diff --git a/generation/2d_super_resolution/2d_sd_super_resolution.ipynb b/generation/2d_super_resolution/2d_sd_super_resolution.ipynb
new file mode 100644
index 000000000..15d111bc4
--- /dev/null
+++ b/generation/2d_super_resolution/2d_sd_super_resolution.ipynb
@@ -0,0 +1,1249 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "33a9aedb-b4d8-48c6-9590-58b221405ca5",
+ "metadata": {},
+ "source": [
+ "Copyright (c) MONAI Consortium
\n",
+ "Licensed under the Apache License, Version 2.0 (the \"License\");
\n",
+ "you may not use this file except in compliance with the License.
\n",
+ "You may obtain a copy of the License at
\n",
+ "http://www.apache.org/licenses/LICENSE-2.0
\n",
+ "Unless required by applicable law or agreed to in writing, software
\n",
+ "distributed under the License is distributed on an \"AS IS\" BASIS,
\n",
+ "WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
\n",
+ "See the License for the specific language governing permissions and
\n",
+ "limitations under the License.
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "95c08725",
+ "metadata": {},
+ "source": [
+ "# Super-resolution using Stable Diffusion v2 Upscalers\n",
+ "\n",
+ "This tutorial illustrates how to perform **super-resolution** on medical images using Latent Diffusion Models (LDMs) [1]. The idea is that, given a low-resolution image, we train a spatial autoencoder with a latent space of the same spatial size of the low resolution, so that high resolution images are encoded into a latent space of the same size of the low resolution image. The LDM then learns how to go from **noise to a latent representation of a high resolution image**. On training and inference, the **low resolution image is concatenated to the latent**, to condition the generative process. Finally, the high resolution latent representation is decoded into a high resolution image. \n",
+ "\n",
+ "To improve the performance of our models, we will use a method called \"noise conditioning augmentation\" (introduced in [2] and used in Stable Diffusion v2.0 and Imagen Video [3]). During the training, we add noise to the low-resolution images using a random signal-to-noise ratio, and we condition the diffusion models on the amount of noise added. At sampling time, we use a fixed signal-to-noise ratio, representing a small amount of augmentation that aids in removing artefacts in the samples.\n",
+ "\n",
+ "\n",
+ "[1] - Rombach et al. \"High-Resolution Image Synthesis with Latent Diffusion Models\" https://arxiv.org/abs/2112.10752\n",
+ "\n",
+ "[2] - Ho et al. \"Cascaded diffusion models for high fidelity image generation\" https://arxiv.org/abs/2106.15282\n",
+ "\n",
+ "[3] - Ho et al. \"High Definition Video Generation with Diffusion Models\" https://arxiv.org/abs/2210.02303"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b839bf2d",
+ "metadata": {},
+ "source": [
+ "## Setup environment"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "77f7e633",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!python -c \"import monai\" || pip install -q \"monai-weekly[tqdm]\"\n",
+ "!python -c \"import matplotlib\" || pip install -q matplotlib\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "214066de",
+ "metadata": {},
+ "source": [
+ "## Setup imports"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "de71fe08",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import shutil\n",
+ "import tempfile\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import torch\n",
+ "import torch.nn.functional as F\n",
+ "from monai import transforms\n",
+ "from monai.apps import MedNISTDataset\n",
+ "from monai.config import print_config\n",
+ "from monai.data import CacheDataset, DataLoader\n",
+ "from monai.utils import first, set_determinism\n",
+ "from torch import nn\n",
+ "from torch.amp import GradScaler, autocast\n",
+ "from tqdm import tqdm\n",
+ "from monai.losses import PatchAdversarialLoss, PerceptualLoss\n",
+ "from monai.networks.nets import AutoencoderKL, DiffusionModelUNet, PatchDiscriminator\n",
+ "from monai.networks.schedulers import DDPMScheduler\n",
+ "\n",
+ "print_config()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c0dde922",
+ "metadata": {},
+ "source": [
+ "## Setup a data directory and download dataset\n",
+ "Specify a MONAI_DATA_DIRECTORY variable, where the data will be downloaded. If not specified a temporary directory will be used."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "ded618a7",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "/tmp/tmpj53lse09\n"
+ ]
+ }
+ ],
+ "source": [
+ "directory = os.environ.get(\"MONAI_DATA_DIRECTORY\")\n",
+ "root_dir = tempfile.mkdtemp() if directory is None else directory\n",
+ "print(root_dir)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "645f97bb-6879-4b2e-8fc9-29dd1a6e904f",
+ "metadata": {},
+ "source": [
+ "## Set deterministic training for reproducibility"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "9f0a17bc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# for reproducibility purposes set a seed\n",
+ "set_determinism(42)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d80e045b",
+ "metadata": {},
+ "source": [
+ "## Description of data and download the training set\n",
