.0", "gulp": "^3.9.1", "gulp-rollup": "^2.11.0", "gulp-util": "^3.0.8", diff --git a/readme.md b/readme.md index 2a79ae1..fab80b7 100644 --- a/readme.md +++ b/readme.md @@ -3,11 +3,12 @@ Pixpipe.js is an attempt of building an image processing pipeline entirely in Javascript for browsers. Its architecture was somewhat inspired by [ITK](https://itk.org/), making a clear separation between objects that *contain* data (`Image2D`) from object that *process* data (`Filter`). -The concept of *pipeline* implies that the output of a `Filter` can be used as input for the next one, like in *ITK*. In Pixpipe.js, this is done by using the `Filter`'s methods `addInput()` and `getOuput()`. Some `Filter` may have several *input* or *output* of different kinds. +The concept of *pipeline* implies that the output of a `Filter` can be used as an input for the next one, like in *ITK*. In Pixpipe.js, this is done by using the `Filter`'s methods `addInput()` and `getOuput()`. Some `Filter` may have several *input* or *output* of different kinds. # Motivations To make image processing: -- accessible, using just a web browser and a text pad +- accessible, using just a web browser and a textpad +- easy to use in a sense that "all filters work the same way". - with no other dependency than `pixpipe.js` - with no required compilation or system fuss - modular @@ -15,17 +16,53 @@ To make image processing: - easy to contribute - well documented for both users and contributors. +# Documentation +See [here](doc/) for the code documentation. Though, if you are just getting into `Pixpipe.js`, the best way to learn is by checking the examples below. -# The future of Pixpipe.js -The plan is to add more image processing filters and tools, like *FFT*, or *wavelet decomposition* to process data in the frequency domain. Though, this kind of processing is quite greedy and would need a *low-level* approach. This can be done efficiently using *C/C++* code converted into optimal lower-level Javascript using [Emscriptem](http://kripken.github.io/emscripten-site/). These are the next big steps. +# Examples +Processing images usually take a bit of time, open your javascript console so that you can see the filter feedback. + +## basics +Here, we will learn what is an `Image2D`, how to display it in a canvas using `CanvasImageWriter`. In addition, we have two different ways to load an existing image: from its URL (using a `UrlImageReader`) or with a file dialog (using a `FileImageReader`). +- [Create an Image2D and display it](examples/image2DToCanvas.html) +- [Create an Image2D from an image URL and display it](examples/urlToImage2D.html) +- [Same but with multiple images](examples/urlToImage2D_multiple.html) +- [Create an Image2D from a local file and display it](examples/fileToImage2D.html) + +## Simple filters for `Image2D` +See a `Filter` as a *box* that takes one or more input and produces one or more output. If some parameters are needed to make the filter work properly, this must happen using `setMetadata()`. To ask the filter to do its job, just call `update()`. +A `Filter` should **NEVER** modify the input data. +- [The filter that lets you apply a treatment at a pixel level](examples/forEachPixel.html) +- [A pixel-wise filter that uses pixel position to adapt its behaviour](examples/forEachPixelGradient.html) +- [Use a math expression evaluator to blend an image and a mask](examples/imageBlending.html) +- [Use a math expression evaluator to blend two images](examples/imageBlending2.html) +- [Create a pattern and blend it with an image using a math expression evaluator](examples/forEachPixelGradientBlend.html) + +## Open medical 3D dataset +- [Open a local Minc2 file, extract 3 orthogonal slices and display in canvas](examples/fileToMinc2.html) +- [Open a local NIfTI file, extract 3 orthogonal slices and display in canvas](examples/fileToNifti.html) + +## Advanced +- [Open a local NIfTI file and display a mosaic of all the slices](examples/niftiToMosaic.html) +- [Open a local file as an ArrayBuffer](examples/fileToArrayBuffer.html). Good starting point to create a new binary file parser # License MIT - See [LICENSE file](LICENSE). # Todo +- ~~replace all the events named "ready" by "ready"~~ - Doc and tutorials for developers - Integrate wokers with Rollup - FFT -- Image3D -- Readers for Minc and NIfTI +- ~~Image3D~~ +- ~~Replace ncpp attribute by a metadata (Image2D & Image3D)~~ +- ~~Push some methods of MniVolume to Image3D~~ +- Write about the features in this readme +- Oblique sampling for Image3D +- ~~export a/multiple Image2D of sliced Image3D (upon 2D size limit) with mosaic (for shader texturing)~~ +- Better test time series with NIfTI (maybe add an example) +- Load a file as a ArrayBuffer with a AJAX +- Add an efficient way to minify the code +- ~~Load a file as a ArrayBuffer with a file dialog~~ DONE: `FileToArrayBufferReader` +- ~~Readers for Minc and NIfTI~~ DONE: `Minc2Decoder` and `NiftiDecoder` diff --git a/src/core/Filter.js b/src/core/Filter.js index a601aaa..f594102 100644 --- a/src/core/Filter.js +++ b/src/core/Filter.js @@ -16,6 +16,9 @@ import { PipelineElement } from './PipelineElement.js'; * Every filter has a addInput(), a getOutput() and a update() methods. * Every input and output can be arranged by category, so that internaly, a filter * can use and output diferent kind of data. +* +* usage: examples/fileToArrayBuffer.html +* */ class Filter extends PipelineElement { @@ -90,6 +93,24 @@ class Filter extends PipelineElement { } + /** + * Perform an action for each output. + * @param {function} cb - callback function called for evey single output + * with 2 args: the output category and the outpub object. + */ + forEachOutput( cb ){ + if(!cb){ + console.warn("forEachOutput requires a callback."); + return; + } + var outputCategories = this.getOutputCategories(); + + for(var o=0; o 0 && options.height > 0){ - this._width = options.width; - this._height = options.height; + this.setMetadata("width", options.width); + this.setMetadata("height", options.height); if("color" in options){ - this._componentsPerPixel = options.color.length; + this.setMetadata("ncpp", options.color.length ); } - this._data = new Float32Array( this._width * this._height * this._componentsPerPixel ); + this._data = new Float32Array( options.width * options.height * this.getMetadata("ncpp") ); + var ncpp = this.getMetadata("ncpp"); // init with the given color if("color" in options){ var color = options.color; for(var i=0; i=0 && position.x < this._width && - "y" in position && position.y >=0 && position.y < this._height && - color.length == this._componentsPerPixel) + var ncpp = this.getMetadata("ncpp"); + + if("x" in position && position.x >=0 && position.x < this.getMetadata("width") && + "y" in position && position.y >=0 && position.y < this.getMetadata("height") && + color.length == ncpp) { - var pos1D = this.get1dIndexFrom2dPosition( position ); + var pos1D = this.get1dIndexFrom2dPosition( position ) * ncpp; - for(var i=0; i=0 && position.x < this._width && - "y" in position && position.y >=0 && position.y < this._height) + if("x" in position && position.x >=0 && position.x < this.getMetadata("width") && + "y" in position && position.y >=0 && position.y < this.getMetadata("height")) { - var pos1D = this.get1dIndexFrom2dPosition( position ); - var color = this._data.slice(pos1D, pos1D + this._componentsPerPixel); + var pos1D = this.get1dIndexFrom2dPosition( position ) * this.getMetadata("ncpp"); + var color = this._data.slice(pos1D, pos1D + this.getMetadata("ncpp")); return color; }else{ @@ -154,7 +157,7 @@ class Image2D extends PipelineElement{ * @return {Number} the width of the Image2D */ getWidth(){ - return this._width; + return this.getMetadata("width"); } @@ -162,7 +165,7 @@ class Image2D extends PipelineElement{ * @return {Number} the height of the Image2D */ getHeight(){ - return this._height; + return this.getMetadata("height"); } @@ -170,7 +173,7 @@ class Image2D extends PipelineElement{ * @return {Number} the number of components per pixel */ getComponentsPerPixel(){ - return this._componentsPerPixel; + return this.getMetadata("ncpp"); } @@ -200,8 +203,8 @@ class Image2D extends PipelineElement{ */ get2dPositionFrom1dIndex( i ){ return { - x: i % this._width, - y: Math.floor(i / this._width) + x: i % this.getMetadata("width"), + y: Math.floor(i / this.getMetadata("width")) } } @@ -213,7 +216,7 @@ class Image2D extends PipelineElement{ * @return {Number} the 1D position within the buffer */ get1dIndexFrom2dPosition( position ){ - return (position.x + position.y*this._width); + return (position.x + position.y*this.getMetadata("width")); } diff --git a/src/core/Image3D.js b/src/core/Image3D.js new file mode 100644 index 0000000..6a40af2 --- /dev/null +++ b/src/core/Image3D.js @@ -0,0 +1,448 @@ +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ + +import { PipelineElement } from './PipelineElement.js'; +import { Image2D } from './Image2D.js'; + +/** +* Image3D class is one of the few base element of Pixpipejs. +* It is always considered to be 4 channels (RGBA) and stored as a Float32Array +* typed array. +*/ +class Image3D extends PipelineElement{ + + + /** + * Constructor of an Image3D instance. If no options, no array is allocated. + * @param {Object} options - may contain the following: + * - options.xSize {Number} space length along x axis + * - options.ySize {Number} space length along y axis + * - option.zSize {Number} space length along z axis + * - options.ncpp {Number} number of components per pixel. Default = 1 + * - options.order {Array} dimensionality order. default = ["zspace", "yspace", "xspace"] + */ + constructor( options=null ){ + super(); + this._type = Image3D.TYPE(); + + // a rgba stored in a Float32Array (typed array) + this._data = null; + + // number of component per pixel, for color OR time series + this.setMetadata("ncpp", 1); + + // dimensionality order + if(options && "order" in options){ + this.setMetadata("order", options.order); + }else{ + this.setMetadata("order", ["zspace", "yspace", "xspace"]); + } + + var xspace = { + offset: 1, + step: 1 + } + + var yspace = { + step: 1 + } + + var zspace = { + step: 1 + } + + this.setMetadata("xspace", xspace); + this.setMetadata("yspace", yspace); + this.setMetadata("zspace", zspace); + + // replacing default value for ncpp + if(options && "ncpp" in options){ + this.setMetadata("ncpp", options.ncpp); + } + + // allocate the array if size is specified + if(options && "xSize" in options && "ySize" in options && "zSize" in options){ + + if( options.xSize > 0 && options.ySize > 0 && options.zSize > 0 ){ + xspace.space_length = options.xSize; + yspace.space_length = options.ySize; + zspace.space_length = options.zSize; + + yspace.offset = xspace.space_length; + zspace.offset = xspace.space_length * yspace.space_length; + + this._data = new Float32Array( options.xSize * options.ySize * options.zSize * this.getMetadata("ncpp") ); + this._data.fill(0); + + this._scanDataRange(); + this._finishHeader(); + } + } + } + + + /** + * Hardcode the datatype + */ + static TYPE(){ + return "Image3D"; + } + + + /** + * @return {Image3D} a deep copy instance of this Image3D + */ + clone(){ + var cpImg = new Image3D(); + + cpImg.setData( + this._data, + this.getMetadata("xspace").space_length, + this.getMetadata("yspace").space_length, + this.getMetadata("zspace").space_length, + { + ncpp: this.getMetadata("ncpp"), + order: this.getMetadata("order").slice(), + deepCopy: true, + } + ); + + cpImg.copyMetadataFrom( this ); + + return cpImg; + } + + + /** + * Set the data to this Image3D. + * @param {Float32Array} array - 1D array of raw data stored as RGBARGBA... + * @param {Number} xSize - length along x dimension of the Image3D + * @param {Number} ySize - length along y dimension of the Image3D + * @param {Number} zSize - length along z dimension of the Image3D + * @param {Number} ncpp - number of components per pixel (default: 4) + * @param {Boolean} deepCopy - if true, a copy of the data is given, if false we jsut give the pointer + * @param {Object} options, among them: + * - ncpp {Number} number of components per pixel. Default = 1 + * - order {Array} dimensionality order. Default = ["zspace", "yspace", "xspace"] + * - deepCopy {Boolean} copy the whole array if true, or just the pointer if false. Default = false + * + */ + setData( array, xSize, ySize, zSize, options){ + var ncpp = 1; + + // number of components per pixel + if(options && "ncpp" in options){ + ncpp = options.ncpp; + } + + if( array.length != xSize*ySize*zSize*ncpp){ + console.warn("The array size does not match the width and height. Cannot init the Image3D."); + return; + } + + // number of components per pixel + if(options && "ncpp" in options){ + this.setMetadata("ncpp", options.ncpp); + } + + // dimensionality order + if(options && "order" in options){ + this.setMetadata("order", options.order); + } + + // deep of shallow copy + if(options && "deepCopy" in options && options.deepCopy){ + this._data = array.slice(); + }else{ + this._data = array; + } + + var xspace = this.getMetadata("xspace"); + var yspace = this.getMetadata("yspace"); + var zspace = this.getMetadata("zspace"); + + xspace.space_length = xSize; + yspace.space_length = ySize; + zspace.space_length = zSize; + + yspace.offset = xspace.space_length; + zspace.offset = xspace.space_length * yspace.space_length; + + this._scanDataRange(); + this._finishHeader(); + } + + + /** + * [PRIVATE] + * Creates common fields all headers must contain. + */ + _finishHeader() { + var xspace = this.getMetadata("xspace"); + var yspace = this.getMetadata("yspace"); + var zspace = this.getMetadata("zspace"); + + xspace.name = "xspace"; + yspace.name = "yspace"; + zspace.name = "zspace"; + + xspace.width_space = JSON.parse( JSON.stringify( yspace ) );//yspace; + xspace.width = yspace.space_length; + xspace.height_space = JSON.parse( JSON.stringify( zspace ) );//zspace; + xspace.height = zspace.space_length; + + yspace.width_space = JSON.parse( JSON.stringify( xspace ) );//xspace; + yspace.width = xspace.space_length; + yspace.height_space = JSON.parse( JSON.stringify( zspace ) );//zspace; + yspace.height = zspace.space_length; + + zspace.width_space = JSON.parse( JSON.stringify( xspace ) );//xspace; + zspace.width = xspace.space_length; + zspace.height_space = JSON.parse( JSON.stringify( yspace ) );//yspace; + zspace.height = yspace.space_length; + } + + + /** + * [PRIVATE] + * Look for min and max on the dataset and add them to the header metadata + */ + _scanDataRange(){ + var min = +Infinity; + var max = -Infinity; + + this._data.forEach( function(value){ + min = Math.min(min, value); + max = Math.max(max, value); + }) + + this.setMetadata("voxel_min", min); + this.setMetadata("voxel_max", max); + } + + + /** + * Modify the color of a given pixel. + * @param {Object} position - 3D position in the form {x, y, z} + * @param {Array} color - color, must have the same number of components per pixel than the image + */ + setPixel( position, color ){ + // TODO: to implement using order offset + } + + + /** + * @param {Object} position - 3D position like {x, y, z} + * @return {Array} the color of the given pixel. + */ + getPixel( position ){ + // TODO: to implement using order offset + } + + + /** + * @param {String} space - "xspace", "yspace" or "zspace" + * @return {Number} the size of the Image3D along the given space + */ + getSize( space ){ + if( this.hasMetadata( space )){ + return this.getMetadata( space ).space_length; + }else{ + console.warn("The space must be \"xspace\", \"yspace\" or \"zspace\"."); + return null; + } + } + + + /** + * @return {Float32Array} the original data, dont mess up with this one. + * in case of doubt, use getDataCopy() + */ + getData(){ + //return this._data.slice(); // return a copy + return this._data; // return the actual array, editable! + } + + + /** + * @return {Float32Array} a deep copy of the data + */ + getDataCopy(){ + return this._data.slice(); + } + + + /** + * Compute the 1D index within the data buffer from a 3D position {x, y, z}. + * This has nothing to do with the number of components per pixel. + * @param {Object} position - 3D coord like {x, y, z} + * @return {Number} the 1D position within the buffer + */ + get1dIndexFrom3dPosition( position ){ + //return (position.x + position.y*this._width); + //return this._xSize * this._ySize * position.z + this._xSize * position.y + position.x; + // TODO: to implement using order offset + } + + + /** + * [PRIVATE] + * Return a slice from the minc cube as a 1D typed array, + * along with some relative data (slice size, step, etc.) + * args: + * @param {String} axis - "xspace", "yspace" or zspace (mandatory) + * @param {Number} slice_num - index of the slice [0; length-1] (optional, default: length-1) + * @param {Number} time - index of time (optional, default: 0) + * TODO: add some method to a slice (get value) because it's a 1D array... and compare with Python + */ + getSlice(axis, slice_num = 0, time = 0) { + if( !this.hasMetadata(axis) ){ + console.warn("The axis " + axis + " does not exist."); + return null; + } + + var time_offset = this.hasMetadata("time") ? time * this.getMetadata("time").offset : 0; + + var axis_space = this.getMetadata(axis); + var width_space = axis_space.width_space; + var height_space = axis_space.height_space; + + var width = axis_space.width; + var height = axis_space.height; + + var axis_space_offset = axis_space.offset; + var width_space_offset = width_space.offset; + var height_space_offset = height_space.offset; + + // Calling the volume data's constructor guarantees that the + // slice data buffer has the same type as the volume. + // + //var slice_data = new this._data.constructor(width * height); + var slice_data = new this._data.constructor(width * height); + + // Rows and colums of the result slice. + var row, col; + + // Indexes into the volume, relative to the slice. + // NOT xspace, yspace, zspace coordinates!!! + var x, y, z; + + // Linear offsets into volume considering an + // increasing number of axes: (t) time, + // (z) z-axis, (y) y-axis, (x) x-axis. + var tz_offset, tzy_offset, tzyx_offset; + + // Whether the dimension steps positively or negatively. + var x_positive = width_space.step > 0; + var y_positive = height_space.step > 0; + var z_positive = axis_space.step > 0; + + // iterator for the result slice. + var i = 0; + var intensity = 0; + var intensitySum = 0; + var min = Infinity; + var max = -Infinity; + + var maxOfVolume = this.getMetadata("voxel_max"); + + z = z_positive ? slice_num : axis_space.space_length - slice_num - 1; + if (z >= 0 && z < axis_space.space_length) { + tz_offset = time_offset + z * axis_space_offset; + + for (row = height - 1; row >= 0; row--) { + y = y_positive ? row : height - row - 1; + tzy_offset = tz_offset + y * height_space_offset; + + for (col = 0; col < width; col++) { + x = x_positive ? col : width - col - 1; + tzyx_offset = tzy_offset + x * width_space_offset; + + intensity = this._data[tzyx_offset]; + + min = Math.min(min, intensity); + max = Math.max(max, intensity); + intensitySum += intensity; + + slice_data[i++] = intensity; + } + } + } + + var outputImage = new Image2D(); + outputImage.setData( slice_data, width, height, 1); + outputImage.setMetadata("min", min); + outputImage.setMetadata("max", max); + outputImage.setMetadata("avg", intensitySum / (i-1) ); + return outputImage; + + } + + + /** + * Get the intensity of a given voxel, addressed by dimensionality order. + * In case of doubt, use getIntensity_xyz instead. + * @param {Number} i - Position within the biggest dimensionality order + * @param {Number} j - Position within the in-the-middle dimensionality order + * @param {Number} k - Position within the smallest dimensionality order + */ + getIntensity_ijk(i, j, k, time = 0) { + var order = this.getMetadata("order"); + + if (i < 0 || i >= this.getMetadata( order[0] ).space_length || + j < 0 || j >= this.getMetadata( order[1] ).space_length || + k < 0 || k >= this.getMetadata( order[2] ).space_length) + { + console.warn("getIntensity_ijk position is out of range."); + return 0; + } + + var time_offset = this.hasMetadata( "time" ) ? time * this.getMetadata( "time" ).offset : 0; + + var xyzt_offset = ( + i * this.getMetadata( order[0] ).offset + + j * this.getMetadata( order[1] ).offset + + k * this.getMetadata( order[2] ).offset + + time_offset); + + return this._data[xyzt_offset]; + } + + + /** + * Get the intensity of a given voxel, addressed by dimension names. + * @param {Number} x - position within xspace + * @param {Number} y - position within yspace + * @param {Number} z - position within zspace + * @param {Number} time - position in time (optional) + */ + getIntensity_xyz(x, y, z, time = 0) { + var order = this.getMetadata("order"); + + if (x < 0 || x >= this.getMetadata( "xspace" ).space_length || + y < 0 || y >= this.getMetadata( "yspace" ).space_length || + z < 0 || z >= this.getMetadata( "zspace" ).space_length) + { + console.warn("getIntensity_xyz position is out of range."); + return 0; + } + + var time_offset = this.hasMetadata( "time" ) ? time * this.getMetadata( "time" ).offset : 0; + + var xyzt_offset = ( + x * this.getMetadata( "xspace" ).offset + + y * this.getMetadata( "yspace" ).offset + + z * this.getMetadata( "zspace" ).offset + + time_offset); + + return this._data[xyzt_offset]; + } + + +} /* END of class Image3D */ + +export { Image3D } diff --git a/src/core/MniVolume.js b/src/core/MniVolume.js new file mode 100644 index 0000000..26ef038 --- /dev/null +++ b/src/core/MniVolume.js @@ -0,0 +1,221 @@ +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ + +import { Image3D } from './Image3D.js'; +import { Image2D } from './Image2D.js'; + +/** +* MniVolume instance are like Image3D but include some brain things +*/ +class MniVolume extends Image3D{ + + + /** + * Constructor of an Image3D instance. If no options, no array is allocated. + * @param {Object} options - if present, must have options.xSize, options.ySize, option.zSize. + * Also options.ncpp to set the number of components per pixel. (possibly for using time series) + */ + constructor( options=null ){ + super(); + } + + + /** + * [STATIC] + * mainly used by the ouside world (like from Nifti) + */ + static transformToMinc(transform, header) { + var x_dir_cosines = []; + var y_dir_cosines = []; + var z_dir_cosines = []; + + // A tiny helper function to calculate the magnitude of the rotational + // part of the transform. + // + function magnitude(v) { + var dotprod = v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; + if (dotprod <= 0) { + dotprod = 1.0; + } + return Math.sqrt(dotprod); + } + + // Calculate the determinant of a 3x3 matrix, from: + // http://www.mathworks.com/help/aeroblks/determinantof3x3matrix.html + // + // det(A) = A_{11} (A_{22}A_{33} - A_{23}A_{32}) - + // A_{12} (A_{21}A_{33} - A_{23}A_{31}) + + // A_{13} (A_{21}A_{32} - A_{22}A_{31}) + // + // Of course, I had to change the indices from 1-based to 0-based. + // + function determinant(c0, c1, c2) { + return (c0[0] * (c1[1] * c2[2] - c1[2] * c2[1]) - + c0[1] * (c1[0] * c2[2] - c1[2] * c2[0]) + + c0[2] * (c1[0] * c2[1] - c1[1] * c2[0])); + } + + // Now that we have the transform, need to convert it to MINC-like + // steps and direction_cosines. + + var xmag = magnitude(transform[0]); + var ymag = magnitude(transform[1]); + var zmag = magnitude(transform[2]); + + var xstep = (transform[0][0] < 0) ? -xmag : xmag; + var ystep = (transform[1][1] < 0) ? -ymag : ymag; + var zstep = (transform[2][2] < 0) ? -zmag : zmag; + + for (var i = 0; i < 3; i++) { + x_dir_cosines[i] = transform[i][0] / xstep; + y_dir_cosines[i] = transform[i][1] / ystep; + z_dir_cosines[i] = transform[i][2] / zstep; + } + + header.xspace.step = xstep; + header.yspace.step = ystep; + header.zspace.step = zstep; + + // Calculate the corrected start values. + var starts = [transform[0][3], + transform[1][3], + transform[2][3] + ]; + + // (bert): I believe that the determinant of the direction + // cosines should always work out to 1, so the calculation of + // this value should not be needed. But I have no idea if NIfTI + // enforces this when sform transforms are written. + var denom = determinant(x_dir_cosines, y_dir_cosines, z_dir_cosines); + var xstart = determinant(starts, y_dir_cosines, z_dir_cosines); + var ystart = determinant(x_dir_cosines, starts, z_dir_cosines); + var zstart = determinant(x_dir_cosines, y_dir_cosines, starts); + + header.xspace.start = xstart / denom; + header.yspace.start = ystart / denom; + header.zspace.start = zstart / denom; + + header.xspace.direction_cosines = x_dir_cosines; + header.yspace.direction_cosines = y_dir_cosines; + header.zspace.direction_cosines = z_dir_cosines; + }; + + + /** + * [STATIC] + * swap the data to be used from the outside (ie. nifti) + */ + static swapn(byte_data, n_per_item) { + for (var d = 0; d < byte_data.length; d += n_per_item) { + var hi_offset = n_per_item - 1; + var lo_offset = 0; + while (hi_offset > lo_offset) { + var tmp = byte_data[d + hi_offset]; + byte_data[d + hi_offset] = byte_data[d + lo_offset]; + byte_data[d + lo_offset] = tmp; + hi_offset--; + lo_offset++; + } + } + } + + + /** + * Initialize a MniVolume with the data and the header. + * @param {Array} data - TypedArray containing the data + */ + setData( data, header ){ + var that = this; + this._data = data; + + this.setMetadata( "position", {} ); + this.setMetadata( "current_time", 0 ); + + // copying header into metadata + var headerKeys = Object.keys(header); + headerKeys.forEach( function(key){ + that.setMetadata( key, header[key] ); + }) + + // find min/max + this._scanDataRange(); + + // set W2v matrix + this._saveOriginAndTransform(); + + // adding some fields to metadata header + this._finishHeader() + + console.log(this._metadata); + } + + + + + + /** + * [PRIVATE} + * Calculate the world to voxel transform and save it, so we + * can access it efficiently. The transform is: + * cxx / stepx | cxy / stepx | cxz / stepx | (-o.x * cxx - o.y * cxy - o.z * cxz) / stepx + * cyx / stepy | cyy / stepy | cyz / stepy | (-o.x * cyx - o.y * cyy - o.z * cyz) / stepy + * czx / stepz | czy / stepz | czz / stepz | (-o.x * czx - o.y * czy - o.z * czz) / stepz + * 0 | 0 | 0 | 1 + * + * Origin equation taken from (http://www.bic.mni.mcgill.ca/software/minc/minc2_format/node4.html) + */ + _saveOriginAndTransform() { + + var xspace = this.getMetadata("xspace"); + var yspace = this.getMetadata("yspace"); + var zspace = this.getMetadata("zspace"); + + var startx = xspace.start; + var starty = yspace.start; + var startz = zspace.start; + var cx = xspace.direction_cosines; + var cy = yspace.direction_cosines; + var cz = zspace.direction_cosines; + var stepx = xspace.step; + var stepy = yspace.step; + var stepz = zspace.step; + + // voxel_origin + var o = { + x: startx * cx[0] + starty * cy[0] + startz * cz[0], + y: startx * cx[1] + starty * cy[1] + startz * cz[1], + z: startx * cx[2] + starty * cy[2] + startz * cz[2] + }; + + this.setMetadata("voxel_origin", o); + + var tx = (-o.x * cx[0] - o.y * cx[1] - o.z * cx[2]) / stepx; + var ty = (-o.x * cy[0] - o.y * cy[1] - o.z * cy[2]) / stepy; + var tz = (-o.x * cz[0] - o.y * cz[1] - o.z * cz[2]) / stepz; + + var w2v = [ + [cx[0] / stepx, cx[1] / stepx, cx[2] / stepx, tx], + [cy[0] / stepy, cy[1] / stepy, cy[2] / stepy, ty], + [cz[0] / stepz, cz[1] / stepz, cz[2] / stepz, tz] + ]; + + this.setMetadata("w2v", w2v); + } + + + + + + + + + + + +} /* END of class Image3D */ + +export { MniVolume } diff --git a/src/core/PixpipeObject.js b/src/core/PixpipeObject.js index b213726..610b472 100644 --- a/src/core/PixpipeObject.js +++ b/src/core/PixpipeObject.js @@ -59,7 +59,7 @@ class PixpipeObject { /** * Return a copy of the uuid */ - get uuid(){ + getUuid(){ return this._uuid.slice(); } @@ -104,6 +104,33 @@ class PixpipeObject { } + /** + * @return {Array} of Strings where each is a key of an existing metadata record + */ + getMetadataKeys(){ + return Object.keys( this._metadata ); + } + + + /** + * Copy all the metadata from the object in argument to this. + * A deep copy by serialization is perform. + * The metadata that exist only in _this_ are kept. + * @param {PixpipeObject} otherObject - the object to copy metadata from + */ + copyMetadataFrom( otherObject ){ + var that = this; + + otherObject.getMetadataKeys().forEach( function(key){ + try{ + var metadataObjectCopy = JSON.parse( JSON.stringify( otherObject.getMetadata(key) ) ); + that.setMetadata(key, metadataObjectCopy); + }catch(e){ + console.error(e); + } + }); + } + } export { PixpipeObject } diff --git a/src/decoder/Minc2Decoder.js b/src/decoder/Minc2Decoder.js new file mode 100644 index 0000000..e7a8872 --- /dev/null +++ b/src/decoder/Minc2Decoder.js @@ -0,0 +1,2844 @@ +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* Robert D. Vincent +* +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ + +import pako from 'pako' +import { Filter } from '../core/Filter.js'; +import { MniVolume } from '../core/MniVolume.js'; + + +/** +* Decode a HDF5 file, but is most likely to be restricted to the features that are +* used for Minc2 file format. +* The input "0" is an array buffer, the metadata "debug" can be set to true to +* enable a verbose mode. +*/ +class Minc2Decoder extends Filter{ + + constructor(){ + super(); + + this.setMetadata("debug", false); + + this._type_enum = { + INT8: 1, + UINT8: 2, + INT16: 3, + UINT16: 4, + INT32: 5, + UINT32: 6, + FLT: 7, + DBL: 8, + STR: 9 + }; + + this._type_matching = [ + "int8", + "uint8", + "int16", + "uint16", + "int32", + "uint32", + "float32", + "float64", + "undef" // STR type is not compatible with minc + // we deal rgb8 manually + ]; + + this.type_sizes = [0, 1, 1, 2, 2, 4, 4, 4, 8, 0]; + + this._dv_offset = 0; + this._align = 8; + this._little_endian = true; + this._continuation_queue = []; + this._dv = null;//new DataView(abuf); + this._superblk = {}; + this._start_offset = 0; + this._huge_id = 0; + + } + + /** + * [PRIVATE] + */ + createLink() { + var r = {}; + // internal/private + r.hdr_offset = 0; // offset to object header. + r.data_offset = 0; // offset to actual data. + r.data_length = 0; // length of data. + r.n_filled = 0; // counts elements written to array + r.chunk_size = 0; // size of chunks + r.sym_btree = 0; // offset of symbol table btree + r.sym_lheap = 0; // offset of symbol table local heap + // permanent/global + r.name = ""; // name of this group or dataset. + r.attributes = {}; // indexed by attribute name. + r.children = []; // not associative for now. + r.array = undefined; // actual data, if dataset. + r.type = -1; // type of data. + r.inflate = false; // true if need to inflate (gzip). + r.dims = []; // dimension sizes. + return r; + } + + + /** + * [PRIVATE] + * + * Turns out that alignment of the messages in at least the + * version 1 object header is actually relative to the start + * of the header. So we update the start position of the + * header here, so we can refer to it when calculating the + * alignment in this.checkAlignment(). + */ + startAlignment() { + this._start_offset = this._dv_offset; + } + + + /** + * [PRIVATE] + */ + checkAlignment() { + var tmp = this._dv_offset - this._start_offset; + if ((tmp % this._align) !== 0) { + var n = this._align - (tmp % this._align); + this._dv_offset += n; + if (this.getMetadata("debug")) { + console.log('skipping ' + n + ' bytes at ' + tmp + ' for alignmnent'); + } + } + } + + + /** + * [PRIVATE] + * + * helper functions to manipulate the current DataView offset. + */ + skip(n_bytes) { + this._dv_offset += n_bytes; + } + + + /** + * [PRIVATE] + */ + seek(new_offset) { + this._dv_offset = new_offset; + } + + + /** + * [PRIVATE] + */ + tell() { + return this._dv_offset; + } + + + /** + * [PRIVATE] + * + * helper functions for access to our DataView. + */ + getU8() { + var v = this._dv.getUint8(this._dv_offset); + this._dv_offset += 1; + return v; + } + + + /** + * [PRIVATE] + */ + getU16() { + var v = this._dv.getUint16(this._dv_offset, this._little_endian); + this._dv_offset += 2; + return v; + } + + + /** + * [PRIVATE] + */ + getU32() { + var v = this._dv.getUint32(this._dv_offset, this._little_endian); + this._dv_offset += 4; + return v; + } + + + /** + * [PRIVATE] + */ + getU64() { + var v = this._dv.getUint64(this._dv_offset, this._little_endian); + this._dv_offset += 8; + return v; + } + + + /** + * [PRIVATE] + */ + getF32() { + var v = this._dv.getFloat32(this._dv_offset, this._little_endian); + this._dv_offset += 4; + return v; + } + + + /** + * [PRIVATE] + */ + getF64() { + var v = this._dv.getFloat64(this._dv_offset, this._little_endian); + this._dv_offset += 8; + return v; + } + + + /** + * [PRIVATE] + */ + getOffset(offsz) { + var v = 0; + offsz = offsz || this._superblk.offsz; + if (offsz === 4) { + v = this._dv.getUint32(this._dv_offset, this._little_endian); + } else if (offsz === 8) { + v = this._dv.getUint64(this._dv_offset, this._little_endian); + } else { + throw new Error('Unsupported value for offset size ' + offsz); + } + this._dv_offset += offsz; + return v; + } + + + /** + * [PRIVATE] + */ + getLength() { + var v = this._dv.getUint64(this._dv_offset, this._little_endian); + this._dv_offset += this._superblk.lensz; + return v; + } + + + /** + * [PRIVATE] + */ + getString(length) { + var r = ""; + var i; + var c; + for (i = 0; i < length; i += 1) { + c = this.getU8(); + if (c === 0) { + this._dv_offset += (length - i - 1); + break; + } + r += String.fromCharCode(c); + } + return r; + } + + + /** + * [PRIVATE] + */ + getArray(typ, n_bytes, new_off) { + var value; + var n_values; + var new_abuf; + var abuf = this._getInput(); + var i; + var spp = this._dv_offset; + if (new_off) { + this._dv_offset = new_off; + } + switch (typ) { + case this._type_enum.INT8: + value = new Int8Array(abuf, this._dv_offset, n_bytes); + break; + case this._type_enum.UINT8: + value = new Uint8Array(abuf, this._dv_offset, n_bytes); + break; + case this._type_enum.INT16: + if ((this._dv_offset % 2) !== 0) { + new_abuf = new ArrayBuffer(n_bytes); + n_values = n_bytes / 2; + value = new Int16Array(new_abuf); + for (i = 0; i < n_values; i += 1) { + value[i] = this.getU16(); + } + } else { + value = new Int16Array(abuf, this._dv_offset, n_bytes / 2); + this._dv_offset += n_bytes; + } + break; + case this._type_enum.UINT16: + if ((this._dv_offset % 2) !== 0) { + new_abuf = new ArrayBuffer(n_bytes); + n_values = n_bytes / 2; + value = new Uint16Array(new_abuf); + for (i = 0; i < n_values; i += 1) { + value[i] = this.getU16(); + } + } else { + value = new Uint16Array(abuf, this._dv_offset, n_bytes / 2); + this._dv_offset += n_bytes; + } + break; + case this._type_enum.INT32: + if ((this._dv_offset % 4) !== 0) { + new_abuf = new ArrayBuffer(n_bytes); + n_values = n_bytes / 4; + value = new Int32Array(new_abuf); + for (i = 0; i < n_values; i += 1) { + value[i] = this.getU32(); + } + } else { + value = new Int32Array(abuf, this._dv_offset, n_bytes / 4); + this._dv_offset += n_bytes; + } + break; + case this._type_enum.UINT32: + if ((this._dv_offset % 4) !== 0) { + new_abuf = new ArrayBuffer(n_bytes); + n_values = n_bytes / 4; + value = new Uint32Array(new_abuf); + for (i = 0; i < n_values; i += 1) { + value[i] = this.getU32(); + } + } else { + value = new Uint32Array(abuf, this._dv_offset, n_bytes / 4); + this._dv_offset += n_bytes; + } + break; + case this._type_enum.FLT: + if ((this._dv_offset % 4) !== 0) { + new_abuf = new ArrayBuffer(n_bytes); + n_values = n_bytes / 4; + value = new Float32Array(new_abuf); + for (i = 0; i < n_values; i += 1) { + value[i] = this.getF32(); + } + } else { + value = new Float32Array(abuf, this._dv_offset, n_bytes / 4); + this._dv_offset += n_bytes; + } + break; + case this._type_enum.DBL: + if ((this._dv_offset % 8) !== 0) { + new_abuf = new ArrayBuffer(n_bytes); + n_values = n_bytes / 8; + value = new Float64Array(new_abuf); + for (i = 0; i < n_values; i += 1) { + value[i] = this.getF64(); + } + } else { + value = new Float64Array(abuf, this._dv_offset, n_bytes / 8); + this._dv_offset += n_bytes; + } + break; + default: + throw new Error('Bad type in this.getArray ' + typ); + } + if (new_off) { + this._dv_offset = spp; + } + return value; + } + + + /** + * [PRIVATE] + * + * Get a variably-sized integer from the DataView. + */ + getUXX(n) { + var v; + var i; + switch (n) { + case 1: + v = this._dv.getUint8(this._dv_offset); + break; + case 2: + v = this._dv.getUint16(this._dv_offset, this._little_endian); + break; + case 4: + v = this._dv.getUint32(this._dv_offset, this._little_endian); + break; + case 8: + v = this._dv.getUint64(this._dv_offset, this._little_endian); + break; + default: + /* Certain hdf5 types can have odd numbers of bytes. We try + * to deal with that special case here. + */ + v = 0; + if (!this._little_endian) { + for (i = 0; i < n; i++) { + v = (v << 8) + this._dv.getUint8(this._dv_offset + i); + } + } + else { + for (i = n - 1; i >= 0; i--) { + v = (v << 8) + this._dv.getUint8(this._dv_offset + i); + } + } + } + this._dv_offset += n; + return v; + } + + + /** + * [PRIVATE] + * + * Verify that the expected signature is found at this offset. + */ + checkSignature(str) { + var i; + for (i = 0; i < str.length; i += 1) { + if (this._dv.getUint8(this._dv_offset + i) !== str.charCodeAt(i)) { + return false; + } + } + this.skip(str.length); + return true; + } + + + /** + * [PRIVATE] + */ + hdf5Superblock() { + var sb = {}; + if (!this.checkSignature("\u0089HDF\r\n\u001A\n")) { + throw new Error('Bad magic string in HDF5'); + } + sb.sbver = this.getU8(); + if (sb.sbver > 2) { + throw new Error('Unsupported HDF5 superblock version ' + sb.sbver); + } + if (sb.sbver <= 1) { + sb.fsver = this.getU8(); + sb.rgver = this.getU8(); + this.skip(1); // reserved + sb.shver = this.getU8(); + sb.offsz = this.getU8(); + sb.lensz = this.getU8(); + this.skip(1); // reserved + sb.gln_k = this.getU16(); + sb.gin_k = this.getU16(); + sb.cflags = this.getU32(); + if (sb.sbver === 1) { + sb.isin_k = this.getU16(); + this.skip(2); // reserved + } + sb.base_addr = this.getOffset(sb.offsz); + sb.gfsi_addr = this.getOffset(sb.offsz); + sb.eof_addr = this.getOffset(sb.offsz); + sb.dib_addr = this.getOffset(sb.offsz); + sb.root_ln_offs = this.getOffset(sb.offsz); + sb.root_addr = this.getOffset(sb.offsz); + sb.root_cache_type = this.getU32(); + this.skip(4); + this.skip(16); + } else { + sb.offsz = this.getU8(); + sb.lensz = this.getU8(); + sb.cflags = this.getU8(); + sb.base_addr = this.getOffset(sb.offsz); + sb.ext_addr = this.getOffset(sb.offsz); + sb.eof_addr = this.getOffset(sb.offsz); + sb.root_addr = this.getOffset(sb.offsz); + sb.checksum = this.getU32(); + } + if (this.getMetadata("debug")) { + console.log("HDF5 SB " + sb.sbver + " " + sb.offsz + " " + sb.lensz + " " + sb.cflags); + } + return sb; + } + + + /** + * [PRIVATE] + * + * read the v2 fractal heap header + */ + hdf5FractalHeapHeader() { + var fh = {}; + if (!this.checkSignature("FRHP")) { + throw new Error('Bad or missing FRHP signature'); + } + fh.ver = this.getU8(); // Version + fh.idlen = this.getU16(); // Heap ID length + fh.iof_el = this.getU16(); // I/O filter's encoded length + fh.flags = this.getU8(); // Flags + fh.objmax = this.getU32(); // Maximum size of managed objects. + fh.objnid = this.getLength(); // Next huge object ID + fh.objbta = this.getOffset(); // v2 B-tree address of huge objects + fh.nf_blk = this.getLength(); // Amount of free space in managed blocks + fh.af_blk = this.getOffset(); // Address of managed block free space manager + fh.heap_total = this.getLength(); // Amount of managed space in heap + fh.heap_alloc = this.getLength(); // Amount of allocated managed space in heap + fh.bai_offset = this.getLength(); // Offset of direct block allocation iterator + fh.heap_nobj = this.getLength(); // Number of managed objects in heap + fh.heap_chuge = this.getLength(); // Size of huge objects in heap + fh.heap_nhuge = this.getLength(); // Number of huge objects in heap + fh.heap_ctiny = this.getLength(); // Size of tiny objects in heap + fh.heap_ntiny = this.getLength(); // Number of tiny objects in heap + fh.table_width = this.getU16(); // Table width + fh.start_blksz = this.getLength(); // Starting block size + fh.max_blksz = this.getLength(); // Maximum direct block size + fh.max_heapsz = this.getU16(); // Maximum heap size + fh.rib_srows = this.getU16(); // Starting # of rows in root indirect block + fh.root_addr = this.getOffset(); // Address of root block + fh.rib_crows = this.getU16(); // Current # of rows in root indirect block + + var max_dblock_rows = Math.log2(fh.max_blksz) - Math.log2(fh.start_blksz) + 2; + fh.K = Math.min(fh.rib_crows, max_dblock_rows) * fh.table_width; + fh.N = (fh.rib_crows < max_dblock_rows) ? 0 : fh.K - (max_dblock_rows * fh.table_width); + + if (this.getMetadata("debug")) { + console.log("FRHP V" + fh.ver + " F" + fh.flags + " " + fh.objbta + " Total:" + fh.heap_total + " Alloc:" + fh.heap_alloc + " #obj:" + fh.heap_nobj + " width:" + fh.table_width + " start_blksz:" + fh.start_blksz + " max_blksz:" + fh.max_blksz + " " + fh.max_heapsz + " srows:" + fh.rib_srows + " crows:" + fh.rib_crows + " " + fh.heap_nhuge); + console.log(" K: " + fh.K + " N: " + fh.N); + } + + if (fh.iof_el > 0) { + throw new Error("Filters present in fractal heap."); + } + return fh; + } + + + /** + * [PRIVATE] + * + * read the v2 btree header + */ + hdf5V2BtreeHeader() { + var bh = {}; + if (!this.checkSignature("BTHD")) { + throw new Error('Bad or missing BTHD signature'); + } + bh.ver = this.getU8(); + bh.type = this.getU8(); + bh.nodesz = this.getU32(); + bh.recsz = this.getU16(); + bh.depth = this.getU16(); + bh.splitp = this.getU8(); + bh.mergep = this.getU8(); + bh.root_addr = this.getOffset(); + bh.root_nrec = this.getU16(); + bh.total_nrec = this.getLength(); + bh.checksum = this.getU32(); + + if (this.getMetadata("debug")) { + console.log("BTHD V" + bh.ver + " T" + bh.type + " " + bh.nodesz + " " + bh.recsz + " " + bh.depth + " " + bh.root_addr + " " + bh.root_nrec + " " + bh.total_nrec); + } + return bh; + } + + + + /** + * [PRIVATE] + * + * Enumerates btree records in a block. Records are found both in direct + * and indirect v2 btree blocks. + */ + hdf5V2BtreeRecords(fh, bt_type, nrec, link) { + var i; + var spp; // saved position pointer + var offset; + var length; + if (bt_type === 1) { + for (i = 0; i < nrec; i++) { + offset = this.getOffset(); + length = this.getLength(); + var id = this.getLength(); + if (this.getMetadata("debug")) { + console.log(" -> " + offset + " " + length + " " + id + " " + this._this._huge_id); + } + spp = this.tell(); + if (id === this._this._huge_id) { + this.seek(offset); + this.hdf5MsgAttribute(length, link); + } + this.seek(spp); + } + } + else if (bt_type === 8) { + var cb_offs; + var cb_leng; + /* maximum heap size is stored in bits! */ + cb_offs = fh.max_heapsz / 8; + var tmp = Math.min(fh.objmax, fh.max_blksz); + if (tmp <= 256) { + cb_leng = 1; + } + else if (tmp <= 65536) { + cb_leng = 2; + } + else { + cb_leng = 4; + } + for (i = 0; i < nrec; i++) { + /* Read managed fractal heap ID. + */ + var vt = this.getU8(); + if ((vt & 0xc0) !