-
Notifications
You must be signed in to change notification settings - Fork 0
/
prueba-python.html
309 lines (309 loc) · 13.3 KB
/
prueba-python.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>b188d24a1fb54836a28219d03d537634</title>
<style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
word-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
</style>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
</head>
<body>
<section id="prueba-de-python" class="cell markdown">
<h1>Prueba de Python</h1>
</section>
<section id="hola-mundo" class="cell markdown">
<h2>Hola mundo</h2>
<p>El primer codigo creamos para aprender un lenguaje de programación es <code>Hello World</code>. Se hace con la función <code>print()</code></p>
</section>
<div class="cell code" data-execution_count="9">
<div class="sourceCode" id="cb1"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(<span class="st">"hola, probando"</span>)</span></code></pre></div>
<div class="output stream stdout">
<pre><code>hola, probando
</code></pre>
</div>
</div>
<section id="las-funciones-de-jupyter" class="cell markdown">
<h2>Las funciones de Jupyter</h2>
<ul>
<li>Para crear una nueva celda se presiona la tecla B</li>
</ul>
</section>
<section id="operaciones-aritméticas" class="cell markdown">
<h2>Operaciones aritméticas</h2>
</section>
<div class="cell code" data-execution_count="2">
<div class="sourceCode" id="cb3"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a>a <span class="op">=</span> <span class="dv">3</span></span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>x <span class="op">=</span> <span class="dv">7</span></span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>a <span class="op">+</span> x</span></code></pre></div>
<div class="output execute_result" data-execution_count="2">
<pre><code>10</code></pre>
</div>
</div>
<div class="cell code" data-execution_count="3">
<div class="sourceCode" id="cb5"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>a <span class="op">=</span> <span class="dv">8</span></span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a>a <span class="op">+</span> x</span></code></pre></div>
<div class="output execute_result" data-execution_count="3">
<pre><code>15</code></pre>
</div>
</div>
<section id="gráficos-gráfico-de-densidad" class="cell markdown">
<h1>Gráficos: gráfico de densidad</h1>
</section>
<div class="cell markdown">
<p>Lo primero es importar la librería de datos llamada seaborn para poder visualizar el gráfico y darle una interfaz.</p>
</div>
<div class="cell code" data-execution_count="4">
<div class="sourceCode" id="cb7"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="op">!</span>pip install seaborn</span></code></pre></div>
<div class="output stream stdout">
<pre><code>Requirement already satisfied: seaborn in ./.local/lib/python3.8/site-packages (0.11.2)
Requirement already satisfied: pandas>=0.23 in /usr/local/lib/python3.8/dist-packages (from seaborn) (1.3.1)
Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.8/dist-packages (from seaborn) (1.21.1)
Requirement already satisfied: scipy>=1.0 in /usr/local/lib/python3.8/dist-packages (from seaborn) (1.7.0)
Requirement already satisfied: matplotlib>=2.2 in /usr/local/lib/python3.8/dist-packages (from seaborn) (3.3.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas>=0.23->seaborn) (2020.4)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas>=0.23->seaborn) (2.8.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /usr/local/lib/python3.8/dist-packages (from matplotlib>=2.2->seaborn) (2.4.7)
Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.8/dist-packages (from matplotlib>=2.2->seaborn) (8.0.1)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.8/dist-packages (from matplotlib>=2.2->seaborn) (1.3.1)
Requirement already satisfied: certifi>=2020.06.20 in /usr/local/lib/python3.8/dist-packages (from matplotlib>=2.2->seaborn) (2020.6.20)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.8/dist-packages (from matplotlib>=2.2->seaborn) (0.10.0)
Requirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.14.0)
</code></pre>
</div>
</div>
<div class="cell markdown">
<p>Una vez descargada la librería seaborn que dota de una interfaz para mostrar los datos, creamos una <strong>dataframe (df)</strong></p>
<p>Es importante importar seaborn como sns, ya que así permitirá cargar los datos del <strong>archivo iris</strong></p>
<p>Establecemos el dataframe igual a la visualización de los datos de iris utilizando la librería como <strong>sns</strong></p>
<p>El último paso es convertir el df en la linea de texto: sns.kdeplot (df["sepal_width"]) teniendo en cuenta que queremos mostrar en la variable x del gráfico. En el caso que estamos utilizando sería sepal width</p>
</div>
<div class="cell code" data-execution_count="6">
<div class="sourceCode" id="cb9"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="co"># library & dataset</span></span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> seaborn <span class="im">as</span> sns</span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>df <span class="op">=</span> sns.load_dataset(<span class="st">'iris'</span>)</span>
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a><span class="co"># Make default density plot</span></span>
<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>sns.kdeplot(df[<span class="st">'sepal_width'</span>])</span>
<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a></span></code></pre></div>
<div class="output execute_result" data-execution_count="6">
<pre><code><AxesSubplot:xlabel='sepal_width', ylabel='Density'></code></pre>
</div>
<div class="output display_data">
<p><img src="vertopal_f0b64026904e422ab1ee923ed210790b/5530e567253c118c449ef570ac2236c68a7504ab.png" /></p>
</div>
</div>
<div class="cell markdown">
<p>pwd para saber en que directorio estoy. De esta forma se guarda el archivo</p>
</div>
<div class="cell code" data-execution_count="7">
<div class="sourceCode" id="cb11"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>pwd</span></code></pre></div>
<div class="output execute_result" data-execution_count="7">
<pre><code>'/home/[email protected]'</code></pre>
</div>
</div>
</body>
</html>