+ "\n",
+ "For this tutorial, we use the head CT dataset from MedNIST."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "c8cf204a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "2024-09-23 09:27:05,757 - INFO - Verified 'MedNIST.tar.gz', md5: 0bc7306e7427e00ad1c5526a6677552d.\n",
+ "2024-09-23 09:27:05,758 - INFO - File exists: /tmp/tmpj53lse09/MedNIST.tar.gz, skipped downloading.\n",
+ "2024-09-23 09:27:05,759 - INFO - Non-empty folder exists in /tmp/tmpj53lse09/MedNIST, skipped extracting.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Loading dataset: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 47164/47164 [00:16<00:00, 2923.68it/s]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "2024-09-23 09:27:22,258 - INFO - Verified 'MedNIST.tar.gz', md5: 0bc7306e7427e00ad1c5526a6677552d.\n",
+ "2024-09-23 09:27:22,258 - INFO - File exists: /tmp/tmpj53lse09/MedNIST.tar.gz, skipped downloading.\n",
+ "2024-09-23 09:27:22,259 - INFO - Non-empty folder exists in /tmp/tmpj53lse09/MedNIST, skipped extracting.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Loading dataset: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5895/5895 [00:01<00:00, 2964.04it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "train_data = MedNISTDataset(root_dir=root_dir, section=\"training\", download=True, seed=0)\n",
+ "train_datalist = [{\"image\": item[\"image\"]} for item in train_data.data if item[\"class_name\"] == \"HeadCT\"]\n",
+ "val_data = MedNISTDataset(root_dir=root_dir, section=\"validation\", download=True, seed=0)\n",
+ "val_datalist = [{\"image\": item[\"image\"]} for item in val_data.data if item[\"class_name\"] == \"HeadCT\"]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cacdb233",
+ "metadata": {},
+ "source": [
+ "## Prepare dataloaders\n",
+ "\n",
+ "Here, we create the data loader that we will use to train our models. We will use data augmentation and create low-resolution images using MONAI's transformations:\n",
+ "\n",
+ "1. `LoadImaged`: to load the images\n",
+ "2. `EnsureChannelFirstd`: to make sure there is a channel dimension at the beginning of the output tensor\n",
+ "3. `ScaleIntensityRanged`: normalise the images\n",
+ "4. `RandAffined`: affine augmentation (just training)\n",
+ "5. `CopyItemd`: we copy the image item to obtain the low-resolution representation\n",
+ "6. `Resized`: we resize the low resolution image (copy we just made) to obtain a low resolution representation to 16x16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "id": "c7997edf",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Loading dataset: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7991/7991 [00:05<00:00, 1544.42it/s]\n",
+ "Loading dataset: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 972/972 [00:01<00:00, 804.53it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "image_size = 64\n",
+ "\n",
+ "# Transforms\n",
+ "all_transforms = [\n",
+ " transforms.LoadImaged(keys=[\"image\"]),\n",
+ " transforms.EnsureChannelFirstd(keys=[\"image\"]),\n",
+ " transforms.ScaleIntensityRanged(keys=[\"image\"], a_min=0.0, a_max=255.0, b_min=0.0, b_max=1.0, clip=True),\n",
+ " transforms.RandAffined(\n",
+ " keys=[\"image\"],\n",
+ " rotate_range=[(-np.pi / 36, np.pi / 36), (-np.pi / 36, np.pi / 36)],\n",
+ " translate_range=[(-1, 1), (-1, 1)],\n",
+ " scale_range=[(-0.05, 0.05), (-0.05, 0.05)],\n",
+ " spatial_size=[image_size, image_size],\n",
+ " padding_mode=\"zeros\",\n",
+ " prob=0.5,\n",
+ " ),\n",
+ " transforms.CopyItemsd(keys=[\"image\"], times=1, names=[\"low_res_image\"]),\n",
+ " transforms.Resized(keys=[\"low_res_image\"], spatial_size=(16, 16)),\n",
+ "]\n",
+ "\n",
+ "train_transforms = transforms.Compose(all_transforms)\n",
+ "val_transforms = transforms.Compose(all_transforms[:3] + all_transforms[4:])\n",
+ "\n",
+ "# Datasets\n",
+ "train_ds = CacheDataset(data=train_datalist, transform=train_transforms)\n",
+ "train_loader = DataLoader(train_ds, batch_size=32, shuffle=True, num_workers=4, persistent_workers=True)\n",
+ "val_ds = CacheDataset(data=val_datalist, transform=val_transforms)\n",
+ "val_loader = DataLoader(val_ds, batch_size=32, shuffle=True, num_workers=4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "166e4242",
+ "metadata": {},
+ "source": [
+ "### Visualise examples from the training set"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "8c0fe41c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAClCAYAAADBAf6NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACr70lEQVR4nO39WXNcWXYdjq+ckPOIxAyCKLLIYlV1qbrVaikkhfWTww4/2V/AH9AvfvKTbEfYjnC322pL0eqhukZOIOYp5wk5/h/wXxvrHt5MgCSKAMm7IxCJzLx5h3P22cPawwlNJpMJAgoooIACCiigD5bCN30DAQUUUEABBRTQzVJgDAQUUEABBRTQB06BMRBQQAEFFFBAHzgFxkBAAQUUUEABfeAUGAMBBRRQQAEF9IFTYAwEFFBAAQUU0AdOgTEQUEABBRRQQB84BcZAQAEFFFBAAX3gFL3qgaFQ6Me8jw+eQqGQjXE4HL70M36u76/6mXvuUCiEyWQC9p/id9qPSq8PAMPhEKPRCIlEAqlUCtlsFnfu3MFoNMJvf/tbHB0dYTQaYTwee57zJnpcBbwb0HXQTfDu6urqW79mQO8f7e3tXXrMlY2BgK5Gr6N4LlPYs5S4vne/f1s0Ho9N8Y/H4xsRmlelNx2b2/xsAQUUUECvS4ExAK8yvu7Xy47xuw+/72e9f93v3M9d738ymZhnr6iB/mY4HOLs7AwAcHR0hMlkgsFgcCu98Xg8jmg06mswuUr+Vd+/zWNe97wBBRRQQNMoMAb+/3Qd0LsfvH+VY24Lufc8Ho89hgFDB3rfk8kEw+EQ4XAYrVbL3t82CoVCiEajmJub8xg+s5Qo//f77G3+P+0epyl8naPAKAgooICuQrfCGJjmyfr9f9XPrnLsZcf82N/ddlKlo8gAlQ0V6ng8xnA4RK/Xs5DBbSQaOeFw2O6dNEuxXuWzd/HY1z3f63z+Jr9xv9eclssMo2nfBUZSQAF56caNgVfxwoGred9X8eLfllJ+15S/61FS4PLPHVuGEobDITqdDiaTCUaj0a0UtmoIhMPhlxCOD5EuQz+ucsyP8b9+psaly3v8c4/hq4a6+Lmb1Or3rAEF9KHRlY2BSCTi+/llse/LjnnVOPt1fTftvj50uqowdMfxXYGlr4IQve+kczRtbbrH+IWHpp3zOt7rdcPhsOf6NOTUGIhEIp5jlB95bjoSTHbVY93v/CppAgrofaYrGwNzc3MAZnvt07xxv++m0esI5Vf9zYck+K9KLhzrKgQ9jt9zHCmI/coTbyPd1vt6W+Sn1N+mcXQVg5HoDcNOs4wBAB7v3w8ZCIVCljza7/cxHA7NCIhEIibfer0ehsOhVcaEw2H7XUABvc/0ysjAVeD5ad+5xwR0e2mWZ+h6YJpcyM9u4xzfxnu6abqJMbnKNV2nY5pscb1+fu969lT8oVDIg3Jq6Ai4kHOj0cjzm4ACet/pysZAMpm0/6ctjquEDAJ6d0gF7qyEO7+QwW2d99t6XwF5SRNR3ZJXeu2kcDiMWCzmQQsGgwEGg4FH0StCEIvFMBqNLCzQ7XYBANFoFJFIxEIFTIwNKKD3na5sDESjN55rGNBbIDc2DPjDyn7HTvPkAgroVUnhfeBlHuR3/NOwgoYOXD5kfgHzEGhY0PCIRqOeMAQNhtueCxNQQG9KgYYPCIAX7nfhWL/ksdcpEwsooKuSW73iR4znR6NRZDIZj8PS7XZxdnZmlS7j8RiDwcDOzXBANBr1oAxafUBiTkxAAb3PFBgDARlNq7SYhQxc5Vy3hQLE4t2iyxJaaQzE43Gk02nz+AGYkTAYDNButwG8XEUQiUQQiUR8kxFfNfE5oIDedQqMgYB8ya0td42DaeECv/KugAJ6VdJeEMpbCu0rb8ZiMcRiMSQSCUSjUZydnWEwGODs7AyJRMJi/27pIEMA09AuNzk2oIDeVwqMgYCm0quUCvp1iQsooNclJvKp8qcSd42BSCSCZDKJRCKBYrGIeDxux3S7XdTrdYxGI7RaLQyHQzQaDSshHAwGU9Eut0ImoIDeZwqMgYCmksZt+X5a+MCl2yo8b+t9BfQy+fWuALxlhEzy42ZZ3W73peTCVCqF0WiEcDhs/QXm5ubQ6/Wsa+Zt3E8joIDeJgXGQEAv0VUg0VnQ6W2Ns962+wloOulumdpQyN1Xot/vYzQaYTgcIhqNolqtYm5uDqlUCslkEslkEvPz85ZPMB6P0W630ev1UK1WcXx8jF6vh1ar5dvSOAgTBPShUGAMvCPkV/Kn3wE3r+z8KhICCuh1yUUGaARo3wBFBthXgFtos6cAf89OguPxGJFIBP1+H+12G+FwGL1ez767LevpfabLWmL7HXfZsVc573WGM687NDqtJffbosAYeEv0upn3fol6mqDn9lG/7HxXoasq9WlNpm67MXCb7y2gc1JDgN0AtSMg55AJgCwbpKJvtVrWXGh7exvRaNTyCQqFApLJJBYXF1EsFtHpdLC/v49er4darYazszNPQ6Kgz8CPQ0R8WObphn+mJXVqR0ngQl4NBgNDd/h9LBYDcMEnWlFClMltWOUnU917I1+oLNZeF+7mWKTLKrNu0iAIjIG3QNchSFxvxc2y1u+ug67jXLdR6d7GewroZdIyPz9jl02DeKyGFdxjQ6GQJRUmk0lkMhmrPJibm0Or1UK320Wn00Gn07G+BKqQAmPgeskdU80H0XmdNp9qGJL6/b6nLFSP1/lk/ohek8YAfz/tunp+N6fK5UuX9Di/8NOsCq63QR+sMXBVC2zaBGlDHtcK9NtIZZqHrxbutGvqb9zPXIbUY2+KbjsycJvINehIV+VP97Pr9DBuko9c5eBXXjjtGd21QK+xVquh3W5jNBrh9PQUmUwGhUIBALC4uIjRaIREIoF2u41KpYJarRYYAz8SqdzTsXXzNvQYKnIeQ76gZx8KhaxvBP94LJEBIgHcoAqAJY+6ZaYq691X9rhQYiKqn4KfZgC4Y3KTOSofpDHgKmr9XF/1GCp8hSn9FL4qeFdg+WVGq4U7zSKeJeDd39wWJXzbDILbdC8kl9+A6U2dpsGN7qvy3Kzw0VUFzm0wCFwUjN6Zent6nB5POHc0GqHf7wMA6vU6otEolpaWMBwOkcvlcOfOHUQiEaTTaXS7XYTDYQsX8LoBXR+p/ASmlzH75YfwbzgcWlkpE0QZFuC5qZwpv1myqjKXiIKGEPycPjdMRWPAz0D1M9L1PH7jcdkxPza9l8aAnxC9yuD6TYKf0J3GxK4VO0uYk6LRKJLJpIe5CFOS4dlSdZqX8irP+DbothkCt5Wu4ilM+50rOKchR9P4WY9xP/dDKWbdi995ZvHALE/7KuiHe49+13LRNxoPwMVGR+12G9VqFYPBAPF43PoaRKNRZLNZlMtlK0F0WxQH9ObkKnrXqdJj6PXzM3aYVPTAVeLT9IAfckTUwM1HcIn36hqofHXDFHr9m/T6r0LvpTGg5E6c6/W7QsyFh2YpWr9OaJxsF8pyr8vP2Chlbm4O2WwW4XAYrVYLg8EAvV7PmqN0u12PcUByPaHbQLfxfm4TTYMRlaYpuGkeyGWhpml8PE3Jvaog1R0GFR1zvXRX6M8yWGZ5WSR3R0P32VWJ6DWHwyGq1SpqtRoSiQSOj4+RTCZx9+5d5HI5rK2tYWVlBQcHB+j3+0Efgmsmhdnp6NAzB16Ww1T8c3NzL811v9/3KHOSnyOnx3AtMTwQj8c9G1XpMYPBwNP8So9x+dtv2+tX8fr1+7cpu947Y8DPuvR7f5nn8ioelWuZzoL13XOR0SORiDFiNBq1JJdZ93DZ5zdNt+m+buO9XMUo8Puty2OXeR3T1sEslGka6X2+SZjhsvt8lXu6jPRe9VwU7KFQyHIJut0uYrEY4vG4508NioCuj/z4z3Wg9LhZvODy8yxd4HfOt8Wnr7rm3ha9V8aAO8n6qolIVOCEBenVuBnJ0xS9ex43dqSlSAor+Z3HTyD3+31DBXq9nuc4F8Lyg6tumm4rMnCb7gl4OazE/4GXvXFXoekWvHoOv98pKbKgv9ffuP+79+iejwat3r+uK0XJXAHt5729Dk3jfb2mn3EdiUQwGo1Qq9VsB8NEIoH19XUsLS0hEokgm80GyMA1E1FO5QHdNArwIk8sHZ3GnwCstbQro/VPt6TmMcwz0K2s/RS2izL58Wwo5F/uPYuugha8DXqvjAGXZnkxriDysyj5v8t4qnzVqNCqAvd6rkDSYwiP8fdcKAwJuMw1C+G4TQZBQNPJncNZHshVFOY0WF9fXQN0Go9OQ8WmGQTub6ad+7LfXjfPXAXho/AeDAa2b8HZ2Rnm5+dt/QWowPWTyku3AsDPIJgVGlX+1P0rVHnref3kaSgUeqmkVM/tJo675N7768jhm5aZ760xcBkE6yrvaczil13K39PSpIWr5BoaftcKhULo9/vmlbAbWqPRsDar2kSDzD0LAbkNdBs98dt0L8DLc+WXsKTGot9vgIuGLbN4wRWses1ZfOtnZPoJOz/B6ndNv3X4Y/LKtHNPQ1EAoNfrod/vY3t7G81mE51OB5VK5drv7UMnolskVeB+vOMitH5KmbJR5S15nAYHER534ysiBCrT9XosR+Rno9HI0Areoxo1fs87i6YZ4m+T3htj4CqKkALADyXQ/6cJVD+DQI0BMoObXOLHnDwfu2aFw2F0u12EQiF0u11PS1UNRfC8Ljwc0HS6zYbANMU4y4tXb4XhAvfPj8/9DFLyrB/pOehBu/fvt5bcLmzTUI9pgvM6ye8afgmYfGX54cnJiRnl3MwooOulaUbaZfziVz2g7/06ANJoVuNZHT4ivLFYzBIS9bxqDPD3fHURDr9nexfonTMGZgnSWdaV3yS5IQBV8q5gde9BvyMjpVIpi0FOJhODnfysYCYNkgFVyftlvLoxS3ccbpOwehcXwtskv/GZpcT9jr3MYHB5G8BLeTP6vevBz5pD9f5nIQu8nh/qodedNiZvQtPkhHqONFp0HNS4YujAbSQT0JuT8scso3car/I1FLpIwGY1gNttEABisZiVI6pB4GcsaidKbXMNvFzq6K65aW2I3wX+eeeMASVXGM3ycPiqgkwF0TTvYRrDKLzEHujFYhHRaBTdbte2VKWHTwbkecm83GFtPB5baICWqeYSuP3R3RiWu1Buiq4yHzdBt+legJeVoRsT1Vcl5XkVPtMa8ADeREUltw3rNM/M5bFpgpnfUclOewa/3/2YMKl7bjUI1JjnMYr4DQYDS0wL6PqIaCedJndO1KNXZ0qhfeZzzM3NIRaLIZ/PI5lMenKvOp0OwuEw0um0HZNOp01mk8bjMVqtloVtq9Uqer0ems2mJ6RAWe7KczU+/PSFa+TfRn56p42BWTTLY9HP/JToLOjdFb48RzQaRSKRQCwWM49ChTHrZHneRCKBeDyOWCyGWCyG0WiEXq/nm3l9mRem930b6LbcB+k2GgKXCQc/CHSaYarH+J1rGqkx4cdvfvcx7X7dc06DevW37jWvm6ahZ9OM6NtqyL6PpF67a0gC/gl7iibw/1gshmw2i0QigXK5jEwmY8qaDhYrQnhsOp22Um7gog1xu93GYDBAu91Gs9lEv99Ho9HAcDi0qq5+v49+v4/BYGC9X4CXK9H8nveqqB+f9W3Te2EMvCo64B6nlqQLQbkogmuZ0ipNJpNYWFhAIpGw5BL+PhaLYX5+3gwCAGYI8Bg2F+r1epZH4CIB7v2rV8d71u/eNk1TALfNOLgN5OelKqROb3UalM/3apSqQtP3rqJzeVnJ3SZY6TIYV8/ph8b53cM0I+hNeUbvVZUHn82VA+5z8RiGEwIevl7SBDw3yc+PXzh3ekw4HEYqlcLDhw+Ry+WwubmJ+fl55HI5FAoFC8EStSUSOzc3B+AiD4Ztp7WhELfC7nQ66PV6ePHiBZrNJp48eYKDgwNUq1VrSNXpdDzInoYXbjsaoPROGgN+XjLwatbUNC/FTzhNU3JkGgpuNiiZm5uz+BR3R0smkx5YiseoEvC7tvv/LKj2KjTL8pzlzb0q3XbGv200TXleZthp3BV4tfK/afz1qojTNGPD77q3wTichrC5a+OmjOoPhS5Dw1zEgAjr3NwcwuGwdW1dWFhAPp/H4uIi5ufnkc/nUSwWEYlEkEgkPNtXx2IxT6noeDy2dtNcOzQg6JwRFWg0Guh2u3bMcDjE2dkZ5ubmLLeEuV2a4+WHuN1GeieNgWle/iwF506Cek30wt12knpezQ8IhULGWKR4PG5Kv1QqIR6PA4A1MSkUCgiHw4YAkPHOzs4sWYUxNE1CVBTCD1alRa0Igd/zzhpLRT/8oNVpyIuf1eu+vo7Bct10FaX6NsltbkL0SPlL4/nKC4DXk3KrTHg8a+eVL7Tvuut1aUzWjYO6vOH+774qPykPuRtyuXSd8zMt85vXcY1pd31xTLT2PKDrI+U5Nx+ASpXrIRqNolQqIZVK4e7du1heXkaxWMTq6ioymQw2NjaQSqUsXBCLxcz7B2Dy2o3zk+LxuF2XeQi6u2E8HsfDhw8xGAxw//599Ho9k9vNZhOPHz9Go9HA06dPDTE4ODjw8Jvbg+Yyw+AmwgXvpDGg9KqD5aek/ATetPMqCpBMJi3RSEtTUqmUvaclm8vlAMCSVHTnLV6TSl1bElNxTOsh76eor8pkfkJxllfnd+1ZBkFA/uQablSU5BcVWjzeNdJ4HD0dnoN85fZSBy6MAb2Gng8492iU75T81owfX6ox4D73NPoxhN40hMM19PmdGgX6m1loy/tKP4YyUsdiWuiIfKdhVnr42WwWy8vL+Pjjj7G4uIiPP/4Y6XQay8vLnn0FSFqFpd0N3dJSd725spH5YACwvLxs9zqZTFCtVpFKpVCpVHB2doZwOIxms+lx0Nzn1vG9TfTOGQOXQeeAf4LSLEiKDETvjAkoKuyYJZpKpcxSzeVytvOZCuJkMolkMmnXHY/HqNVq9vtUKoV0Om3oAY0CblDUbDbR6/XQ6XTQbrfR6XRwfHzs8RB5LSqBaQJLFbYfnOunaPyE6FWEgmv1vm4o48egH8vCdsfO/czv2uQxfdX8EQoxzUwOh8MoFAqGMuXzefNe+D0A44t2u22GJ/vuk7Q/Ae+HG8B0u13bmIcCmcYDt4rl9YbDoR3LbWD5pyV5fgYDKw6Ud6+TV/wUDc/rZqzrtf0S2N4HmiYb9Dt64WdnZ+j1eohEIshkMgiFQhZXJ++okemeU+eT40ivmyV+RK70PoDzcc/lckgmk0gkElhYWLC8gFKphI8//hh3795FOp1GqVRCJBKxig/yInnXzxB2jT3NzdFKL6ID/COy4OZ6JZNJbGxsoFwuI5/Po9Vq4fDwEIeHh6hWq3jx4gXa7ba9um2Yde1qPhqdQhfF80tUVCNHP9P+NFehd84YIPlZ936kAkDfu9mqjEFRMFJI0UtiVmoqlcLc3Bzm5+dRLpdxcnKCZrMJ4EIQZzIZJBIJyzrtdDqo1WoIh8MoFotm4c7Pz2Nubs7KYTqdDgaDAQ4ODtBoNFCpVHB6eorT01PU63VbPACs8kChV9ea19dpyAItcbWQ/RbOZQJ6miFwGRz2Nui6BPo0T3Pa+2nkwvxUuCo0R6OReRr0eihw1tfXsbq66hFknDsKxHq9jtPTU/R6PZyennpK5FzhEg6HzfPhWmB5K7fYnpubs901iUb0ej1rkFWv1z0ttM/OzkxA+UHwvA4Vs18joDchNZJ1flzedJ0Lv793naYhfi4qEo1GEY/HbW8UznU0GjU0U3/nKladUzUcCMGPRiPz3mkw6pwTls/n81heXkY+n8e9e/eQy+Xwk5/8BOVyGRsbG1hbW7N7GAwG5pXX63WPE6Uyjzznol1qUPM+aAyEQiFbe1qNoGuXxgAAPHr0CADQaDTQaDSwtbWF//N//g+Oj49RqVSsu6WOjToEureClr26Rus0ueNWuFE++CUD+9GVjQE/D+g2kA7OZV4vcGH50womBMSFQOg1HA574vkKISn8n0gkkE6nEQ6fdxDksTQEOPnMYk2n00in08bErD7gBMZiMSwuLqJUKqFUKmFhYQHVatX2VWfJS7fbNYOAi4+JLrxPVcZ+XpcugGmK7qqowKw5uU388qbkLsZpCmzWelElrj0AKDQpJMlj5XIZ6XQaa2trKBQKWFxcRKFQ8DWGGf/keenhDQYDQ550sxbejwoUCiImv5bLZcTjcSwsLBg6EI1G0ev1rBwrl8vZNZhhHYlELMnKDyLWe9dxvQ6jgIa8e75ZvO7em/vdu0rTntc1BtRrTSQSJtOoRF0PlkZsLpczAzEcPt+CvdFomKzUeSXvEV0lsfwvlUphYWEBq6uryOVy2NjYQCaTwdLSEgqFghkr5DH2BVBElUaqkrsJEp+fSpgGqeYMqIHSbrcRi8XQbDYtL0H1BVEDro14PI5SqYSHDx+iXC6j2+3i9PQU29vbOD4+NjSNa5734obvqBt07qYhj37G76vku7yyMXDTgl2Fh18mtStUXI+ZFlkikUAqlUImk8Hi4qIn1k9koFqt4vj42JS8Wl3aLIheV7VaxXg8RrPZtGzTwWCAZDKJxcVFY/RMJoPDw0O8ePECmUwG8/PzSCQSmJ+fRzKZxP3795HL5Yzpa7Uanj9/jmazie+++84sz1arhW63i1qthn6/74Hy+LyE5Dge0yBbJRdFmcZMs4TmbfOursvb9BOggLcVqVr3Ohf8nkaoJlHRCGByEhNS5+fn8ZOf/AT5fB4ff/yxJVIlEglPkiBjo/RkWq0WSqWS1U33+33s7u6i1Wqh0+lYjbTu3KlIGIVcqVTCgwcPkMlkLGGLnhONUxqig8EA+/v7xp/01BqNhikBF8qkEHbH7k35xi3N5Rzxunot/UxRMUU0piFr7wopgki+dGUlofVQKGTG3enpKUajEbLZLOLxuCcOT6Ph/v37FsKKxWJ48eIFvv32W19Ulr8tlUrY3Nw0XopGo1YauLy8jPX1daTTaaysrCAej6NYLCKRSKDb7aLZbOL09BRbW1tmFAyHQ0OpqGhV3nO9+SE/1CNnZ2eeHAO/8UskEuYEEgEul8se+U1dcvfuXWxubqLb7eInP/kJKpUK/sf/+B/4/e9/j0qlgsPDQ2syB8AaIynCpmOt5N4/P1MDgHN6VbpVYYJZcS19P8vSnYYG8I+KnhOZyWSQyWTMC9Ikrna77YkdUUDQ42ecNB6Pe6w6Fx5leCGdThv8yzAAGYG5BBqz5EJJJBIolUqYm5tDqVTyJDG2Wi0LMTDMoLkF7nhMs46Vrir43hWv6bqMkVlGpovCzEJUXAXDRa/xzXg8jlwuh1wuh3w+j3w+b56TlqW6WcrkXZa1UoidnZ0hmUx6BCVwsQmS66mzvIoGcyqVMjiV1+UamEwmdk/5fN5+G4lEzEOjoeO3E6erqC4bOyU/fp5FV+EF1wh+V/h8Fuk6V6WosoqknjF/Ozc3Z6XTNDgZ4tzc3EQulzM5WalUDBXi2JEXmQtA1JMVVOFwGPPz81YeWCqVkEgkTPlSsXU6HbRaLdtEiigp5SrDEfS2lbfcfBB3XDQU4hdOUOOVzzUYDEwWj8djD3JGhCAUCmF+fh6xWAyrq6s2Pgyt9Xo9u46uZ2A6wjjLQfND2a5Cbx0ZmAXRue/1WDe+wmMV8nQHgu9jsZgl7NGCzeVyJuRY9se4Lc9PqJOlKoT2aT0Ph0P7PUsItd6UArFQKOCTTz5BJBKx3dAeP36M7e1ty5ItFAr46U9/ahYwW2l2u10kEglsbm6a4dBoNDxoxP7+PtrtNra3t9HpdHB4eIhOpzO1CkHHz6+1JoWDeq6vO9cudHWT9Kaws+spqrBxE338PF6FJTmX5FcKTirf1dVVfPTRR8Y7TJjS2D6RHwCW76KeNQV2sVj0oFRMVu33+6jX6wbRavirUCigVCqhXC7j7t27iEajaDabL6FSjUYDqVTKMrt/8pOfIJFIoNlsol6vo9lsYm9vD91uF4eHh2i322g0Gmi32zYumuikHpG7H4cfL/sJPReRUuPisrCXm8Pg5ju86+QmjwIwJUojgMqeCYThcBjLy8vI5XL4/PPP8cUXXyCfz+POnTsmSyORCA4ODgyl/N3vfmcKPBQKWbn1Rx99hDt37qBUKuHu3bsAYC1/79+/byGwcrls66Lf75vjdHh4aDkwRELZJ0BLxF2lqh1h/Txojo0fb1CHMGmWY1ar1azyQdfdw4cP8fDhQyQSCUv0XVtbw8rKCnK5HP7Vv/pX+M1vfoN/+Id/QLPZxOHhoZ1DES2Vn3735fK+8rz7jFehVzIGLvN4XoemWTF+XpfCIpoR7LdYeZ/0omllZrNZJJNJ87QYLvBTfEyeUUuZyIB2mUqlUjbww+HQOlJRodIYYR5Co9FAtVq1nAEyM8MLrVYLiUTCEmHC4fPe2tqvgEYQzzk3N4dGo4FoNIp6vY6zszPfReGOufudjt/rCkD3/O8LuQLEVTpK05QR36vnofApQ1hU/sVi0XquM5NZ4/qaA0MDld9pktNoNDJkiugYj3fXCj0aGsuMH7MyoVarWQMWtmtlaCGfz3uywZPJpIUq2CdeUTX+TrOeWaqrSutN+OlV5dX7hAiQ/BSei3QpUkWeYD5VLpdDsVjEnTt38ODBA8zPz+P+/fuWZKhKmN6xKjL2AWA+QKFQwMLCAiaTif2+WCxagnUqlcJgMLDwE8NblJsaemB4ww8NnTaHik5xLdKbd8dMUV8iBzRSmKugFTXz8/PodDoAYGEDhteIgOzt7aFcLpu8DoVChky45MoSv7l1DQGd16vSjeQMTFMWamy4fyQ3lhcKhSxpSuFxZUAmX7EhEEv/EomETbSfVcYaVnpRw+HQoK1Hjx7h3r17yGQyKJfL6PV6ePz4sSX4UYnz/Jp8QxiLQpRQEpX43t6e3c9wOMRnn32GTz/9FPF4HEtLS0in07YZEj37fr+PcrmMTqeDTCZjGazVatWsV1r9NKY4VgobA/Dcr87N68zzNGX5Num67sFFptzzToOwXeOByo+8oDFcwqebm5t4+PAh0um0QYw6LzyfWwHCz5n5HI1GkclkAJzHJPv9PrLZLPL5PA4ODtBqtcwAiUajSKVSAIBisYhSqYRoNGqx2cePH6Ner6PVanmgTUVBaFTQgGB47OzsDKVSCZ1OBwcHBzg9PUWz2US1WvUIUhITbjXr3G/3QFeh+Tkss9DHWTTNU3zXSBW9Gp10dubn5wHA0MbRaIRarYZisYg///M/x/z8PH7xi19gbW0NS0tLWFpaMjnCeRkMBvj+++/x1Vdf4fDwEAsLC+j1eqjVaojH4/jbv/1b3L17F