== 0) { + throw new Error('Bad Fractal Heap ID version ' + vt); + } + var id_type = (vt & 0x30); + var flags; + if (id_type === 0x10) { // huge! + this._this._huge_id = this.getUXX(7); + } + else if (id_type === 0x00) { // managed. + offset = this.getUXX(cb_offs); + length = this.getUXX(cb_leng); + } + else { + throw new Error("Can't handle this Heap ID: " + vt); + } + flags = this.getU8(); + + /* Read the rest of the record. + */ + this.getU32(); // creation order (IGNORE) + this.getU32(); // hash (IGNORE) + if (this.getMetadata("debug")) { + console.log(" -> " + vt + " " + offset + " " + length + " " + flags); + } + spp = this.tell(); + if (id_type === 0x10) { + /* A "huge" object is found by indexing through the btree + * present in the header + */ + this.seek(fh.objbta); + var bh = this.hdf5V2BtreeHeader(); + if (bh.type === 1) { + this.seek(bh.root_addr); + this.hdf5V2BtreeLeafNode(fh, bh.root_nrec, link); + } + else { + throw new Error("Can only handle type-1 btrees"); + } + } + else { + /* + * A managed object implies that the attribute message is + * found in the associated fractal heap at the specified + * offset in the heap. We get the actual address + * corresponding to the offset here. + */ + var location = this.hdf5FractalHeapOffset(fh, offset); + this.seek(location); + this.hdf5MsgAttribute(length, link); + } + this.seek(spp); + } + } + else { + throw new Error("Unhandled V2 btree type."); + } + } + + + /** + * [PRIVATE] + * + * read a v2 btree leaf node + */ + hdf5V2BtreeLeafNode(fh, nrec, link) { + + if (!this.checkSignature("BTLF")) { + throw new Error('Bad or missing BTLF signature'); + } + + var ver = this.getU8(); + var typ = this.getU8(); + + if (this.getMetadata("debug")) { + console.log("BTLF V" + ver + " T" + typ + " " + this.tell()); + } + this.hdf5V2BtreeRecords(fh, typ, nrec, link); + } + + + /** + * [PRIVATE] + * + * read the hdf5 v2 btree internal node + */ + hdf5V2BtreeInternalNode(fh, nrec, depth, link) { + + if (!this.checkSignature("BTIN")) { + throw new Error('Bad or missing BTIN signature'); + } + var ver = this.getU8(); + var type = this.getU8(); + var i; + + if (this.getMetadata("debug")) { + console.log("BTIN V" + ver + " T" + type); + } + this.hdf5V2BtreeRecords(fh, type, nrec, link); + for (i = 0; i <= nrec; i++) { + var child_offset = this.getOffset(); + var child_nrec = this.getUXX(1); // TODO: calculate real size!! + var child_total; + /* TODO: unfortunately, this field is optional and + * variably-sized. Calculating the size is non-trivial, as it + * depends on the total depth and size of the tree. For now + * we will just assume it is its minimum size, as I've never + * encountered a file with depth > 1 anyway. + */ + if (depth > 1) { + child_total = this.getUXX(1); + } + if (this.getMetadata("debug")) { + console.log(" child->" + child_offset + " " + child_nrec + " " + child_total); + } + } + } + + + /** + * [PRIVATE] + */ + hdf5GetMsgName(n) { + + // JO: used to be in the global scope. + /* Names of the various HDF5 messages. + * Note that MESSAGE23 appears to be illegal. All the rest are defined, + * although I've never encountered a BOGUS message! + */ + var msg_names = [ + "NIL", "Dataspace", "LinkInfo", "Datatype", "FillValue 1", "FillValue 2", + "Link", "ExternalFiles", "Layout", "BOGUS", "GroupInfo", "FilterPipeline", + "Attribute", "ObjectComment", "ObjectModTime 1", "SharedMsgTable", + "ObjHdrContinue", "SymbolTable", "ObjectModTime 2", "BtreeKValue", + "DriverInfo", "AttrInfo", "ObjectRefCnt", "MESSAGE23", + "FileSpaceInfo" + ]; + + if (n < msg_names.length) { + return msg_names[n]; + } + throw new Error('Unknown message type ' + n + " " + this.tell()); + } + + + /** + * [PRIVATE] + */ + hdf5V1BtreeNode(link) { + var abuf = this._getInput(); + var i; + var bt = {}; + if (!this.checkSignature("TREE")) { + throw new Error('Bad TREE signature at ' + this.tell()); + } + + bt.keys = []; + + bt.node_type = this.getU8(); + bt.node_level = this.getU8(); + bt.entries_used = this.getU16(); + bt.left_sibling = this.getOffset(); + bt.right_sibling = this.getOffset(); + + if (this.getMetadata("debug")) { + console.log("BTREE type " + bt.node_type + " lvl " + + bt.node_level + " n_used " + bt.entries_used + " " + + bt.left_sibling + " " + bt.right_sibling); + } + + if (!link) { + /* If this BTREE is associated with a group (not a dataset), + * then its keys are single "length" value. + */ + for (i = 0; i < bt.entries_used; i += 1) { + bt.keys[i] = {}; + bt.keys[i].key_value = this.getLength(); + bt.keys[i].child_address = this.getOffset(); + if (this.getMetadata("debug")) { + console.log(" BTREE " + i + " key " + + bt.keys[i].key_value + " adr " + + bt.keys[i].child_address); + } + } + } else { + var j; + + /* If this BTREE is a "chunked raw data node" associated + * with a dataset, then its keys are complex, consisting + * of the chunk size in bytes, a filter mask, and a set of + * offsets matching the dimensionality of the chunk layout. + * The chunk size stores the actual stored length of the + * data, so it may not equal the uncompressed chunk size. + */ + var chunks = []; + + for (i = 0; i < bt.entries_used; i += 1) { + bt.keys[i] = {}; + chunks[i] = {}; + chunks[i].chunk_size = this.getU32(); + chunks[i].filter_mask = this.getU32(); + chunks[i].chunk_offsets = []; + for (j = 0; j < link.dims.length + 1; j += 1) { + chunks[i].chunk_offsets.push(this.getU64()); + } + bt.keys[i].child_address = this.getOffset(); + if (i < bt.entries_used) { + if (this.getMetadata("debug")) { + console.log(" BTREE " + i + + " chunk_size " + chunks[i].chunk_size + + " filter_mask " + chunks[i].filter_mask + + " addr " + bt.keys[i].child_address); + } + } + } + chunks[i] = {}; + chunks[i].chunk_size = this.getU32(); + chunks[i].filter_mask = this.getU32(); + chunks[i].chunk_offsets = []; + for (j = 0; j < link.dims.length + 1; j += 1) { + chunks[i].chunk_offsets.push(this.getU64()); + } + + /* If we're at a leaf node, we have data to deal with. + * We might have to uncompress! + */ + if (bt.node_level === 0) { + var length; + var offset; + var sp; + var dp; + + for (i = 0; i < bt.entries_used; i += 1) { + length = chunks[i].chunk_size; + offset = bt.keys[i].child_address; + + if (link.inflate) { + sp = new Uint8Array(abuf, offset, length); + dp = pako.inflate(sp); + switch (link.type) { + case this._type_enum.INT8: + dp = new Int8Array(dp.buffer); + break; + case this._type_enum.UINT8: + dp = new Uint8Array(dp.buffer); + break; + case this._type_enum.INT16: + dp = new Int16Array(dp.buffer); + break; + case this._type_enum.UINT16: + dp = new Uint16Array(dp.buffer); + break; + case this._type_enum.INT32: + dp = new Int32Array(dp.buffer); + break; + case this._type_enum.UINT32: + dp = new Uint32Array(dp.buffer); + break; + case this._type_enum.FLT: + dp = new Float32Array(dp.buffer); + break; + case this._type_enum.DBL: + dp = new Float64Array(dp.buffer); + break; + default: + throw new Error('Unknown type code ' + link.type); + } + if (link.array.length - link.n_filled < dp.length) { + dp = dp.subarray(0, link.array.length - link.n_filled); + } + link.array.set(dp, link.n_filled); + link.n_filled += dp.length; + if (this.getMetadata("debug")) { + console.log(link.name + " " + sp.length + " " + dp.length + " " + link.n_filled + "/" + link.array.length); + } + } + else { + /* no need to inflate data. */ + dp = this.getArray(link.type, length, offset); + link.array.set(dp, link.n_filled); + link.n_filled += dp.length; + } + } + } else { + for (i = 0; i < bt.entries_used; i += 1) { + this.seek(bt.keys[i].child_address); + this.hdf5V1BtreeNode(link); + } + } + } + return bt; + } + + + /** + * [PRIVATE] + */ + hdf5GroupSymbolTable(lh, link) { + if (!this.checkSignature("SNOD")) { + throw new Error('Bad or missing SNOD signature'); + } + var ver = this.getU8(); + this.skip(1); + var n_sym = this.getU16(); + if (this.getMetadata("debug")) { + console.log("this.hdf5GroupSymbolTable V" + ver + " #" + n_sym + + " '" + link.name + "'"); + } + var i; + var link_name_offset; + var ohdr_address; + var cache_type; + var child; + var spp; + + for (i = 0; i < 2 * this._superblk.gln_k; i += 1) { + link_name_offset = this.getOffset(); + ohdr_address = this.getOffset(); + cache_type = this.getU32(); + this.skip(20); + + if (i < n_sym) { + child = this.createLink(); + child.hdr_offset = ohdr_address; + if (lh) { + spp = this.tell(); + /* The link name is a zero-terminated string + * starting at the link_name_off relative to + * the beginning of the data segment of the local + * heap. + */ + this.seek(lh.lh_dseg_off + link_name_offset); + child.name = this.getString(lh.lh_dseg_len); + this.seek(spp); + } + if (this.getMetadata("debug")) { + console.log(" " + i + " O " + link_name_offset + " A " + + ohdr_address + " T " + cache_type + " '" + + child.name + "'"); + } + link.children.push(child); + } + } + } + + + /** + * [PRIVATE] + * + * Read a v1 local heap header. These define relatively small + * regions used primarily for storing symbol names associated with + * a symbol table message. + */ + hdf5LocalHeap() { + var lh = {}; + if (!this.checkSignature("HEAP")) { + throw new Error('Bad or missing HEAP signature'); + } + lh.lh_ver = this.getU8(); + this.skip(3); + lh.lh_dseg_len = this.getLength(); + lh.lh_flst_len = this.getLength(); + lh.lh_dseg_off = this.getOffset(); + if (this.getMetadata("debug")) { + console.log("LHEAP V" + lh.lh_ver + " " + lh.lh_dseg_len + " " + + lh.lh_flst_len + " " + lh.lh_dseg_off); + } + return lh; + } + + + /** + * [PRIVATE] + * + * Process a "dataspace" message. Dataspaces define the + * dimensionality of a dataset or attribute. They define the + * number of dimensions (rank) and the current length of each + * dimension. It is possible to specify a "maximum" length that is + * greater than or equal to the current length, but MINC doesn't + * rely on that feature so these values are ignored. Finally it + * is also possible to specify a "permutation index" that alters + * storage order of the dataset, but again, MINC doesn't rely on + * this feature, so the values are ignored. + */ + hdf5MsgDataspace(sz, link) { + var cb; + var ver = this.getU8(); + var n_dim = this.getU8(); + var flag = this.getU8(); + if (ver <= 1) { + this.skip(5); + } else { + this.skip(1); + } + + var n_items = 1; + var dlen = []; + var i; + for (i = 0; i < n_dim; i += 1) { + dlen[i] = this.getLength(); + n_items *= dlen[i]; + } + + cb = (n_dim * this._superblk.lensz) + ((ver <= 1) ? 8 : 4); + + var dmax = []; + if ((flag & 1) !== 0) { + cb += n_dim * this._superblk.lensz; + for (i = 0; i < n_dim; i += 1) { + dmax[i] = this.getLength(); + } + } + + var dind = []; + if ((flag & 2) !== 0) { + cb += n_dim * this._superblk.lensz; + for (i = 0; i < n_dim; i += 1) { + dind[i] = this.getLength(); + } + } + var msg = "this.hdf5MsgDataspace V" + ver + " N" + n_dim + " F" + flag; + if (this.getMetadata("debug")) { + if (n_dim !== 0) { + msg += "[" + dlen.join(', ') + "]"; + } + console.log(msg); + } + if (cb < sz) { + this.skip(sz - cb); + } + if (link) { + link.dims = dlen; + } + return n_items; + } + + + /** + * [PRIVATE] + * + * + * link info messages may contain a fractal heap address where we + * can find additional link messages for this object. This + * happens, for example, when there are lots of links in a + * particular group. + */ + hdf5MsgLinkInfo(link) { + var that = this; + + var ver = this.getU8(); + var flags = this.getU8(); + if ((flags & 1) !== 0) { + this.getU64(); // max. creation index (IGNORE). + } + var fh_address = this.getOffset(); // fractal heap address + var bt_address = this.getOffset(); // v2 btree for name index + if ((flags & 2) !== 0) { + this.getOffset(); // creation order index (IGNORE). + } + if (this.getMetadata("debug")) { + console.log("this.hdf5MsgLinkInfo V" + ver + " F" + flags + + " FH " + fh_address + " BT " + bt_address); + } + var spp = this.tell(); + if (fh_address < this._superblk.eof_addr) { + this.seek(fh_address); + /* If there is a valid fractal heap address in the link info message, that + * means the fractal heap is a collection of link messages. We can ignore + * the btree address because we can get the names from the link messages. + */ + var fh = this.hdf5FractalHeapHeader(); + var n_msg = 0; + this.hdf5FractalHeapEnumerate( fh, function(row, address, block_offset, block_length) { + var end_address = address + block_length; + while (n_msg < fh.heap_nobj && that.tell() < end_address) { + that.hdf5MsgLink(link); + n_msg += 1; + } + return true; // continue with enumeration. + }); + } + this.seek(spp); + } + + + /** + * [PRIVATE] + */ + dt_class_name(cls) { + var names = [ + "Fixed-Point", "Floating-Point", "Time", "String", + "BitField", "Opaque", "Compound", "Reference", + "Enumerated", "Variable-Length", "Array" + ]; + + if (cls < names.length) { + return names[cls]; + } + throw new Error('Unknown datatype class: ' + cls); + } + + + /** + * [PRIVATE] + * + * Process a "datatype" message. These messages specify the data + * type of a single element within a dataset or attribute. Data + * types are extremely flexible, HDF5 supports a range of options + * for bit widths and organization atomic types. We support only + * fixed, float, and string atomic types, and those only for + * certain restricted (but common) cases. At this point we + * provide no support for more exotic types such as bit field, + * enumerated, array, opaque, compound, time, reference, + * variable-length, etc. + * + * TODO: should support enumerated types, possibly a few others. + */ + hdf5MsgDatatype(sz) { + var type = {}; + var cb = 8; + var msg = ""; + var bit_offs; + var bit_prec; + var exp_loc; + var exp_sz; + var mnt_loc; + var mnt_sz; + var exp_bias; + + var cv = this.getU8(); + var ver = cv >> 4; + var cls = cv & 15; + var bf = []; + var i; + for (i = 0; i < 3; i += 1) { + bf[i] = this.getU8(); + } + var dt_size = this.getU32(); + + if (this.getMetadata("debug")) { + console.log("this.hdf5MsgDatatype V" + ver + " C" + cls + + " " + this.dt_class_name(cls) + + " " + bf[0] + "." + bf[1] + "." + bf[2] + + " " + dt_size); + } + + switch (cls) { + case 0: /* Fixed (integer): bit 0 for byte order, bit 3 for signed */ + bit_offs = this.getU16(); + bit_prec = this.getU16(); + switch (dt_size) { + case 4: + type.typ_type = (bf[0] & 8) ? this._type_enum.INT32 : this._type_enum.UINT32; + break; + case 2: + type.typ_type = (bf[0] & 8) ? this._type_enum.INT16 : this._type_enum.UINT16; + break; + case 1: + type.typ_type = (bf[0] & 8) ? this._type_enum.INT8 : this._type_enum.UINT8; + break; + default: + throw new Error('Unknown type size ' + dt_size); + } + type.typ_length = dt_size; + cb += 4; + if (this.getMetadata("debug")) { + console.log(' (' + bit_offs + ' ' + bit_prec + ')'); + } + break; + case 1: /* Float: uses bits 0,6 for byte order */ + msg = ""; + if (this.getMetadata("debug")) { + switch (bf[0] & 0x41) { + case 0: + msg += "LE "; + break; + case 1: + msg += "BE "; + break; + case 0x41: + msg += "VX "; + break; + default: + throw new Error('Reserved fp byte order: ' + bf[0]); + } + } + bit_offs = this.getU16(); + bit_prec = this.getU16(); + exp_loc = this.getU8(); + exp_sz = this.getU8(); + mnt_loc = this.getU8(); + mnt_sz = this.getU8(); + exp_bias = this.getU32(); + if (this.getMetadata("debug")) { + msg += (bit_offs + " " + bit_prec + " " + exp_loc + " " + exp_sz + + " " + mnt_loc + " " + mnt_sz + " " + exp_bias); + } + /* See if it's one of the formats we recognize. + IEEE 64-bit or IEEE 32-bit are the only two we handle. + */ + if (bit_prec === 64 && bit_offs === 0 && + exp_loc === 52 && exp_sz === 11 && + mnt_loc === 0 && mnt_sz === 52 && + exp_bias === 1023 && dt_size === 8) { + type.typ_type = this._type_enum.DBL; + } else if (bit_prec === 32 && bit_offs === 0 && + exp_loc === 23 && exp_sz === 8 && + mnt_loc === 0 && mnt_sz === 23 && + exp_bias === 127 && dt_size === 4) { + type.typ_type = this._type_enum.FLT; + } else { + throw new Error("Unsupported floating-point type"); + } + if (this.getMetadata("debug")) { + console.log(msg); + } + type.typ_length = dt_size; + cb += 12; + break; + + case 3: // string + /* bits 0-3 = 0: null terminate, 1: null pad, 2: space pad */ + /* bits 4-7 = 0: ASCII, 1: UTF-8 */ + type.typ_type = this._type_enum.STR; + type.typ_length = dt_size; + break; + + default: + throw new Error('Unimplemented HDF5 data class ' + cls); + } + if (sz > cb) { + this.skip(sz - cb); + } + return type; + } + + + /** + * [PRIVATE] + * + * Process a "layout" message. These messages specify the location and organization + * of data in a dataset. The organization can be either compact, contiguous, or + * chunked. Compact data is stored in the message as a contiguous block. Contiguous + * data is stored elsewhere in the file in a single chunk. Chunked data is stored within + * a V1 Btree as a series of possibly filtered (e.g. compressed) chunks. + */ + hdf5MsgLayout(link) { + var msg = ""; + + var ver = this.getU8(); + var cls; + var n_dim; + var cdsz; + var dim = []; + var i; + var dtadr; + var dtsz; + var elsz; + + var n_items = 1; + if (ver === 1 || ver === 2) { + n_dim = this.getU8(); + cls = this.getU8(); + this.skip(5); + if (this.getMetadata("debug")) { + msg += "this.hdf5MsgLayout V" + ver + " N" + n_dim + " C" + cls; + } + if (cls === 1 || cls === 2) { // contiguous or chunked + var addr = this.getOffset(); + if (this.getMetadata("debug")) { + msg += " A" + addr; + } + link.data_offset = addr; + } + + for (i = 0; i < n_dim; i += 1) { + dim[i] = this.getU32(); + n_items *= dim[i]; + } + + if (this.getMetadata("debug")) { + msg += "[" + dim.join(', ') + "]"; + } + + if (cls === 2) { // chunked + elsz = this.getU32(); + link.chunk_size = n_items * elsz; + if (this.getMetadata("debug")) { + msg += " E" + elsz; + } + } + if (cls === 0) { // compact + cdsz = this.getU32(); + if (this.getMetadata("debug")) { + msg += "(" + cdsz + ")"; + } + link.data_offset = this.tell(); + link.data_length = cdsz; + } else if (cls === 1) { + link.data_length = n_items; + } + } else if (ver === 3) { + cls = this.getU8(); + msg = "this.hdf5MsgLayout V" + ver + " C" + cls; + + if (cls === 0) { + cdsz = this.getU16(); + if (this.getMetadata("debug")) { + msg += "(" + cdsz + ")"; + } + link.data_offset = this.tell(); + link.data_length = cdsz; + } else if (cls === 1) { + dtadr = this.getOffset(); + dtsz = this.getLength(); + if (this.getMetadata("debug")) { + msg += "(" + dtadr + ", " + dtsz + ")"; + } + link.data_offset = dtadr; + link.data_length = dtsz; + } else if (cls === 2) { + n_dim = this.getU8(); + dtadr = this.getOffset(); + link.data_offset = dtadr; + link.chunk_size = 1; + for (i = 0; i < n_dim - 1; i += 1) { + dim[i] = this.getU32(); + n_items *= dim[i]; + } + if (this.getMetadata("debug")) { + msg += "(N" + n_dim + ", A" + dtadr + " [" + dim.join(',') + "]"; + } + elsz = this.getU32(); + link.chunk_size = n_items * elsz; + if (this.getMetadata("debug")) { + msg += " E" + elsz; + } + } + } else { + throw new Error("Illegal layout version " + ver); + } + if (this.getMetadata("debug")) { + console.log(msg); + } + } + + + /** + * [PRIVATE] + * + * Read a "filter pipeline" message. At the moment we _only_ handle + * deflate/inflate. Anything else will cause us to throw an exception. + */ + hdf5MsgPipeline(link) { + var ver = this.getU8(); + var nflt = this.getU8(); + + var msg = "this.hdf5MsgPipeline V" + ver + " N" + nflt; + if (ver === 1) { + this.skip(6); + } + + if (this.getMetadata("debug")) { + console.log(msg); + } + + var i; + var fiv; + var nlen; + var flags; + var ncdv; + for (i = 0; i < nflt; i += 1) { + fiv = this.getU16(); + if (fiv !== 1) { /* deflate */ + throw new Error("Unimplemented HDF5 filter " + fiv); + } + else { + if (typeof pako !== 'object') { + throw new Error('Need pako to inflate data.'); + } + link.inflate = true; + } + if (ver === 1 || fiv > 256) { + nlen = this.getU16(); + } else { + nlen = 0; + } + + flags = this.getU16(); + ncdv = this.getU16(); + if ((ncdv & 1) !== 0) { + ncdv += 1; + } + if (nlen !== 0) { + this.skip(nlen); // ignore name. + } + + this.skip(ncdv * 4); + + if (this.getMetadata("debug")) { + console.log(" " + i + " ID" + fiv + " F" + flags + " " + ncdv); + } + } + } + + + /** + * [PRIVATE] + * + * Process an "attribute" message. This actually defines an attribute that is + * to be associated with a group or dataset (what I generally call a "link" + * in this code. Attributes include a name, a datatype, and a dataspace, followed + * by the actual data. + */ + hdf5MsgAttribute(sz, link) { + var ver = this.getU8(); + var flags = this.getU8(); + var nm_len = this.getU16(); + var dt_len = this.getU16(); + var ds_len = this.getU16(); + var msg = "this.hdf5MsgAttribute V" + ver + " F" + flags + " " + sz + ": "; + + if ((flags & 3) !== 0) { + throw new Error('Shared dataspaces and datatypes are not supported.'); + } + + if (ver === 3) { + var cset = this.getU8(); + if (this.getMetadata("debug")) { + msg += (cset === 0) ? "ASCII" : "UTF-8"; + } + } + if (this.getMetadata("debug")) { + msg += "(" + nm_len + " " + dt_len + " " + ds_len + ")"; + } + if (ver < 3) { + nm_len = Math.floor((nm_len + 7) / 8) * 8; + dt_len = Math.floor((dt_len + 7) / 8) * 8; + ds_len = Math.floor((ds_len + 7) / 8) * 8; + + if (this.getMetadata("debug")) { + msg += "/(" + nm_len + " " + dt_len + " " + ds_len + ")"; + } + } + + var att_name = this.getString(nm_len); + if (this.getMetadata("debug")) { + msg += " Name: " + att_name; + console.log(msg); + } + var val_type = this.hdf5MsgDatatype(dt_len); + var n_items = this.hdf5MsgDataspace(ds_len); + var val_len = 0; + if (sz > 0) { + if (ver < 3) { + val_len = sz - (8 + nm_len + dt_len + ds_len); + } else { + val_len = sz - (9 + nm_len + dt_len + ds_len); + } + } else { + val_len = val_type.typ_length * n_items; + } + if (this.getMetadata("debug")) { + console.log(" attribute data size " + val_len + " " + this.tell()); + } + var att_value; + if (val_type.typ_type === this._type_enum.STR) { + att_value = this.getString(val_len); + } else { + att_value = this.getArray(val_type.typ_type, val_len); + } + link.attributes[att_name] = att_value; + } + + + /** + * [PRIVATE] + * + * Process a "group info" message. We don't actually do anything with these. + */ + hdf5MsgGroupInfo() { + var n_ent = 4; + var n_lnl = 8; + var ver = this.getU8(); + var flags = this.getU8(); + if ((flags & 1) !== 0) { + this.getU16(); // link phase change: max compact value (IGNORE) + this.getU16(); // link phase cange: max dense value (IGNORE) + } + if ((flags & 2) !== 0) { + n_ent = this.getU16(); + n_lnl = this.getU16(); + } + if (this.getMetadata("debug")) { + console.log("this.hdf5MsgGroupInfo V" + ver + " F" + flags + " ENT " + n_ent + " LNL " + n_lnl); + } + } + + + /** + * [PRIVATE] + * + * Process a "link" message. This specifies the name and header location of either a + * group or a dataset within the current group. It is probably also used to implement + * internal links but we don't really support that. + */ + hdf5MsgLink(link) { + var ver = this.getU8(); + var ltype = 0; + if (ver !== 1) { + throw new Error("Bad link message version " + ver); + } + var flags = this.getU8(); + if ((flags & 8) !== 0) { + ltype = this.getU8(); + } + if ((flags & 4) !== 0) { + this.getU64(); // creation order (IGNORE) + } + if ((flags & 16) !== 0) { + this.getU8(); // link name character set (IGNORE) + } + var cb = 1 << (flags & 3); + var lnsz = this.getUXX(cb); + + var child = this.createLink(); + + child.name = this.getString(lnsz); + + if ((flags & 8) === 0) { + child.hdr_offset = this.getOffset(); + } + + if (this.getMetadata("debug")) { + console.log("this.hdf5MsgLink V" + ver + " F" + flags + " T" + ltype + + " NM " + child.name + " OF " + child.hdr_offset); + } + link.children.push(child); + } + + + /** + * [PRIVATE] + * + * The fractal heap direct block contains: + * 1. A signature. + * 2. a byte version. + * 3. an offset pointing to the header (for integrity checking). + * 4. A variably-sized block offset that gives (_I think_) the mininum block offset + * associated with this block. + * 5. Variably-sized data. Block size varies with row number in a slightly tricky + * fashion. Each "row" consists of "table_width" blocks. The first two rows, row 0 and 1, + * have blocks of the "starting block size". Row 2-N have blocks of size 2^(row-1) times + * the starting block size. + */ + hdf5FractalHeapDirectBlock(fh, row, address, callback) { + if (!this.checkSignature("FHDB")) { + throw new Error("Bad or missing FHDB signature"); + } + var ver = this.getU8(); + if (ver !== 0) { + throw new Error('Bad FHDB version: ' + ver); + } + this.getOffset(); // heap header address (IGNORE) + var cb = Math.ceil(fh.max_heapsz / 8.0); + var block_offset = this.getUXX(cb); // block offset + if ((fh.flags & 2) !== 0) { + this.getU32(); // checksum (IGNORE) + } + + if (this.getMetadata("debug")) { + console.log("FHDB V:" + ver + " R:" + row + " O:" + block_offset + " A:" + address); + } + var header_length = 5 + this._superblk.offsz + cb; + if ((fh.flags & 2) !== 0) { + header_length += 4; + } + var block_length; + if (row <= 1) { + block_length = fh.start_blksz; + } + else { + block_length = Math.pow(2, row - 1) * fh.start_blksz; + } + if (callback) { + return callback(row, address, block_offset, block_length); + } + else { + return true; // continue enumeration. + } + } + + + /** + * [PRIVATE] + * + * The fractal heap indirect block contains: + * 1. A signature. + * 2. a byte version + * 3. an offset pointing to the header (for integrity checking). + * 4. a variably-sized block offset that gives (_I think_) the mininum block offset + * associated with children of this block. + * 5. pointers to K direct blocks + * 6. pointers to N indirect blocks + * 7. A checksum. This code completely ignores checksums. + * See calculations of K and N in this.hdf5FractalHeapHeader(). Note that there can also + * be additional information in the header if "filtered" direct blocks are used. I have + * made no attempt to support this. + */ + hdf5FractalHeapIndirectBlock(fh, callback) { + if (!this.checkSignature("FHIB")) { + throw new Error("Bad or missing FHIB signature"); + } + var ver = this.getU8(); + if (ver !== 0) { + throw new Error('Bad FHIB version: ' + ver); + } + this.getOffset(); // heap header address (IGNORE) + var cb = Math.ceil(fh.max_heapsz / 8.0); + var block_offset = this.getUXX(cb); // block offset + + if (this.getMetadata("debug")) { + console.log("FHIB V:" + ver + " O:" + block_offset); + } + var i; + var address; + var db_addrs = []; + for (i = 0; i < fh.K; i += 1) { + address = this.getOffset(); + if (address < this._superblk.eof_addr) { + if (this.getMetadata("debug")) { + console.log("direct block at " + address); + } + db_addrs.push(address); + } + } + + var ib_addrs = []; + for (i = 0; i < fh.N; i += 1) { + address = this.getOffset(); + if (address < this._superblk.eof_addr) { + if (this.getMetadata("debug")) { + console.log("indirect block at " + address); + } + ib_addrs.push(address); + } + } + this.getU32(); // checksum (IGNORE) + + /* Finished reading the indirect block, now go read its children. + */ + for (i = 0; i < db_addrs.length; i++) { + this.seek(db_addrs[i]); + /* TODO: check row calculation! + */ + if (!this.hdf5FractalHeapDirectBlock(fh, i / fh.table_width, db_addrs[i], callback)) { + return false; + } + } + for (i = 0; i < ib_addrs.length; i++) { + this.seek(ib_addrs[i]); + if (!this.hdf5FractalHeapIndirectBlock(fh, callback)) { + return false; + } + } + return true; + } + + + /** + * [PRIVATE] + * + * enumerate over all of the direct blocks in the fractal heap. + */ + hdf5FractalHeapEnumerate(fh, callback) { + this.seek(fh.root_addr); + if (fh.K === 0) { + this.hdf5FractalHeapDirectBlock(fh, 0, fh.root_addr, callback); + } + else { + this.hdf5FractalHeapIndirectBlock(fh, callback); + } + } + + + /** + * [PRIVATE] + */ + hdf5FractalHeapOffset(fh, offset) { + var location; + this.hdf5FractalHeapEnumerate(fh, function(row, address, block_offset, block_length) { + if (offset >= block_offset && offset < block_offset + block_length) { + location = address + (offset - block_offset); + return false; // stop enumeration. + } + return true; // continue enumeration. + }); + return location; + } + + + /** + * [PRIVATE] + * + * Attribute info messages contain pointers to a fractal heap and a v2 btree. + * If these pointers are valid, we must follow them to find more attributes. + * The attributes are indexed by records in the "type 8" btree. These btree + * records + */ + hdf5MsgAttrInfo(link) { + var ver = this.getU8(); + if (ver !