6lUysquj46OMDc3h6WlJSSTSaytraFYLKLb7WJnZwetVgs7Ozs4Ozuz5Ffm1BCxVXLj/H7ev36mfAVcGNR0tCh/+R3lpxrkGmbj2jw6OsJXX32FdDptpZHr6+tIJpOmV372s5+hUChgZ2cH//W//lecnp7i6dOnaDQaniqAaflc+lxqzPihYteODPDE101+ApSvftaOWoSEuTk5yvSTycTaVRYKBSwvLyOVShnUqhsE0bKkMcAJUE+ciTQLCwtIp9N4+PAhPv30U6RSKRSLRcsBAM6ZwS3X0+edNontdhu9Xg+7u7tmLQKwnIZ0Om0xWTcJbTQaYX5+3pK66IHV63VPKIWMxrGksFVFpyjI68z5ZajDu0guL05L2vEjF/Ei2kRDQJVoJpNBqVTC4uIiVlZWDCXQHAEXJdN7430xyUkTY/P5PCaTicGrg8HAel0QDaCwy+fzyGQy6Pf7ODk5QavVwpMnT1CtVk1pMMkxk8m85J3QY6RBzpBat9u1sNvc3Jx5UK1Wy8aGIY5oNGrCmM/uhl74OotPZ/HgtO/eF74luWEPlR+ZTMaSTpk53+l0UCwWce/ePayvr+Nv/uZvcO/evZdkmjot+/v7+O6779Dtdk1O9Xo9pNNpPHr0CJ9//rlVQbVaLRwfH5tMY1gql8uh2+2aI/Ps2TMzAJjwSpnPfAOSrkvem96jPr8mtDKUQR6mTNRwntu0SMdVrw9chHEzmYy95vN5hEIhZDIZxONxbG5u4qOPPsLjx4/x7bffIhqN4sWLFxZe9nM41NidhoKoHHDX5GX0WqWF10XToJxZyACPV+HLAeKEU6AVCgWsrq4im81axj4tWr+NgAhXaYOMXC6HdDqNXC6HUCiEcrlsSTPlctlTK8763G63i06nY94RM11phTO3gPFbJlaRKRuNBnq9Hubn5zE/P49isWjPzUQurQduNpv2/PxsYWHBQiKtVgtHR0cegarj7i4gV8FMm7fL6LYgAz8GuYpIPVOXXCGi/ErEJpfLIZFIYHV1FXfv3jU+01i68prOmZ/RzGoXCk7+ZjKZGPyfyWQs8YubbDEcRWXBnduYP0MUi8gbQxmEdnkNNyktFArZ85TLZeOxer1ueQT0Srk+eR0iBPTa/M7tGt3XTe96yIDzomub483y0263i263ay1+NzY28OWXX2JlZcUSmN31PBgMcHx8jGaziVqthm63a7lZAPDgwQPbr4VbA9frdds8KJvNWv4WK1AODg6ws7ODbrfrCbVqM6DxeGwGJD18N/HRRQZUcbo8NJlMPFVjwLkBoG2NyZfaQ0OdOspl4Lykl0mFHKNWq2V7JzAhM5fL4Re/+AXu3LmDTqeDdDqNZrOJVqvlGxpQme3qT97T666FVzYGrmtRuBYNcCHU3BIQ9/oK0XBQFO6Zm5uz2tTNzU2D++lp0JLlIiDcpOEGdhJkzJQNgubn5y2eylgsBTrrrmlZA7AtjdvtNlKpFFZWVhAKhZDNZrG6uoqdnR388Y9/RL/fx/b2tqchxerqKjY3N7G4uGjPyLbGfE8rW9GGQqGAdrttG3gQqdAYry4aF3rWeZg171fhhdtgCFyXQeJa4LPGxu96WvfObOt+v281yYVCAffv38eDBw9QKBQMsqfQ0npmCimtQGB4gHkCfr8HYF5/Pp+33TTX19cN5UqlUp6s7Wq1ik6nYwYA+TOXy2FlZQXlchnFYhG5XM4T/tAOmeFwGNls1p6diVWVSgXhcBhHR0eetcc5033niaboVt8ca43pukjBm879u24IqKFII49b8FKehsPnbXS73S7W19fx13/917h37x7+7u/+zgxTF5YHzhPptre3cXp6iqOjIzQaDWxsbODBgwdWGhgOh1Gv13F8fIzd3V0cHBxgbW0Nm5ubliyYSCTw5MkTHB0d4fDwELu7uzavrALjM4TDYXQ6HdTrdY9SV6TUNQiUaEzwe65lOnFErRjuAi6QFRpQiqhqh85YLGaJ3zRiOUbkXwCGEMzPz+Pf/Jt/Y3k46XTa9jrgvfI++Z73H4lEPKEKzuPr8usrJxBeB11VibhC3A8SUqFMKEfLobQ0RdEEWnH0oPRazA/gMdqQSNu1MvGPHdi43SUNDkL7yWTSJpWxUZZkKWMxo7RYLCKdTmN9fR0fffQRFhcXX6p04Bjw3jg+4/HYLM+lpSXLXaBlyvJDTUBze3PPUm6uIrwK3QaD4LppmrJxn9XvOx0/zkE6nUY2m7VSV0L8FEDARaa7C39qOSxfCXfq/LoGJNEpeijpdBqpVArxeBzD4dASbhcXF+03LO/qdrtmADA5FrhIsHK9MNczYykvG3AlEgkPKqcCTsdPkw01/KUGhHv9gF4uf1WPVhVNJBJBLpfDnTt3sLy8bN0n/eB35d2zszOTtePxGO12G6FQyBwutjhmzwCWDzIESmeKiaks2aMBwooHDbHxHvS+XOXvxwMuPypiSllMRcvzu+FpF5Inb/Ke6XB1Oh0LSU8mE3Q6HVP0RNkYTltbW7ME84ODA0N6lZe5rnVO/SoOXsd5f+thAr1p94ZdRGAaMsBjmfjHSSO8ubi4iIWFBSwvL1tdPuOc/C0TpLLZLJaWlmwiVaCykU+v10OlUkG328WzZ8/Qbrct5MDrcwJrtZolV+VyOeujzaSZg4MDE6ZsncmuWWdnZ4hGo/j8889x//59/PznP8df/dVfmZenFq3CwW5/+kKhgOFwiFKphHv37uHFixeIx+M4Pj42KI9wGKssqHRc2E0Vyavywm0JEVzHfbjKjKSCwFXU6rUDF8YqjUXCtvF4HMvLy1haWsLa2hrW1tbMI1ZYnEmn+l2/3zfIVSFN4CK0wERZtkM9PDzE06dPEQ6fl4xlMhncv3/fqg0YImP+wsrKirU4ZklVs9lEOp1GoVAwj2gymViGNden7vpHQ5j3VCgUrLkMz0lloMKfhjiNDsaKte0sQ2wMRWiisesZvu78v8ukia9ERpk4zOx/hlA3Nzfxr//1vza0SlEoVzFFo1HcvXsXCwsL+Oabb/DixQucnZ3hyZMnZujFYjGL+a+srODzzz/H8vIyHj16ZGgXy7aZrKqJe+Px+d4unU7HQsAa1lWF7s7TtPeuwUD55yanT2vao6gFn4G5MHQCmUdBnRSPxy15dmFhAaPRyHou5PN5/P3f/z3+4i/+AnNzc9bmnuFd7UqqusrP8NUkw1fJ+7qxBMLLznUV4e16WFTk9Dh020oqOsIshJ40QYuCnd9TkDGLlVtWNptNMy444Ky7ZkkfAGMKbm6kQp3MRquQkzw3N2eGzMLCAorF4ku7cen4qdGkCYDspz2ZTNBsNlEoFKyzneZGXHWM/dCAV0UI3jfyMzL83vMzLbdSNEt50o+ntXRLeVgNNq1Q0GxpEj1BJkXRk2P5nyIRbBdLBcFuh+HweRkr75trR5WFdmRUD5TriIY77zeVSqHf71vFgyJrGm7g+dVhcMvXfix6H3jcL7Tljhv5IZ/Pe8I+fr/jfPIclDfFYtHCpeRVjb3zGObI0GCkYUsj0PXEKTfJlwDMewdebtLjzpkfWjANCSXfuWsR8G697Ia01fDke3WwIpGIlUrSGVRHIZfLWV+QUqmEyWSC09NTX1TClf/T5vxHRQauY2FMO4frfeoE+w2EDjyZkaVYTNQ7OzvD2dkZTk5OMB6PzYvJZrOeWBMAU/KHh4dWHXB8fIyzszOrJaVXTYbmxDabTSvV4jkLhQI2NjbM6CAcygzTaDSKhYUF3Lt3zxq/JBIJfPbZZ1haWsLCwoJZ6xo7Ui+Rit8PglbI98GDB8jlcnj+/DmSyaRngyW/Pt7Ay123XKZzBYy7IP1CPTdJ13Uf00p+1JBUCFbhVM6H5q3Mzc2hUqlgNBqhVCphPB6jXC5jdXXV9gSg4HMNWjVsw+GwQaxsysIwFwDU63UTQpPJxEpVqeyZLNjr9SyWG4vFLDdmd3cX7XYb2WzW4F9NcGRuzGAwsNg0FQE9+dFoZHwZj8exvr5u6F2r1cKzZ89QqVRQq9VQq9Xs3OPx2PrkaygknU57DGwa7tc17++LIaBon84LKRQK4f79+1hfX8eXX35p5X4qW0jj8Rinp6f4/vvvMR6PzWj4/PPP8ejRIzx//hx/+tOfUCgU8LOf/czjmDFZkIbleDw2dLTZbOLs7MzQpeFwaPfIZGzKO9b3h0IhT1I4Ffk0Y8Dd2psGJnDRJZHHKepMg5vPoUgsZbEbIlMI//j42IxfniMSOW9INz8/70EYP/30U4TDYXz33XdotVpot9umf2hc+4Uf35RXbyRn4FXIz7rR96pwtG80oS9ulMLBZCyfDR4UFmJI4Pj4GEdHRzg+PsbOzo4l33EMQqGL9pysgeWfJqBody61ZgkNMybLDWC4AO/cuWPwKxnPhYOoTLS8hozLeWLOA63xfr+PQqFgyWHM1tXaY1Voet1ZKICfN3wVy/Vt0XVfXxe5nwHL7914N+PkaswR+iOP1ut1VCoV28mSRgTLZ3kd/o4hIjWU6bXRi9euaTRmARgqRWVN6JjKVD3F0WhksU4mKJLYLZPGcq/Xs3tTz5JrjkgXN+7i5lypVMpKF3kOjhWfSY0wKgaGHoh8qLB0X1+X3nWjwFV86tWS2G1ycXHRcgWAl5005gTs7+/bmCeTSayvr2N+fh7j8Rh7e3soFotYXl5GNptFNpv17IJIJ4qv/J9IEOeaDg+NF943G1cRoVIDfNo9qyOliBNwwUvRaPSl0Jwrw3gPikxQf/B/rk8mIFK3cMy73S5arRbi8binU2wodF6xNhqN0Gq1rGmXooauU3xddKOlhSR3werDKvyiA6AKkMfRW2k0Gp54fqfTwc7OjsWvIpEIarUatra2kMvlsLy8jFAoZBbp1tYWjo+PzVsCYFn+THgBYH0BWB7FuD+9NJah8LloODDUAJwnkaTTaUwm52WD2iaZAk6Ts4heMK6mJWS0kN1cC+58N5lMsLS0ZDHh+fl5ywKmhc04GRN4FJFwGXAWPPW+ogLAheAAvJ5/OBxGoVDwxN41ns34PPNNuMkKIVLgnKdY/TEYDKzUiGWHmUzGzqtlVu12G8Ph0DYlIiKmbVgZj08kEta8itn5vA/mFaixzPHzCxcAF4Yp15CWuhJVYN7OeDy20imW1gKw/J3hcIhyuWwwMrvOqSenyJVba066TuflXTcEgJfr1SORiCVOkx83NjbwxRdfAAD+9//+31blQkclnU5jd3cXW1tb2Nvbw29/+1tPbsdf/uVf4uHDh4hEIvibv/kba/JG50jzFiivJpMJ2u22NXYjr/i1/+V3PAcVLY1XHqN868bVKTc1pMWxYTKuG9rT9xp6c8MM6gS4UD7RAN6Dbnu/t7dn5evczC6ZTOL4+NhQAxoTHCPXwNH7UKeO17wK3VhpIfByhvq0602zhDgQnFR6Q61Wy0r6GL/a3t42gQucJ/Jx8BmXp6W3vb2NarVq5VccVHo7qVTKvKFut2vlhDQG0uk0AJgxQa/r7OzMyg4JjTFJi5t+MDubQlRLpchEjDtR2Oq9+QlAxqEmk4klriSTSVtEh4eHngWoCTwuInGV+Vc0Qf/edaHKcaBXq54/N+phljSPJ3QeCoWsN3mhUEChUPC06d3e3rb/x+Ox8S0ztbPZrMH2FHYakmC+Cjdv4Vog3DqZTKw7JvNSQqGL9sWtVssjSF3kjEoD8O5jr+PB56WnR/5mNjV5gOuEe8OzdJcwaavVMiXPxDFtYUyPVY0BbeB0UyjmbSaFtYGLzbA4/olEAuvr6/j000/x7Nkz/OM//qPtoMrW7el0Gvv7+/iXf/kX7O/v449//CPa7TYODg4wHo/Ns37w4AF++tOfmmNBL1kRNV6fMprGAO+VDpeGf7Q5Wjgctn4trIwhvysK4oY59BgtfeW9Ug5qx09Vrmrku+WtvGc3DMEuoET3yMd8psPDQ0NPiG4Xi0Xs7OygWCxiPD5PUKcecY0ZP7mqCOVV6VbsWjjNEND30zxTNSjYDIItTulB06JSBUfIhlA6oRuGETKZjMVzyIwsf+G5GfMl5E7G5XlHo5EpAnrbhKhotPAcg8HANhrSumpN6iLjUzjqAiBUpvtsq3XLioR8Pu/Zt4DllXxGwD/Z5rrm9raQa9z4oRjud/RI6enwGOZ7sJyT7V0JMzKPpFgsGl9xc6t8Pm+GIduVhkIhixMmEgm0223k83mry6Zw0pp7V0j5ITgaW6enzk1iaISwIoflsoz/q5fGPATNW6GATSaTFscnn/EeGYPWcB75lF4fQxD5fB4LCwvWxY6b1fA6VBzaIyQajdoavm7D86YNWeVNP95VmobgabhGw5Xz8/PWurrT6eDo6Ajff/894vE4Op2OGQNUbBsbG+bwsKqEcpDd9Lj1sIY6aQi4z6B8q/km7vPyOSgLgXNjgagW+Voz7bUBD+9fy1HVw9bwQa/X8xgKNA7UaSQpWqHPo/dBw8NFI7jvwmQysa6zlC/5fB6ffPIJDg4OLCSjv3XHh/fB678qMntjYQLXU3Qfzo9plNwkLkLo4fB5bacKK040f8cB63a7HuF1fHxs7TNpCKysrKDf79tuXCwd1J4CVOZMzKLAG41GqFardv+68Ybbl527FbI722g0Qj6ft5gSjZrT01ODe/v9vm20xLIrTbRRw4QdFNfW1qwvwXg8tl7hhKyViWbNw1WY7DaGCjSWT4EAXCSR8n51QWlyTygUMmXFhT83N4fV1VWk02lsbm5idXXVkxfAxc6OkDQGmJzX7XYRDp83ZqlWq2i1Wjg4OMDW1pZ5bqVSCZ9++ql1CkylUjg7OzMI3a9fhd43BS0NZiYb7u3tecrMVlZWbO+Lvb094w31lpgQRlRM4/SFQsHi+Axd1Go1Q76YJ6ANYjQ2TMg6FAohl8uhXq8jl8tZO2SG2VqtliVjMRdjMplYbo9mpL8p/92kIeCHrikyw2MA7xp1FQd5l+EjziV3RGXpGxMD/9f/+l8IhUJYWlpCoVBAJBJBs9nE/Pw8/vIv/xLdbhdffvkl6vU6/vmf/xnHx8eWONhoNGzToY8//tjTI4UyRWPy/J8yjnvH6HNoYp/yMmXpaDSyRj5cH0qqMBVNosM2HA6tCya7yGr4i6FY5tgAF/lfVPp0JLkWafAqAufK0W63az1gGBbjGl9bW8O/+3f/Ds+ePcPvfvc7HB4eetY1z+OGKomicV1clW40Z2DaIr3qtcjkHHCtP3UbrSgjKiPQW1ePisqcHgwAT2IJGVIhG04ScMG4bs6BemVU3hTEbAvLhcLzqlenMSKtFdYMWwpiV1jwGBoOuqtcJpMxmNmFWKfNxVWh2NtgDFzlea5CHEMXGaCi01a+Koy5q6XuFsjzcbEybKPeA4UohQ6FpXbSVL7lnFAwuYlQzG0hEa2iYFWhRQ8cgKFeqlgIeVKJ83uGt7QBjWaNTyYTSxpUQapjDMDGdDgcWjhBt1/Wdayer3YsJNL1KgbsbSRda5c5Si6a5SoOfsf35EGGPjURGjivQAGAvb09ZDIZQ2l6vZ4ZrmxkxvPRKKOT5Yfqcu64qRvDVH7lt3o871/j4XNzc6aItW0xgJcMQn6vDoHytSKqNCppRGmZuvIucx8oe0mu8aP3wXtTZIPhMToakcj5FtKU10xYnybDXKRcZcJV6EZzBi67nmsNA/Ao3HD4fFc0tlTVrTMValXlysYpFKaNRgOHh4d2Ha2XZQyHgsi9Fy2roqLl5xTetFo5iZPJeaOfe/fuWbMjCtazszN7Lq3JJqqgMS1el8w0GAxQLBYxGo2s9lszh5mNu7S0ZAufCAEVBVEOhVlf17vyE0Y3SfT2Nc4HXCQIKcrkWvCE/NjRkl4Pnysej2Ntbc3682vpYCQSQblcttAUQztEr9hjolAoYDKZ4ODgwMID9+/ft3hjJpPBaDTC4eGh8a+2RuWcUdixRKvdbmNvbw+dTgdbW1toNpsG+9Kzp3cEnCcZUuiFQiFDppiEqtt/04PTxNZw+KLtMEMNOzs7ljgYi8UsY52Gqd98sN03jVaiAdVq1Tw3eoX0BolacD8ONiRy5/xdIkU0VUkqQuCuUeZwqKzgeCl6SBmbz+dRKpVQr9dxdHRk/ELl3m638d/+23/Dr3/9a1NOzWYT+/v7AGD7pSwuLuLRo0colUrW2leNVjVsadRVKhV88803OD4+NmSJxiifhUYq5ay7RwJ5Xz/TsdBX7WDIcaPhTAeQxzK3hVUyqvvUKWBjJu35wfFX1IxhGRoj5ONqtWpoRaFQsNANSw8XFhawvr6OXq+Hg4MDCycoP+jYuiGLazcGrov8rHQ/q3fWb2mVEQbJ5XL2vyICAF7yjmiF6TkJ0/LcLBtk0pPGiqYlZLgLkJOrm4EAF7FNdnYjlMTd4RjXcseIY6PhEYXbtCxn2hjyHrXZDDerGQ6HJvhphbseiXtPl5EbCrqN5AoQ9371exUAWlrH2KjyH3/LfA1NPlJBxbmmd6Zld+QVKjhWC7BG3/WcyB80BmiE1mo1tFotnJyc2Bap0WjUklvJQ8CFYORzq1HD63HtKcTP6hPCu4T7I5GI5bcQvaNRpCEpVWgq2MiLDGkRGeEYUkFQaXI8OY5XkSe8rn52GwxYwNuC2s9b1lfAmx/gGrmqNDT0QGNK85EYTqPHf3R0ZOEeHsvEY+7kWi6XPflXbgIrAONrzRGg06Z9ONQIcp+TfKcVPYB37w9FJPTZmVjoIhb0xMmjzFtQg4PP4aIANLI0V0DRYZ1H3r/mSVD/sCxdDQhtjJfNZnFycuKZ3+uUr281TOAyMx+IipMMMI25aVmxLG5+ft4a+4RCIU/v9LOzM+RyOUtCImR1dHRkXhkzl09OTqwBEHdiK5VKCIUu2lHm83kkk0lrhMJtXUmJRAKLi4sW32UrTpZ5tdttRCIR202wXC6jXC5bOeFkMsGdO3cAwDx7lnIBF1vMZjIZj+dHhiLzaiwW8Hr2GlPmZk4LCwsAzlsYs3nS4eGheVXTElHc935zBtyOPeFdo0oFoWvcqTXNcaRwWFhYQKlUwvz8PBYWFiwMROUIXChKerbMlKfypQdCAcy5/8lPfoJ+v49yuYyDgwNP4iv57MWLF9jf37d95XX+CMVTcbIO/Pj4GH/605+Mz9l5MJPJmAdOiDUcDnt26WSLY2ZCEyljp7TxeGwxUvb04P8aiiLyxec4ODjAcDi0Chca8jSYXBg7nU4jFApZmdXp6akpG90Sd25uDqVSyYxahj/YrIjP6Ibb1IN2BfpN864qMzXOlXf9wgYsZ9Xx1Fa25P9EIoGFhQWsrq6ajLl37x6azaYlE2pb9rm5OcuNohdfr9dRq9VwdnaGra0trKys4ODgAKurq7bPCr+/f/8+Njc3bc61AyYrtLju6D0DF8ayIg0cE7d/P78jD1CR0xDgvLp8piEE8iXHkgYn+YOyVksmNbFRQ76cJ469awxQhmhben6WyWRQLBaxubmJUCiE09NTnJycTA0NaZhDv7sK3XgHQoW/3O90wjigjAvl83nbe2B9fR3AeVyLgzmZTJBMJg3aZOlSNpv17C3w4sULvHjxwqNs0+k00um0p7EFOxeyfSoA81L4x6xc7vzG3d4Iv1PBs4wkk8kgm82iVCp5FqnfRBOdoEdKo4jWsJbBuOiBnksFNjeo4e/n5+cRi8U8u9S5MbCrzq9arjctUP1IDQJ9ThUqmiDEJExuslIulw1p4jE8L/mlWCwaD6onweYr6mFTMcbjcSwuLloHTCY3MXmUc0ejj793BSQRgdPTU+zt7RnMTk+EHjW9NCpDxiYLhYIhV+l02sIk/A35VcMoDDcwBEUe5dgQEajVajbu2WzWKlrUA+Zc0AGYTM63Xh4Oh76lt9w0jGPfbretvFjH3YVQNQ4NeJvz3Ba+dWXuNHRSjRz1lmk4KIwNXMgUlrtyfhYXF3Hv3j1Uq1U0Gg0Pz1DhkS84n5S7rEAgInBycoJer2dbEmsJKfM72NNfexZoTgoAz46ARC74zHSKXMOJyYDj8dgTJqEDyr4smr9CBU+HQPOwNCGdsoHrkNcliqbKXnWcH2LBz7Q6jOeJx+NIpVIol8uGHExDtFyZ9qr0VpEBN55DIUzLjp+pItEsY5ZwsRkG2/Wy0cre3p5lG+sWrFqiRwu1UChYhv0vfvELi+NT0MzNzVldNi1U5gAw65RhAS2FmUwmxrDVahWnp6eIxWLWVOXBgwdYWlrCysqKbYusNbh+4wTArsXkKzZQIpOmUimL4yq8pecYjUbW5lWTyQgVlstlzM3N4fj42LwBNQb87m0aX9wmuJULhQveHRPg5VAVj2XNbzqdxtrammXbp1Ip8zrC4bDFDdl0iCWE9KzV43DRG/X66DGxYqTZbOLk5MT+H41GNtfxeNxTkz8ejy0k8PTpU/zhD39AtVq1ltpcB6FQyNOMiMqBOQxaVqteuwpNTWJVqJUwMQ1etoxVWJdGFCtquN44LjpXJPL+eHxR/qhzSaVBNIDhlclkYn3yFfXRcKI6I6pof4wSxVclVkkouWtSyX02EueKBloul8PGxgaWl5dth0IaoOT1VCqFo6Mj837JQ5o9zzlnaIsIWKVSMeQzn8+bHH7x4gWOj48Nge10OtblslKpWOM4DUvx/skXureKOzZ+4RSGO7RhENchz6nGIABbU2zMpUqYPOMa5G4CoiIQ5CtFD7gestmsGbE0csmzNMBLpZJVurmev4aSXF54FXrr1QQcILVcCcVT4WkSHa1QlnQUCgUPtMUOgK1WC8+fP7dd+QiHsp0jBSmV+8rKCpaXl3H//n383d/9HfL5PNbX1xGPx00Q03hg7JXeVq1Ws/siU2iMs9VqYTwe4+TkxLpIffTRRyiXy/jyyy+xvr7u2fXQNYRIKqxdQU50hBZoLBazcjVtPqTnGw6H1mqZWy6n02nk83kkEglrHXpwcGBQoDZqcu/LNQhukwHgR5wrVQy6MF0rm5UqS0tLyOVy1rudY05PhqgK46b5fN7CP6oEaQxQOGiiFInlhsB5N8J6vW57XtTrdfT7fZuzWCyGer1uIYfJ5Hxjk8PDQ3z99df4x3/8R3S7XTQaDYPZeW7etypqGts0BJaXl81bUq+dglhbHlMBEVVja2XmKOgxrK3mdfkbJrQyVqpJbvRgGfJTeJZeIBERKqVMJmPGgMLLanTwemoM8L3mUtwUcb40WdRVdsBF2MB1KHg88zY4l/Pz8/jFL36B1dVVPHjwAIuLi9jb28NkMjGk4OTkBHt7e2bgcTt0EseHlSNa9XJ0dGQdN4vFooVJv/76a3z33XdYX1/Hn//5nyMUutg1sdFomMHiZvwrzM+4Oq/vonr6p/li+pvJxFvdo2Ei8hs/V3RTFb4qePce3VAkP6PzSwSCIUWGBBji4pql0bK0tIRQKGS71/J5FRHhZzr/r4IS3FjTIbWe1Btw31NI0fvm/wAMBqrVap4ugEQaGDfTEkBem79j4x8KCVq5wIUHw+uwR8B4PLZaaTKaeun0qGOxGMrlMhYWFrCxsYH5+XmLv7qJZn6M7Aostfq5QDWGxdi2C3HyfExkpFfGGC6TvggZ07NlN7lZBosf3dbQwCxyDRryHvd20B3cOMacCxpiHDfGyZXcGKXrddIoUWGlUCONZuYSsByrXq9bbgnPT4VZKpVMOQKwzbEAmPfMZ6V3TkXAumoXwSDP0cNxs6yZ9MgcA/5xPQ+HQxsfevihUMjWmXqeLhwai8VMWSSTSQtl8d4IBxPpUmOdY6zCk/fk8jfDLn5K920T+UKz310oeJoCUF5m90rmWq2trWFzc9O6ZbKsldVT6oFrOEaNIw2N6R/lYKPRwOPHj1GtVq1zKu+FfTI0+55Iqcof14njvLL0keiAJorruuEYKA9QPmqpNztz+vGdyjLNJaFjoaQhBBcp8ENT/VAw5r2x7JioAUuXiVK4cvZN+fXKxgAtnutcHFRuOrgah9R4EmNGFCRktkqlgqdPn6Ldblt8igKM3jyZBbiIG7ZaLdRqNWQyGVSrVbPSaKXSozg4OECn08Hx8bEJYyILq6urVpoIXFjvjE8tLS3h008/xfr6Ov6//+//M6Wii8zPwtQNXbSigVYxFTfHiXFkHutnDNBIIWx8cHCAarVqzUbm5uYszMDGROFw2GKF9GB1cXDh63X0/2nC6W2TX8KQu3BcQ4yeZbFYxMbGhilIwvRMwOOcrK2tmbJV9MHvmTmeilQwtsm4Lf+IjtEw63Q6qFQqlmTIPBKGeFiO9NFHHxmixbAWE2wnk4l57EwSLJfLSKfTuHv3rpWf+rW3Ji+xsuHk5MRyGgBgYWHB9tZgYu+LFy884TUmjrFb5ng8tjXE8IeiA5xDhUwbjYaV4qr3d3x8jHA4bFuAM+bKck4iIuQJeqBUunxm9cJvkqj0eB+6zumMuPfpKrBoNGqI5CeffIJPPvnEkFDKQpZXs+MqANtFUFutU7ZSyUUiEeMpXptG4rNnz/Cf/tN/QjabtVLSjY0N/PVf/7UlxobDYUO5mKPCktPhcIhms4lut4vHjx+jXq9bEm+tVsPu7i7Ozs5QqVSML4mAcD45FkTONLTFNccclvn5eduvwR1HV8FrxQANf3XiOO6KCuoxJDdxkTuHEsWhbFdjLpfLWUIn75PXcI3dV3HKXgkZuK6F4Vo0ZDC/kjr3vQu7UhDpPuh+90sPhAJGs+oVcVDokefmXgIUJFTS3CKZ96MMMx6Pbd+DYrGIfD5vaIIiAbxPPosqBGaw0nJ2LXCeR2Er1wgAYIYAx0mzVjlmeh5m7nJs/KBSP4j1MrpptMAdc+DlBBx+xuQdLcWkocbOd1zIFGCEN8lfrjfnevnqcdMAZK4GDUUtZ1TEinNIT1h5k9A7Y5EqNPQZuZb4DEz643OQ3DnWdcd8Heaf0JuhIc/qA977YDAwFIJrhWjHZDIxRUekg/fJ98wfYm4PHQMNX6jXB8CjvFwjbZaHfRvIL2dH/zg2fmEDpVQqZegVUR922Ts6OrJwEueRzhAV/WV/LoVC58l3JycnhuDkcjlLvFWDmL1NaOyRZzSJjsmj7PURiURM+Wurd3fdqdGiRP5gqI48Q3RKwy2uM8HxcfWYHqPhFH7nN05qJCiiobqMDgfXJpss6TxfBw+/9ZwBfXgApug46ZwUF+7h5kO03tSCp2DU+BgFCwVpsVi0OLu28L179y4ePXqEfD5v31GZsy1st9tFvV5HOBy2ki52laPAZukZPR0A+Oijj/DJJ59YAhqz/1V4qVdDz+3k5MTic4RwS6WSQa98LoV53XlSD67RaGB3dxcnJyfY2dnBwcGBJajw9/rHjZO4na52GHMVyqyQgKtgb4ooCLS2nQucEDrDPxQE9GaKxSJyuRySyaR5tlqySlhcEzfJw7qBigtb8jgiA0Rg6vW6IQBscPTo0SNTujzf8fExJpOJNSuikuS9jsfnJV/j8diqQ2j88bnK5TJWV1et/JHeugpJGjxqfDI8sbe3h++++w7dbhenp6eYTM53xcxms9jY2MDm5iay2Sx+/vOfo9/v214HfH4aE0y0pRHMBEk3nMb1vby8bGEbJp3Rm6IQZS4RAFN+VAw8Zpbn5mdc3wT5wdYuksh5VZmq6BTfx+Nx7O7uWnXJ7u6uhUvZvpY8TCOSW0r7KS1VqLw35tkw/4O9CE5PTzE3N4etrS2ryNnc3MR4PMY333yD4XCItbU14/e7d++aAUFon7lY4/H5xj2/+93vLHTL+yCq51br6PiRj93manT4VL6y2Rx5R3PcyCe8Bn+jho5rzLlhN16XfEaZogZIJBJBLpczhGBxcdEqjShD+Aw8r+YoXJVeyRh404Xhema8aYXs1PvhcXyvsKzbEEIZkoOsnpVWIVD4FYtFrK6uWl8AGiW8LmM3zENQREAXKT0sWq18HpagET6mx6hJL2QuwsBMUuQWl8BFrFf7tpMBSH6IAM/d7XZRqVQsdseEKvf3CqlpYtBlSYSq4G4aVvUjtZqZ/U9e0nlU445xd0VI+v0+ut0ugIuua2woxPklX9PL17gn511j8TQ8KYhYCcPjaBAwSZDChjtm8hpcP2wkpd63dhoELnIEeKyWAer60SYu6lVzH4tGo2Ge39HRkT1fq9VCoVCw/gWLi4vm+WkiXLPZNO+PBhBLNXWeuFYo7IkK0PABYH0xSBTInBfNpeHz+Sn7WXD7TZAqDlcG6zy5OQ76O+DCiGg0GqjX6zg+PsZXX31liACNXO2iClxAzy6C4ocIqIELXORc0WCJRqMmi3q9HpaWljAanXfVZOOdwWBgfQjoKA6HQ6vMId/TIGYCqyIlAExBq54AYOuNyl2fSx0e1UXKJ1zbHBfVXbwPjpvOmSIG7hyS12n0uN49nZbRaGQbzjHBUI/jdfWzV9Hbr2QMTIOErkp6U5onQGGrdcxu3JWePjfVYKOKcDhszJTL5TAej00QcqOhRCJhm21wwkulEgqFgu0kF41GUavVMB6fVwGcnp6iXq97YPVwOGyMzI0l2GSIcVs1BthYSHcRZKIh/7h/fa/Xw+HhIXq9Hra2tqyKgcJvdXUVqVTKStvYY4Eej44vBR7jxbu7u/j973+P09NTO7eWIfLedNErfKyla/o9y4v8oEzlG/ezt01qpLiL0xX+TF5aWFiw2DmPXV1dtdgma++1Ex9w3s630+mg3W6jVqt58kzU2tdFPx5fVCbQ+CRSBsCMTIZsuEVwIpFAt9u1ewyFQmZMbG9v44cffsDh4SG2t7fR6/U85+C9M0eG2yezZJWbKTEEonNdrVaxt7eH3d1d7OzsmGdOxaS7DnIs1cgkSsFqCVYD0RBoNpuezbfInxrq074PkUjEkAkKcbZCZi8PGlYAPGE415BVXr4NxsDq6qpB9kSYKMPUAAiHLxqyMQkPuCiho3xhHhWbX0WjUeuDkcvlkMlkDPlRp4X9AWiwMTSkYw683AWQ40ejlU4WaTAYYGdnxzaBKxQKKJfL+Iu/+AtDAAaDARqNhvV8YQ5ZJpMBAOuFoGEGIks0FqmcyQeqV4hwEJF1EzU5tqFQyMIIrKTR8C5zB9xwNXCBTio/K7JKg4L3RyNd+S8UutgkjZvc6e+Vl9WpvarOfus5A2ohUSDRIKASZ3ydxMSKubk5rK+vW9IbYfdyuYxer2eldvTG7969i4cPH1qtNxOVWq2WdS9MpVIG+XPfAnrRrVbLYuvcyIWli41Gw3r9M3mMOw9S6DNfQJUFJ5yeea/Xs12rdnd30W638fjxY5yenhpTZTIZ1Ot1a8eay+WMYVSZu4KLyShHR0f49ttvUalUrPmHdjN046lkJq1QcI0BPovL9LMU7U2Si1pMu0fmeZRKJTPkeNzi4iIKhYIlQ6knwmOYVEf4Wz1sejuKaFHBEoolCkVEgsKB88C10O/3kc1mDVXi/TM0cXBwgOfPn+Pk5AQHBwe2dwU7vRH+5/MRZmeHzeXlZY9hTshzNBpZD/ujoyMcHBxYPgqNGqIBlUrFwhfa8IfVP4R+aQgwFBKNnm/Wwu2aKSvy+bwZAkziJIwMwGNw0Qjj8bwPGsmuEet6frfBEACAxcVFe65IJGLGoiY98pm5plm3D8AMv7OzM0/nOpZGJxIJrKysWE5BNpvF0dGR8Sa9VTo8Jycn1veC+QXqkChaoV6pdktVtJJJnwxnZjIZfPbZZxYy3d/f9+TRFAoFa4zFHTU516yEoDFEFJf8QIU9Hl90EOT9D4dDC4mq