== 0) { + throw new Error('Bad attribute information message version: ' + ver); + } + + var flags = this.getU8(); + + if ((flags & 1) !== 0) { + this.getU16(); // maximum creation index (IGNORE) + } + var fh_addr = this.getOffset(); + var bt_addr = this.getOffset(); + if ((flags & 2) !== 0) { + this.getOffset(); // attribute creation order (IGNORE) + } + + if (this.getMetadata("debug")) { + console.log("this.hdf5MsgAttrInfo V" + ver + " F" + flags + " HP " + fh_addr + + " AN " + bt_addr); + } + + var spp = this.tell(); + var fh; // fractal heap header. + if (fh_addr < this._superblk.eof_addr) { + this.seek(fh_addr); + fh = this.hdf5FractalHeapHeader(); + } + if (bt_addr < this._superblk.eof_addr) { + this.seek(bt_addr); + var bh = this.hdf5V2BtreeHeader(); + if (bh.type !== 8) { + throw new Error("Can only handle indexed attributes."); + } + this.seek(bh.root_addr); + if (bh.depth > 0) { + this.hdf5V2BtreeInternalNode(fh, bh.root_nrec, bh.depth, link); + } + else { + this.hdf5V2BtreeLeafNode(fh, bh.root_nrec, link); + } + } + this.seek(spp); + } + + + /** + * [PRIVATE] + * + * Process a single message, given a message header. Assumes that + * the data view offset is pointing to the remainder of the + * message. + * + * V1 and V2 files use different sets of messages to accomplish + * similar things. For example, V1 files tend to use "symbol + * table" messages to describe links within a group, whereas V2 + * files use "link" and "linkinfo" messages. + */ + hdf5ProcessMessage(msg, link) { + var cq_new = {}; + var val_type; + + switch (msg.hm_type) { + case 1: + this.hdf5MsgDataspace(msg.hm_size, link); + break; + case 2: + this.hdf5MsgLinkInfo(link); + break; + case 3: + val_type = this.hdf5MsgDatatype(msg.hm_size); + if (link) { + link.type = val_type.typ_type; + } + break; + case 6: + this.hdf5MsgLink(link); + break; + case 8: + this.hdf5MsgLayout(link); + break; + case 10: + this.hdf5MsgGroupInfo(); + break; + case 11: + this.hdf5MsgPipeline(link); + break; + case 12: + this.hdf5MsgAttribute(msg.hm_size, link); + break; + case 16: + /* Process an object header continuation message. These + * basically just say this header continues with a new segment + * with a given location and length. They can come before the + * end of the current message segment, and multiple + * continuation messages can occur in any particular segment. + * This means we have to enqueue them and shift them off the + * queue when we finish processing the current segment. + */ + cq_new.cq_off = this.getOffset(); + cq_new.cq_len = this.getLength(); + this._continuation_queue.push(cq_new); + if (this.getMetadata("debug")) { + console.log("hdf5MsgObjHdrContinue " + cq_new.cq_off + " " + cq_new.cq_len); + } + break; + case 17: // SymbolTable + link.sym_btree = this.getOffset(); + link.sym_lheap = this.getOffset(); + if (this.getMetadata("debug")) { + console.log("hdf5MsgSymbolTable " + link.sym_btree + " " + link.sym_lheap); + } + break; + case 21: + this.hdf5MsgAttrInfo(link); + break; + case 0: + case 4: + case 5: + case 7: + case 18: + case 19: + case 20: + case 22: + case 24: + this.skip(msg.hm_size); + break; + default: + throw new Error('Unknown message type: ' + msg.hm_type); + } + } + + + /** + * [PRIVATE] + * + * Read a V2 object header. Object headers contain a series of messages that define + * an HDF5 object, primarily a group or a dataset. V2 object headers, and V2 objects + * generally, are much less concerned about alignment than V1 objects. + */ + hdf5V2ObjectHeader(link) { + if (!this.checkSignature("OHDR")) { + throw new Error('Bad or missing OHDR signature'); + } + + var ver = this.getU8(); + var flags = this.getU8(); + + if ((flags & 0x20) !== 0) { + this.getU32(); // access time (IGNORE) + this.getU32(); // modify time (IGNORE) + this.getU32(); // change time (IGNORE) + this.getU32(); // birth time (IGNORE) + } + + if ((flags & 0x10) !== 0) { + this.getU16(); // maximum number of compact attributes (IGNORE) + this.getU16(); // maximum number of dense attributes (IGNORE) + } + + var cb = 1 << (flags & 3); + var ck0_size = this.getUXX(cb); + + var msg_num = 0; + var msg_offs = 0; + var msg_bytes = ck0_size; + + if (this.getMetadata("debug")) { + console.log("this.hdf5V2ObjectHeader V" + ver + " F" + flags + " HS" + ck0_size); + } + + var hmsg; + var cq_head; + var spp; + + while (true) { + while (msg_bytes - msg_offs >= 8) { + hmsg = {}; + hmsg.hm_type = this.getU8(); + hmsg.hm_size = this.getU16(); + hmsg.hm_flags = this.getU8(); + if (this.getMetadata("debug")) { + console.log(" msg" + msg_num + " F" + hmsg.hm_flags + " T " + + hmsg.hm_type + " S " + hmsg.hm_size + + " (" + msg_offs + "/" + msg_bytes + ") " + + this.hdf5GetMsgName(hmsg.hm_type)); + } + if ((flags & 0x04) !== 0) { + hmsg.hm_corder = this.getU16(); + } + spp = this.tell(); + this.hdf5ProcessMessage(hmsg, link); + this.seek(spp + hmsg.hm_size); // this.skip past message. + + msg_offs += hmsg.hm_size + 4; + + msg_num += 1; + } + + if ((msg_bytes - msg_offs) > 4) { + this.skip(msg_bytes - (msg_offs + 4)); + } + + this.getU32(); // checksum (IGNORE) + + if (this._continuation_queue.length !== 0) { + cq_head = this._continuation_queue.shift(); + this.seek(cq_head.cq_off); + msg_bytes = cq_head.cq_len - 4; + msg_offs = 0; + if (this.getMetadata("debug")) { + console.log('continuing with ' + cq_head.cq_len + ' bytes at ' + this.tell()); + } + if (!this.checkSignature("OCHK")) { + throw new Error("Bad v2 object continuation"); + } + } else { + break; + } + } + + link.children.forEach(function (child, link_num) { + that.seek(child.hdr_offset); + if (that.getMetadata("debug")) { + console.log(link_num + " " + child.hdr_offset + " " + child.name); + } + if (this.checkSignature("OHDR")) { + that.seek(child.hdr_offset); + that.hdf5V2ObjectHeader(child); + } + else { + that.seek(child.hdr_offset); + that.hdf5V1ObjectHeader(child); + } + }); + } + + + /** + * [PRIVATE] + */ + loadData(link) { + var that = this; + + if (link.chunk_size !== 0) { + this.seek(link.data_offset); + + var n_bytes = 1; + var i; + for (i = 0; i < link.dims.length; i += 1) { + n_bytes *= link.dims[i]; + } + n_bytes *= this.typeSize(link.type); + if (this.getMetadata("debug")) { + console.log('allocating ' + n_bytes + ' bytes'); + } + var ab = new ArrayBuffer(n_bytes); + link.n_filled = 0; + switch (link.type) { + case this._type_enum.INT8: + link.array = new Int8Array(ab); + break; + case this._type_enum.UINT8: + link.array = new Uint8Array(ab); + break; + case this._type_enum.INT16: + link.array = new Int16Array(ab); + break; + case this._type_enum.UINT16: + link.array = new Uint16Array(ab); + break; + case this._type_enum.INT32: + link.array = new Int32Array(ab); + break; + case this._type_enum.UINT32: + link.array = new Uint32Array(ab); + break; + case this._type_enum.FLT: + link.array = new Float32Array(ab); + break; + case this._type_enum.DBL: + link.array = new Float64Array(ab); + break; + default: + throw new Error('Illegal type: ' + link.type); + } + this.hdf5V1BtreeNode(link); + } else { + if (link.data_offset > 0 && link.data_offset < this._superblk.eof_addr) { + if (this.getMetadata("debug")) { + console.log('loading ' + link.data_length + ' bytes from ' + link.data_offset + ' to ' + link.name); + } + link.array = this.getArray(link.type, link.data_length, + link.data_offset); + } else { + if (this.getMetadata("debug")) { + console.log('data not present for /' + link.name + '/'); + } + } + } + + link.children.forEach(function (child) { + that.loadData(child); + }); + } + + + /** + * [PRIVATE] + * + * Read a v1 object header. Object headers contain a series of + * messages that define an HDF5 object, primarily a group or a + * dataset. The v1 object header, like most of the v1 format, is + * very careful about alignment. Every message must be on an + * 8-byte alignment RELATIVE TO THE START OF THE HEADER. So if the + * header starts on an odd boundary, messages may start on odd + * boundaries as well. No, this doesn't make much sense. + */ + hdf5V1ObjectHeader(link) { + var that = this; + var oh = {}; + this.startAlignment(); + oh.oh_ver = this.getU8(); + this.skip(1); // reserved + oh.oh_n_msgs = this.getU16(); + oh.oh_ref_cnt = this.getU32(); + oh.oh_hdr_sz = this.getU32(); + if (oh.oh_ver !== 1) { + throw new Error("Bad v1 object header version: " + oh.oh_ver); + } + if (this.getMetadata("debug")) { + console.log("this.hdf5V1ObjectHeader V" + oh.oh_ver + + " #M " + oh.oh_n_msgs + + " RC " + oh.oh_ref_cnt + + " HS " + oh.oh_hdr_sz); + } + + var msg_bytes = oh.oh_hdr_sz; + var cq_head; + var msg_num; + var hmsg; + var spp; + + for (msg_num = 0; msg_num < oh.oh_n_msgs; msg_num += 1) { + if (msg_bytes <= 8) { + if (this._continuation_queue.length !== 0) { + cq_head = this._continuation_queue.shift(); + this.seek(cq_head.cq_off); + msg_bytes = cq_head.cq_len; + if (this.getMetadata("debug")) { + console.log('continuing with ' + msg_bytes + ' bytes at ' + this.tell()); + } + this.startAlignment(); + } else { + break; + } + } + + this.checkAlignment(); + + hmsg = {}; + hmsg.hm_type = this.getU16(); + hmsg.hm_size = this.getU16(); + hmsg.hm_flags = this.getU8(); + + if ((hmsg.hm_size % 8) !== 0) { + throw new Error('Size is not 8-byte aligned: ' + hmsg.hm_size); + } + this.skip(3); // this.skip reserved + msg_bytes -= (8 + hmsg.hm_size); + if (this.getMetadata("debug")) { + console.log(" msg" + msg_num + + " F " + hmsg.hm_flags + + " T " + hmsg.hm_type + + " S " + hmsg.hm_size + + "(" + msg_bytes + ") " + this.hdf5GetMsgName(hmsg.hm_type)); + } + + spp = this.tell(); + this.hdf5ProcessMessage(hmsg, link); + this.seek(spp + hmsg.hm_size); // this.skip whole message. + } + + if (link.sym_btree !== 0 && link.sym_lheap !== 0) { + this.seek(link.sym_btree); + var bt = this.hdf5V1BtreeNode(); + this.seek(link.sym_lheap); + var lh = this.hdf5LocalHeap(); + var i; + for (i = 0; i < bt.entries_used; i += 1) { + this.seek(bt.keys[i].child_address); + if (this.checkSignature("SNOD")) { + this.seek(bt.keys[i].child_address); + this.hdf5GroupSymbolTable(lh, link); + } else { + this.seek(bt.keys[i].child_address); + this.hdf5V1ObjectHeader(link); + } + } + + link.children.forEach(function (child) { + that.seek(child.hdr_offset); + that.hdf5V1ObjectHeader(child); + }); + } + } + + +//------------------------------------------------------------------------------ +// FROM hdf5_tools.js + + getTypeMatchMinc(typeEnumVal){ + return this._type_matching[typeEnumVal - 1]; + } + + + + defined(x) { + return typeof x !== 'undefined'; + } + + + typeName(x) { + if (! this.defined(x)) { + return "undefined"; + } + return x.constructor.name; + } + + + + typeSize(typ) { + if (typ >= this._type_enum.INT8 && typ < this.type_sizes.length) { + return this.type_sizes[typ]; + } + throw new Error('Unknown type ' + typ); + } + + + typeIsFloat(typ) { + return (typ >= this._type_enum.FLT && typ <=this._type_enum.DBL); + } + + + /* + * The remaining code after this point is not truly HDF5 specific - + * it's mostly about converting the MINC file into the form + * BrainBrowser is able to use. Therefore it is used for both HDF5 + * and NetCDF files. + */ + + /* + * Join does not seem to be defined on the typed arrays in + * javascript, so I've re-implemented it here, sadly. + */ + join(array, string) { + var result = ""; + if (array && array.length) { + var i; + for (i = 0; i < array.length - 1; i += 1) { + result += array[i]; + result += string; + } + result += array[i]; + } + return result; + } + + /* + * Recursively print out the structure and contents of the file. + * Primarily useful for debugging. + */ + printStructure(link, level) { + var that = this; + + var i; + var msg = ""; + for (i = 0; i < level * 2; i += 1) { + msg += " "; + } + msg += link.name + (link.children.length ? "/" : ""); + if (link.type > 0) { + msg += ' ' + this.typeName(link.array); + if (link.dims.length) { + msg += '[' + link.dims.join(', ') + ']'; + } + if (link.array) { + msg += ":" + link.array.length; + } else { + msg += " NULL"; + } + } + console.log(msg); + + Object.keys(link.attributes).forEach(function (name) { + var value = link.attributes[name]; + + msg = ""; + for (i = 0; i < level * 2 + 1; i += 1) { + msg += " "; + } + msg += link.name + ':' + name + " " + + that.typeName(value) + "[" + value.length + "] "; + if (typeof value === "string") { + msg += JSON.stringify(value); + } else { + msg += "{" + that.join(value.slice(0, 16), ', '); + if (value.length > 16) { + msg += ", ..."; + } + msg += "}"; + } + console.log(msg); + }); + + link.children.forEach(function (child) { + that.printStructure(child, level + 1); + }); + } + + /* Find a dataset with a given name, by recursively searching through + * the links. Groups will have 'type' fields of -1, since they contain + * no data. + * TODO (maybe): Use associative array for children? + */ + findDataset(link, name, level) { + var that = this; + var result; + if (link && link.name === name && link.type > 0) { + result = link; + } else { + link.children.find( function( child ) { + result = that.findDataset(child, name, level + 1); + return that.defined(result); + }); + } + return result; + } + + /* Find an attribute with a given name. + */ + findAttribute(link, name, level) { + var that = this; + var result = link.attributes[name]; + if (result) + return result; + + link.children.find( function (child ) { + result = that.findAttribute( child, name, level + 1); + return that.defined(result); + }); + return result; + } + + /** + * @doc function + * @name hdf5.this.scaleVoxels + * @param {object} image The link object corresponding to the image data. + * @param {object} image_min The link object corresponding to the image-min + * data. + * @param {object} image_max The link object corresponding to the image-max + * data. + * @param {object} valid_range An array of exactly two items corresponding + * to the minimum and maximum valid _raw_ voxel values. + * @param {boolean} debug True if we should print debugging information. + * @returns A new ArrayBuffer containing the rescaled data. + * @description + * Convert the MINC data from voxel to real range. This returns a + * new buffer that contains the "real" voxel values. It does less + * work for floating-point volumes, since they don't need scaling. + * + * For debugging/testing purposes, also gathers basic voxel statistics, + * for comparison against mincstats. + */ + scaleVoxels(image, image_min, image_max, valid_range, debug) { + /* + var new_abuf = new ArrayBuffer(image.array.length * + Float32Array.BYTES_PER_ELEMENT); + var new_data = new Float32Array(new_abuf); + + */ + + // 1D array to store the voxel data, + // not initialized yet because it depends on the hdf5 type. + var new_abuf = null; + var new_data = null; + + // we could simply use image.type, but written types are easier to read... + switch (this.getTypeMatchMinc(image.type)) { + case 'int8': + new_abuf = new ArrayBuffer(image.array.length * Int8Array.BYTES_PER_ELEMENT); + new_data = new Int8Array(new_abuf); + break; + + case 'int16': + new_abuf = new ArrayBuffer(image.array.length * Int16Array.BYTES_PER_ELEMENT); + new_data = new Int16Array(new_abuf); + break; + + case 'int32': + new_abuf = new ArrayBuffer(image.array.length * Int32Array.BYTES_PER_ELEMENT); + new_data = new Int32Array(new_abuf); + break; + + case 'float32': + new_abuf = new ArrayBuffer(image.array.length * Float32Array.BYTES_PER_ELEMENT); + new_data = new Float32Array(new_abuf); + break; + + case 'float64': + new_abuf = new ArrayBuffer(image.array.length * Float64Array.BYTES_PER_ELEMENT); + new_data = new Float64Array(new_abuf); + break; + + case 'uint8': + new_abuf = new ArrayBuffer(image.array.length * Uint8Array.BYTES_PER_ELEMENT); + new_data = new Uint8Array(new_abuf); + break; + + case 'uint16': + new_abuf = new ArrayBuffer(image.array.length * Uint16Array.BYTES_PER_ELEMENT); + new_data = new Uint16Array(new_abuf); + break; + + case 'uint32': + new_abuf = new ArrayBuffer(image.array.length * Uint32Array.BYTES_PER_ELEMENT); + new_data = new Uint32Array(new_abuf); + break; + + default: + var error_message = "Unsupported data type: " + header.datatype; + console.log({ message: error_message } ); + //BrainBrowser.events.triggerEvent("error", { message: error_message } ); + throw new Error(error_message); + + } + + + var n_slice_dims = image.dims.length - image_min.dims.length; + + if (n_slice_dims < 1) { + throw new Error("Too few slice dimensions: " + image.dims.length + + " " + image_min.dims.length); + } + var n_slice_elements = 1; + var i; + for (i = image_min.dims.length; i < image.dims.length; i += 1) { + n_slice_elements *= image.dims[i]; + } + if (debug) { + console.log(n_slice_elements + " voxels in slice."); + } + var s = 0; + var c = 0; + var x = -Number.MAX_VALUE; + var n = Number.MAX_VALUE; + var im = image.array; + var im_max = image_max.array; + var im_min = image_min.array; + if (debug) { + console.log("valid range is " + valid_range[0] + " to " + valid_range[1]); + } + + var vrange; + var rrange; + var vmin = valid_range[0]; + var rmin; + var j; + var v; + var is_float = this.typeIsFloat(image.type); + for (i = 0; i < image_min.array.length; i += 1) { + if (debug) { + console.log(i + " " + im_min[i] + " " + im_max[i] + " " + + im[i * n_slice_elements]); + } + if (is_float) { + /* For floating-point volumes there is no scaling to be performed. + * We do scan the data and make sure voxels are within the valid + * range, and collect our statistics. + */ + for (j = 0; j < n_slice_elements; j += 1) { + v = im[c]; + if (v < valid_range[0] || v > valid_range[1]) { + new_data[c] = 0.0; + } + else { + new_data[c] = v; + s += v; + if (v > x) { + x = v; + } + if (v < n) { + n = v; + } + } + c += 1; + } + } + else { + /* For integer volumes we have to scale each slice according to image-min, + * image-max, and valid_range. + */ + vrange = (valid_range[1] - valid_range[0]); + rrange = (im_max[i] - im_min[i]); + rmin = im_min[i]; + + /* + console.log(n_slice_elements); + console.log(vrange); + console.log(rrange); + console.log(rmin); + console.log("-----------------"); + */ + + + for (j = 0; j < n_slice_elements; j += 1) { + + // v normalization to avoid "flickering". + // v is scaled to the range [0, im_max[i]] + // (possibly uint16 if the original per-slice min-max was not scaled up/down) + v = (im[c] - vmin) / vrange * rrange + rmin; + + // we scale up/down to match the type of the target array + v = v / im_max[i] * valid_range[1]; + + + new_data[c] = v; + s += v; + c += 1; + if (v > x) { + x = v; + } + if (v < n) { + n = v; + } + + } + + } + } + + if (debug) { + console.log("Min: " + n); + console.log("Max: " + x); + console.log("Sum: " + s); + console.log("Mean: " + s / c); + } + + return new_abuf; + } + + /** + * @doc function + * @name hdf5.this.isRgbVolume + * @param {object} header The header object representing the structure + * of the MINC file. + * @param {object} image The typed array object used to represent the + * image data. + * @returns {boolean} True if this is an RGB volume. + * @description + * A MINC volume is an RGB volume if all three are true: + * 1. The voxel type is unsigned byte. + * 2. It has a vector_dimension in the last (fastest-varying) position. + * 3. The vector dimension has length 3. + */ + isRgbVolume(header, image) { + var order = header.order; + return (image.array.constructor.name === 'Uint8Array' && + order.length > 0 && + order[order.length - 1] === "vector_dimension" && + header.vector_dimension.space_length === 3); + } + + /** + * @doc function + * @name hdf5.this.rgbVoxels + * @param {object} image The 'link' object created using createLink(), + * that corresponds to the image within the HDF5 or NetCDF file. + * @returns {object} A new ArrayBuffer that contains the original RGB + * data augmented with alpha values. + * @description + * This function copies the RGB voxels to the destination buffer. + * Essentially we just convert from 24 to 32 bits per voxel. This + * is another MINC-specific function. + */ + rgbVoxels(image) { + var im = image.array; + var n = im.length; + var new_abuf = new ArrayBuffer(n / 3 * 4); + var new_byte = new Uint8Array(new_abuf); + var i, j = 0; + for (i = 0; i < n; i += 3) { + new_byte[j+0] = im[i+0]; + new_byte[j+1] = im[i+1]; + new_byte[j+2] = im[i+2]; + new_byte[j+3] = 255; + j += 4; + } + return new_abuf; + } + + + //---------------------------------------------------------------------------- + // FROM minc_reader.js + parseHeader(header_text) { + var header; + var error_message; + + try{ + header = JSON.parse(header_text); + } catch(error) { + error_message = "server did not respond with valid JSON" + "\n" + + "Response was: \n" + header_text; + + console.log( { message: error_message }); + + // BrainBrowser.events.triggerEvent("error", { message: error_message }); + throw new Error(error_message); + } + + if(header.order.length === 4) { + header.order = header.order.slice(1); + } + + header.datatype = header.datatype || "uint8"; + + header.xspace.space_length = parseFloat(header.xspace.space_length); + header.yspace.space_length = parseFloat(header.yspace.space_length); + header.zspace.space_length = parseFloat(header.zspace.space_length); + + header.xspace.start = parseFloat(header.xspace.start); + header.yspace.start = parseFloat(header.yspace.start); + header.zspace.start = parseFloat(header.zspace.start); + + header.xspace.step = parseFloat(header.xspace.step); + header.yspace.step = parseFloat(header.yspace.step); + header.zspace.step = parseFloat(header.zspace.step); + + header.xspace.direction_cosines = header.xspace.direction_cosines || [1, 0, 0]; + header.yspace.direction_cosines = header.yspace.direction_cosines || [0, 1, 0]; + header.zspace.direction_cosines = header.zspace.direction_cosines || [0, 0, 1]; + + header.xspace.direction_cosines = header.xspace.direction_cosines.map(parseFloat); + header.yspace.direction_cosines = header.yspace.direction_cosines.map(parseFloat); + header.zspace.direction_cosines = header.zspace.direction_cosines.map(parseFloat); + + /* Incrementation offsets for each dimension of the volume. + * Note that this somewhat format-specific, so it does not + * belong in the generic "createVolume()" code. + */ + header[header.order[0]].offset = header[header.order[1]].space_length * header[header.order[2]].space_length; + header[header.order[1]].offset = header[header.order[2]].space_length; + header[header.order[2]].offset = 1; + + if(header.time) { + header.time.space_length = parseFloat(header.time.space_length); + header.time.start = parseFloat(header.time.start); + header.time.step = parseFloat(header.time.step); + header.time.offset = header.xspace.space_length * header.yspace.space_length * header.zspace.space_length; + } + + return header; + } + + +/* + createMincVolume(header, raw_data){ + var volume = createVolume(header, this.createMincData(header, raw_data)); + volume.type = "minc"; + + volume.saveOriginAndTransform(header); + volume.intensity_min = header.voxel_min; + volume.intensity_max = header.voxel_max; + + return volume; + + } +*/ + + + /* + initialize the large 1D array of data depending on the type found. + Rearange the original ArrayBuffer into a typed array. + args: + header: obj - header of the data + raw_data: ArrayBuffer - sub object given by hdf5Loader + */ + createMincData(header, raw_data){ + + var native_data = null; + + switch (header.datatype) { + case 'int8': + native_data = new Int8Array(raw_data); + break; + case 'int16': + native_data = new Int16Array(raw_data); + break; + case 'int32': + native_data = new Int32Array(raw_data); + break; + case 'float32': + native_data = new Float32Array(raw_data); + break; + case 'float64': + native_data = new Float64Array(raw_data); + break; + case 'uint8': + native_data = new Uint8Array(raw_data); + break; + case 'uint16': + native_data = new Uint16Array(raw_data); + break; + case 'uint32': + case 'rgb8': + native_data = new Uint32Array(raw_data); + break; + default: + var error_message = "Unsupported data type: " + header.datatype; + console.log({ message: error_message } ); + //BrainBrowser.events.triggerEvent("error", { message: error_message } ); + throw new Error(error_message); + } + + return native_data; + } + + + + + //---------------------------------------------------------------------------- + + _run(){ + var that = this; + + var inputBuffer = this._getInput(0); + + if(!inputBuffer){ + console.warn("Minc2Decoder requires an ArrayBuffer as input \"0\". Unable to continue."); + return; + } + + this._dv = new DataView(inputBuffer); + + + /* Patch in the missing function to get 64-bit integers. + * Note: this won't really quite work b/c Javascript doesn't + * have support for 64-bit integers. + */ + this._dv.getUint64 = function (off, little_endian) { + var l4 = that._dv.getUint32(off + 0, little_endian); + var u4 = that._dv.getUint32(off + 4, little_endian); + if (little_endian) { + return (u4 << 32) + l4; + } else { + return (l4 << 32) + u4; + } + }; + + + var root = this.createLink(); + + try{ + this._superblk = this.hdf5Superblock(); + }catch(e){ + //console.error(e); + console.warn("The input file is not a Minc2 file."); + return; + } + + + this.seek(this._superblk.root_addr); + + if (this._superblk.sbver <= 1) { + this.hdf5V1ObjectHeader(root); + } else { + this.hdf5V2ObjectHeader(root); + } + + this.loadData(root); + + + + + + if (this.getMetadata("debug")) { + this.printStructure(root, 0); + } + + /* The rest of this code is MINC-specific, so like some of the + * functions above, it can migrate into minc.js once things have + * stabilized. + * + * This code is responsible for collecting up the various pieces + * of important data and metadata, and reorganizing them into the + * form the volume viewer can handle. + */ + var image = this.findDataset(root, "image"); + if (!this.defined(image)) { + throw new Error("Can't find image dataset."); + } + + var valid_range = this.findAttribute(image, "valid_range", 0); + /* If no valid_range is found, we substitute our own. */ + if (!this.defined(valid_range)) { + var min_val; + var max_val; + switch (image.type) { + case this._type_enum.INT8: + min_val = -(1 << 7); + max_val = (1 << 7) - 1; + break; + case this._type_enum.UINT8: + min_val = 0; + max_val = (1 << 8) - 1; + break; + case this._type_enum.INT16: + min_val = -(1 << 15); + max_val = (1 << 15) - 1; + break; + case this._type_enum.UINT16: + min_val = 0; + max_val = (1 << 16) - 1; + break; + case this._type_enum.INT32: + min_val = -(1 << 31); + max_val = (1 << 31) - 1; + break; + case this._type_enum.UINT32: + min_val = 0; + max_val = (1 << 32) - 1; + break; + } + valid_range = Float32Array.of(min_val, max_val); + } + + + var image_min = this.findDataset(root, "image-min"); + if (!this.defined(image_min)) { + image_min = { + array: Float32Array.of(0), + dims: [] + }; + } + + var image_max = this.findDataset(root, "image-max"); + if (!this.defined(image_max)) { + image_max = { + array: Float32Array.of(1), + dims: [] + }; + } + + + /* Create the header expected by the existing brainbrowser code. + */ + var header = {}; + var tmp = this.findAttribute(image, "dimorder", 0); + if (typeof tmp !== 'string') { + throw new Error("Can't find dimension order."); + } + header.order = tmp.split(','); + + header.order.forEach(function(dimname) { + var dim = that.findDataset(root, dimname); + if (!that.defined(dim)) { + throw new Error("Can't find dimension variable " + dimname); + } + + header[dimname] = {}; + + tmp = that.findAttribute(dim, "step", 0); + if (!that.defined(tmp)) { + tmp = Float32Array.of(1); + } + header[dimname].step = tmp[0]; + + tmp = that.findAttribute(dim, "start", 0); + if (!that.defined(tmp)) { + tmp = Float32Array.of(0); + } + header[dimname].start = tmp[0]; + + tmp = that.findAttribute(dim, "length", 0); + if (!that.defined(tmp)) { + throw new Error("Can't find length for " + dimname); + } + header[dimname].space_length = tmp[0]; + + tmp = that.findAttribute(dim, "direction_cosines", 0); + if (that.defined(tmp)) { + // why is the bizarre call to slice needed?? it seems to work, though! + header[dimname].direction_cosines = Array.prototype.slice.call(tmp); + } + else { + if (dimname === "xspace") { + header[dimname].direction_cosines = [1, 0, 0]; + } else if (dimname === "yspace") { + header[dimname].direction_cosines = [0, 1, 0]; + } else if (dimname === "zspace") { + header[dimname].direction_cosines = [0, 0, 1]; + } + } + }); + + var new_abuf; + + if (this.isRgbVolume(header, image)) { + header.order.pop(); + header.datatype = 'rgb8'; + new_abuf = this.rgbVoxels(image); + } + else { + + //header.datatype = 'float32'; + header.datatype = this.getTypeMatchMinc(image.type) + + new_abuf = this.scaleVoxels(image, image_min, image_max, valid_range, this.getMetadata("debug")); + } + + var minc_header = this.parseHeader( JSON.stringify(header) ); + var dataArray = this.createMincData(minc_header, new_abuf) + + // add the output to this filter + this._addOutput(MniVolume); + var mniVol = this.getOutput(); + mniVol.setData(dataArray, minc_header); + mniVol.setMetadata("format", "minc2"); + } + + + +} /* END of class Hdf5Decoder */ + +export { Minc2Decoder } diff --git a/src/decoder/NiftiDecoder.js b/src/decoder/NiftiDecoder.js new file mode 100644 index 0000000..ba7d0c2 --- /dev/null +++ b/src/decoder/NiftiDecoder.js @@ -0,0 +1,330 @@ +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* Robert D. Vincent +* +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ + +import pako from 'pako' +import { Filter } from '../core/Filter.js'; +import { MniVolume } from '../core/MniVolume.js'; + + +class NiftiDecoder extends Filter { + + constructor(){ + super(); + this.setMetadata("debug", false); + } + + + /** + * [PRIVATE] + */ + parseNifti1Header(raw_data) { + var header = { + order: ["zspace", "yspace", "xspace"], + xspace: {}, + yspace: {}, + zspace: {} + }; + var error_message = null; + var dview = new DataView(raw_data, 0, 348); + var bytes = new Uint8Array(raw_data, 0, 348); + var littleEndian = true; + + var sizeof_hdr = dview.getUint32(0, true); + if (sizeof_hdr === 0x0000015c) { + littleEndian = true; + } else if (sizeof_hdr === 0x5c010000) { + littleEndian = false; + } else { + error_message = "This does not look like a NIfTI-1 file."; + } + + var ndims = dview.getUint16(40, littleEndian); + if (ndims < 3 || ndims > 4) { + error_message = "Cannot handle " + ndims + "-dimensional images yet."; + } + + var magic = String.fromCharCode.apply(null, bytes.subarray(344, 348)); + if (magic !== "n+1\0") { + error_message = "Bad magic number: '" + magic + "'"; + } + + if (error_message) { + //throw new Error(error_message); + console.warn("The input file is not a NIfTI file."); + return null; + } + + header.xspace.space_length = dview.getUint16(42, littleEndian); + header.yspace.space_length = dview.getUint16(44, littleEndian); + header.zspace.space_length = dview.getUint16(46, littleEndian); + var tlength = dview.getUint16(48, littleEndian); + + var datatype = dview.getUint16(70, littleEndian); + var bitpix = dview.getUint16(72, littleEndian); + + var xstep = dview.getFloat32(80, littleEndian); + var ystep = dview.getFloat32(84, littleEndian); + var zstep = dview.getFloat32(88, littleEndian); + var tstep = dview.getFloat32(92, littleEndian); + + var vox_offset = dview.getFloat32(108, littleEndian); + if (vox_offset < 352) { + vox_offset = 352; + } + + var scl_slope = dview.getFloat32(112, littleEndian); + var scl_inter = dview.getFloat32(116, littleEndian); + + var qform_code = dview.getUint16(252, littleEndian); + var sform_code = dview.getUint16(254, littleEndian); + + var transform = [ + [1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1] + ]; + + if (tlength >= 1) { + header.time = {}; + header.time.space_length = tlength; + header.time.step = tstep; + header.time.start = 0; + header.time.name = "time"; + header.order = ["time", "zspace", "yspace", "xspace"]; + } + + /* Record the number of bytes per voxel, and note whether we need + * to swap bytes in the voxel data. + */ + header.bytes_per_voxel = bitpix / 8; + header.must_swap_data = !littleEndian && header.bytes_per_voxel > 1; + + if (sform_code > 0) { + /* The "Sform", if present, defines an affine transform which is + * generally assumed to correspond to some standard coordinate + * space (e.g. Talairach). + */ + transform[0][0] = dview.getFloat32(280, littleEndian); + transform[0][1] = dview.getFloat32(284, littleEndian); + transform[0][2] = dview.getFloat32(288, littleEndian); + transform[0][3] = dview.getFloat32(292, littleEndian); + transform[1][0] = dview.getFloat32(296, littleEndian); + transform[1][1] = dview.getFloat32(300, littleEndian); + transform[1][2] = dview.getFloat32(304, littleEndian); + transform[1][3] = dview.getFloat32(308, littleEndian); + transform[2][0] = dview.getFloat32(312, littleEndian); + transform[2][1] = dview.getFloat32(316, littleEndian); + transform[2][2] = dview.getFloat32(320, littleEndian); + transform[2][3] = dview.getFloat32(324, littleEndian); + } + else if (qform_code > 0) { + /* The "Qform", if present, defines a quaternion which specifies + * a less general transformation, often to scanner space. + */ + var quatern_b = dview.getFloat32(256, littleEndian); + var quatern_c = dview.getFloat32(260, littleEndian); + var quatern_d = dview.getFloat32(264, littleEndian); + var qoffset_x = dview.getFloat32(268, littleEndian); + var qoffset_y = dview.getFloat32(272, littleEndian); + var qoffset_z = dview.getFloat32(276, littleEndian); + var qfac = (dview.getFloat32(76, littleEndian) < 0) ? -1.0 : 1.0; + + transform = this.niftiQuaternToMat44(quatern_b, quatern_c, quatern_d, + qoffset_x, qoffset_y, qoffset_z, + xstep, ystep, zstep, qfac); + } + else { + transform[0][0] = xstep; + transform[1][1] = ystep; + transform[2][2] = zstep; + } + + MniVolume.transformToMinc(transform, header); + + header.datatype = datatype; + header.vox_offset = vox_offset; + header.scl_slope = scl_slope; + header.scl_inter = scl_inter; + + return header; + } + + + /** + * [PRIVATE] + * This function is a direct translation of the identical function + * found in the standard NIfTI-1 library (nifti1_io.c). + */ + niftiQuaternToMat44( qb, qc, qd, + qx, qy, qz, + dx, dy, dz, qfac ) + { + var m = [ // 4x4 transform + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 0], + [0, 0, 0, 1] + ]; + var b = qb; + var c = qc; + var d = qd; + var a, xd, yd, zd; + + // compute a parameter from b,c,d + + a = 1.0 - (b * b + c * c + d * d); + if ( a < 1.e-7 ) { // special case + a = 1.0 / Math.sqrt(b * b + c * c + d * d); + b *= a; // normalize (b,c,d) vector + c *= a; + d *= a; + a = 0.0; // a = 0 ==> 180 degree rotation + } else { + a = Math.sqrt(a); // angle = 2*arccos(a) + } + + // load rotation matrix, including scaling factors for voxel sizes + + xd = (dx > 0.0) ? dx : 1.0; // make sure are positive + yd = (dy > 0.0) ? dy : 1.0; + zd = (dz > 0.0) ? dz : 1.0; + + if ( qfac < 0.0 ) // left handedness? + zd = -zd; + + m[0][0] = (a * a + b * b - c * c - d * d) * xd; + m[0][1] = 2.0 * (b * c - a * d ) * yd; + m[0][2] = 2.0 * (b * d + a * c ) * zd; + m[1][0] = 2.0 * (b * c + a * d ) * xd; + m[1][1] = (a * a + c * c - b * b - d * d) * yd; + m[1][2] = 2.0 * (c * d - a * b ) * zd; + m[2][0] = 2.0 * (b * d - a * c ) * xd; + m[2][1] = 2.0 * (c * d + a * b ) * yd; + m[2][2] = (a * a + d * d - c * c - b * b) * zd; + + // load offsets + m[0][3] = qx; + m[1][3] = qy; + m[2][3] = qz; + + return m; + } + + + /** + * [PRIVATE] + */ + createNifti1Data(header, raw_data) { + var native_data = null; + + if (header.must_swap_data) { + MniVolume.swapn( + new Uint8Array(raw_data, header.vox_offset), + header.bytes_per_voxel + ); + } + + switch (header.datatype) { + case 2: // DT_UNSIGNED_CHAR + // no translation necessary; could optimize this out. + native_data = new Uint8Array(raw_data, header.vox_offset); + break; + case 4: // DT_SIGNED_SHORT + native_data = new Int16Array(raw_data, header.vox_offset); + break; + case 8: // DT_SIGNED_INT + native_data = new Int32Array(raw_data, header.vox_offset); + break; + case 16: // DT_FLOAT + native_data = new Float32Array(raw_data, header.vox_offset); + break; + case 64: // DT_DOUBLE + native_data = new Float64Array(raw_data, header.vox_offset); + break; + // Values above 256 are NIfTI-specific, and rarely used. + case 256: // DT_INT8 + native_data = new Int8Array(raw_data, header.vox_offset); + break; + case 512: // DT_UINT16 + native_data = new Uint16Array(raw_data, header.vox_offset); + break; + case 768: // DT_UINT32 + native_data = new Uint32Array(raw_data, header.vox_offset); + break; + default: + // We don't yet support 64-bit, complex, RGB, and float 128 types. + throw new Error("Unsupported data type: " + header.datatype); + } + + var d = 0; // Generic loop counter. + var slope = header.scl_slope; + var inter = header.scl_inter; + + // According to the NIfTI specification, a slope value of zero means + // that the data should _not_ be scaled. Otherwise, every voxel is + // transformed according to value = value * slope + inter + // + if (slope !== 0.0) { + var float_data = new Float32Array(native_data.length); + + for (d = 0; d < native_data.length; d++) { + float_data[d] = native_data[d] * slope + inter; + } + native_data = float_data; // Return the new float buffer. + } + + if(header.order.length === 4) { + header.order = header.order.slice(1); + } + + // Incrementation offsets for each dimension of the volume. + header[header.order[0]].offset = header[header.order[1]].space_length * header[header.order[2]].space_length; + header[header.order[1]].offset = header[header.order[2]].space_length; + header[header.order[2]].offset = 1; + + if(header.time) { + header.time.offset = header.xspace.space_length * header.yspace.space_length * header.zspace.space_length; + } + + return native_data; + } + + + //---------------------------------------------------------------------------- + + _run(){ + var that = this; + var inputBuffer = this._getInput(0); + + if(!inputBuffer){ + console.warn("NiftiDecoder requires an ArrayBuffer as input \"0\". Unable to continue."); + return; + } + + var header = this.parseNifti1Header( inputBuffer ); + + // abort if header not valid + if(!header) + return; + + var dataArray = this.createNifti1Data(header, inputBuffer) + + // add the output to this filter + this._addOutput(MniVolume); + var mniVol = this.getOutput(); + mniVol.setData(dataArray, header); + mniVol.setMetadata("format", "nifti"); + + } + + +} /* END class NiftiDecoder */ + +export { NiftiDecoder } diff --git a/src/filter/ForEachPixelImageFilter.js b/src/filter/ForEachPixelImageFilter.js index 07db8a6..0b239f6 100644 --- a/src/filter/ForEachPixelImageFilter.js +++ b/src/filter/ForEachPixelImageFilter.js @@ -61,7 +61,7 @@ class ForEachPixelImageFilter extends PixelWiseImageFilter { // 1 - init the output var outputImg = this.getOutput(); - console.log(outputImg.uuid); + console.log(outputImg.getUuid); // 2 - tune the output outputImg.setData( diff --git a/src/filter/Image3DToMosaicFilter.js b/src/filter/Image3DToMosaicFilter.js new file mode 100644 index 0000000..a8820b8 --- /dev/null +++ b/src/filter/Image3DToMosaicFilter.js @@ -0,0 +1,122 @@ +/* +* Author Jonathan Lurie - http://me.jonahanlurie.fr +* License MIT +* Link https://github.com/jonathanlurie/pixpipejs +* Lab MCIN - Montreal Neurological Institute +*/ + + +import { Filter } from '../core/Filter.js'; +import { Image2D } from '../core/Image2D.js'; +import { Image3D } from '../core/Image3D.js'; + + +/** +* An instance of Image3DToMosaicFilter takes an Image3D as Input and output a +* mosaic composed of each slice. The axis: "xspace", "yspace" or "zspace" can be +* specified with `setMetadata("axis", "xspace")`, the default being xspace. +* The default output image is 4096x4096 but these boundaries can be changed using +* `setMetadata("maxWidth", n)` and `setMetadata("maxHeight", m)`. +* These are boundaries so the size of the output image(s) will possibly be lower +* to not contain unused space. +* If mosaicing the whole given Image3D does not fit in maxWidth*maxHeight, more +* Image2D will be created and accessible through `getOutput(n)`. +* All output image have the same size so that the last one may have dead space. +* +* usage: examples/niftiToMosaic.html +*/ +class Image3DToMosaicFilter extends Filter{ + + constructor(){ + super(); + this._inputValidator[ 0 ] = Image3D.TYPE(); + + // default settings + this.setMetadata("maxWidth", 4096); + this.setMetadata("maxHeight", 4096); + this.setMetadata("axis", "xspace") + } + + + _run(){ + if(! this.hasValidInput() ){ + return; + } + + var inputImage3D = this._getInput(0); + var spaceInfo = inputImage3D.getMetadata( this.getMetadata("axis") ); + + if(!spaceInfo){ + console.warn("Sampling axis for mosaicing was not poperly set. Has to be 'xspace', 'yspace' or 'zspace'."); + return; + } + + var numOfSlices = spaceInfo.space_length; + var width = spaceInfo.width; + var height = spaceInfo.height; + + // number of image we can fit in the with of an output image + var widthFit = Math.floor( this.getMetadata("maxWidth") / width ); + var heightFit = Math.floor( this.getMetadata("maxHeight") / height ); + + // size of the ouput image(s) + var outputWidth = widthFit * width; + var outputHeight = heightFit * height; + var slicePerOutputIm = widthFit * heightFit; + + // Number of output image(s) necessary to cover the whole Image3D dataset + var outputNecessary = Math.ceil( numOfSlices / slicePerOutputIm ); + + // if only one output, maybe it's not filled entirely, so we can make it a bit smaller + if( outputNecessary == 1){ + outputHeight = Math.ceil( numOfSlices / widthFit ) * height; + } + + var outputCounter = 0; + var sliceIndex = 0; + var sliceIndexCurrentOutput = 0; + + var outImage = null; + + + // for each slice + for(var sliceIndex; sliceIndex