/FM0WhE9Ras0T4WvahTxODds4Mog6kM+m58xQLmveQNuAiPvWY25q9BrlRZel7fnwrJMkiiVSh5olNZbNBrFnTt3LH5ORci4EYUiE2XYVhiARyhrwuBwOMTp6SnOzs7w4sULtNtt7OzsWMY24VsONGO7rHWlEAuFLna20vgxF4dmK4fDYWPwSqWC58+fo9PpWEMkFVZ8dkKqbCnLngI0DHReSAyPLC4u4pNPPsHp6alt9gLABDE7MhLy1rlxE2EUhuSicQ0CP7rJEIIbA1a4WL0Uzh034tGtdmmVc7wVYqS3Tl46PDy0+DXRIL4SEaBwUA+FQorwJj+jwOM98nuNjXY6HUQiEYsl7u/vm9Ll+DPhir3g8/m8p22tJl1RKGn4QAULvVHyunpbvFar1bKmLXw23gsAq7yht6ld4o6OjjzjzEZb3OY1FotZa3EmHwIXdeKKvvG7WeW3LgR+G/IF9H5UfnH+3c6QhULBSpc5HxwbKhcmdhYKBUO6lpeXPSihdvvTbdaZ6EliiM0dJw1ppVIpjMdjy1OiPFEDmIqWuR61Wg0HBwcYjUbW+I25C5lMBvl83tpmk1+4llhB0263Tb4r7+qaJa9orokmN/JPUTwaZfxzkSWiD2oc8Xn9QjeUR+oYu6EhJc49AI98UX5xEx5/FGTgVU581d/TYmcJUCqVwp07d7CxsWFQIwc6EomYhcoB3NjYwMcff+wR+Lr1MBX4/v6+p0EKhV2r1cLx8TGq1Sp+85vfWO/nZrNp5VDAhbBgLJ+JibFYDKenpxgMBrY7ncaaqcxpcRK+IrqwtbWFf/7nfzahPJmcJ2hpnJ5WPTOnCX21Wi1sbGygXC7bs+r48h5oaR4fH6PT6WBvb88aIjEmzUWmyopjpd6sX0yVcTiNk7l0054Ww0xcSBQcFG4UgIVCAcvLy5ZkB8COyefzWFpa8jUGarUaOp0Onj9/jq2tLeu8RqhSERx6MrTedcw1H4b3yMx9Gs5aJsv7ZgnWkydPLDRAnue6YKtTxozT6bQnVjsej01hEIblNUKhkPEkn5kKiB7XZDIx5Iztk7kJFxWxKllCw/V63fpe8PvhcGhGK3BepfDxxx9bVvloNEK1WjUEz23Io0Y4eZm5PjScFKblHGiS6U0Zr0pcV/SoKQfZYp2ePd9z+9vJ5Dy3gyXRnEv2fcjn87h79y5SqRSWlpYQj8dtLNkZslqt4k9/+hMajQa2t7dNFqpx5Wc4sVV8JpPB6uoqxuMx/umf/gl7e3ueTHnKPKJsrI7Z2dnB119/betjMBhga2sLrVYLm5ubWF1dxcHBgcm9RCJh52TJIkvymIynlVJq3HKNaUUCnTqGVwAYUk1j3A3X8Pm5hrke+EekRA0LjiFlg18ljxrYVPxE2ShD+IzTwgRXpddGBq5TsPOGtacAY335fN4TWqCC0+QihgsUHWC2sEKtTEzq9/se+FOhK3r6rVbLehS4VpYKGjIPoVJ6MGpNM5NaJ47WK6/HMkc+Jw0JCn6+kjnZea5UKtkz+3nxvE/eI+9NYSx9Rje5TpWYy8hKfvzgHntTxoBe102w0ZCHetw6lgpVuwlJHD/GEHXR0wtzkwt1/aj3wuuQJzVbm+VX7nV1jukJ8o+IgkKaACwRknxOA4PChsY0UQeNB6vHreNG4UelT2VE5aqelXpwDMO5/EjUjfdNdIzPSyOf1/CTSYr+8BnUiOP1XB5xx/cmiWOjiceKFKjyIkLJ75gzRDkVjUZt4ybuI8Ckzrm5OUtcZnIooXpFhBQqJ68r4spjKP+YDMvQFJUeedBvfKloaaQSkWCuh/I915omVKszo+udSlznVsdSvXfVJ/qsuh74e6K+XOeKDPA4PzlD41grHxTxdkOQNFLd75RcfcXPrkKvhQxMW0BXIRea48Qze7tQKFgcnv+rZaeeg8bdO50OXrx4YUlIALC+vo779+8jHo9jY2MDk8lFXgDRCHpOhHqZPFOv119SkjoGZJ5Wq4XT01P0+33kcjl0u12DvAi9N5tNPHv2DJFIBF9++SWKxaLtG767u4vj42OMx2PLAchms5Y5yzAFlTj3vj47O8Pe3h4AYHNz0xLf1CLs9Xq27/hXX32Fk5MTbG1toVKpmOVMptQ/xpGZudrtdo1x3SoEMjYVmp8QvWlUQBN7GEN1+04ojEqFxUQ+oitUkqrYgYvcDCZdsRXxwsKCLdzJ5GLPClX65BUtRwJgyBGFEmF0PZaGJhvqMAbPhDzC7hSgzDlgO20AFg5ZWFiwzZWYL8EEPq4PKhIqE+CiiRfHmDB1KBQyb5/GN4Uk9/ggHEyP0+Vd3WKZAlN3QuQ6dcteXT5kX3wSeZ7PxXlQwa5r/CaJzZgYCnUNg2g0amXX5EfyBmUk514RPCKCzAthRQd/xxj84uKi8TDlAfd8oOyu1+sYDoeGiLKJEQBsbW2ZnGQ+V7lctmZxqviJfPEZmMPCCivyOQ1ZomGUV6roVbErCqByijKJzhHXpIYNiCawS2upVPI0HKPRpYgHz6N6Q3UmnT0iVXzN5XLW8VQr03ROWe6o5b4k5Veu9VcxaG+0HbHGjwjj6raWWjGgGe9cqLQY6dGzbI7MS4HF0AEAE8ZqgflZUm6MySW1CokIEH4kg9ITpxCNRqMeKIqdvRRuoqKKx+OWuarxQgoEJorRWHCVNHCxKQZrrlnDTmhYa4o1zsTPaK3ynmiZ6hiQXGPJb75vilQ5KCzP71RoKG+x9lorBjTfAIBHKBKh0RwYDQFonJLE710+4zl5L1pHzu/VeyGvUFG4sDnvlYY0DWh6k4oM6G6D6kHzvHpujh1f1StSVED/BoPBS+gFz8F1p54fr8v4N8dKBTDP7ULWipq4fE7yQxWuG/18XWJoxi0ddEMglC3kCaKaPF6rLJhYqftDqFHKNUCjlrv4uWuAcqLZbJpMVQibckkNLoYseZzKWq4z8p+uK16LMpfPyPEh76jzxmvOQjQ5lpxvzYFSfldkSxEARRRUpii6Sr2l3ykyqcfyz81r0bmcxsP6+jr0RsjAVY93hZ9amXpMsVjE0tISFhYWLB7G7zlhhEufPHmCJ0+eWOncZDKxVr8rKyvm3XCLXsJdFHicJGYm53I5rK2tebKt3YQZnWyFb09OTqzPP8u98vk8kskkPvroIxSLRXzxxReexdNoNGxDJDICLUNahVq+QiJjuoJZFQ3n6OzszDzF4+NjnJycoFqtol6vI5vNGiSu2d4UmpPJxBLmOp2OGQPu9TmnLk+4836TgrXf79vY0wCiMqHBSMOKRlyhUEC320UymbQ6eRprfB6Glhgj1/ATvWrOA8eDcVYabxSWqjg11KDGGg1lXrNWq2Fvbw+ZTMaE6GQysVAbE6xU4PJ/KlFeS6FJNYpIGmpyeUCNIxoZNOQ1B4KQ8dOnT/H9999ja2vLel4w7kv0I5PJGMrAeC3HMZ/PWz4HS3D5PNo0jOuAW41rdrYaaSpcXePtTYTrdZCb4EqlC1wYYBrv5nwwPMr8KhqmnB8l5hOwXJlKlu3L2bo6FArZpllU6uPxGJVKBYPBANls1uZRd3sNh8OWQ8BeA5xzhhJCoRD+8i//Evfv38fPfvYz/NVf/RWOj48Nxfziiy+QTqexuLhoeV7Pnz/39Exh7w+Gl2l8cK0TEdEeBDQsyDvcGXMymdhW3kTMmLBJvcD+IeRLt/+NOlxu2EKdUcoMAIauKMKlzhkNeeooP4NADeBXQWXfSs6AHk9jgPXLfDgA1nksk8mYMOXvVYj1+30cHh7iu+++Q6PRwIsXLzA3N4dHjx4hHo8jl8vZTnPJZNIEGYWbCj0uLvYimEwm1g2NddcaI3W9wsFgYFAooR969YRu2eRoMplYLgIRDTeWxt9rrFnHQZnKL2FK42IaU9TKgV6vZ0mIipKQXChL+yS4z+/ygR9f3HSYgAKSxoA7fzp29XrdvOdoNGq5K1S0LhRNoUlhTKXjej401DQfgKTHAN7OjuoR6Twp4jMajTA/P2/nUnQJ8MLvrjGgHr5rDLhGqMKnei7lCVUEbnY0hdjp6Sn29vasfJZwNyuD+FsKxlKphNFoZFUarCNnT3neH+/XRRwpGLW8UZ/RNVrdUMNNkp/MIik6qWiQhv6YY0VFRaeFSpBhMPYwWV9fNwXNMA57VMzNzdleLJSXTOQkb+hGR+SZSCRipdca/lEFFwqFsLKygs8++wwPHz7EvXv3PPH11dVV61vBcMHp6amFMNW5o1Lns/F5x+OxZ20qqkVDnR1kaRykUilDqSkzR6OR7RFCxCocDpszR6IRoMaAzhnveTgcmhFDRMSVl1yfREsUBXFplnyeRa+NDLjCwoU+eKwKQSICnDxC9tw2VWOVmnnsd172I6CwSCQSePjwoRkC+XzeBDivq4KBMLBCu+wJwKx7jbeS1DPUxTkenzdTcWNIVBDumLD3ge7cpgkyrDigsqGAZdiEDZPK5bJHWdF7DYVCFtvrdDp48OABCoUCjo6OcHJyYlAee+JrIpImGGpmu86/CqlZcVUXDrsJ0sWlgp5hEOCi3JQCIJvNYmFhwfJYuPMeBageD8DahaqHxgQphbtVaHNhq0Dn3NE4VGgQuIhlUwhVq1XrS5BIJDw7eNJIUeOQz0ojh2W4NIyazabxtoboaECQn9kF7fT01GOg0jBeXFw0Zc71zhgvY8SlUgmffPKJZYBrkmQmk7FdPldXV2182GdD84u4VTKf1YXUXTmiBo/+qSHgypybIkXfSDQONblY+UoNdyr6n/3sZ1hdXbWQKnDRkGh+ft5i1fT2x+OxlTG3223bOv7+/fuGahKRzWazmEwm5kVzEzjyNwALC3GjodPTU1N8Dx48QDwexxdffIGPP/7YULloNIpHjx5hMBigVCpZ8jXlZ7lcNp5ieCQajZrMVMSSvKGlguR55p3QUSNqTaMiFotZUzCOjZazUgZwLlwHztWVwMuN2dxQl4YXlB9ZGkzdyd/znORrrYq5Kr2WMaAejH6uTKjQDAeHQoQQeK/XM4i+WCxicXHReptrsxe9Bt/H43GD4tlOmKVHWv7B6xNqJFPQg1GYlPu9Hx0dmUDl9wojKpSok0kDgvEyhS+nGQM0jvh73rcyIMeKzx0On+82d+fOHUNAGNZQL4uJKMB5SeTR0RFevHiBcDhsm5JQwPMahM441tqcY5ohqN62yxd8f1nc7sckHX8VqgDMc6DCogAolUpWskX+YsyV52IyD40z7ueghqB6IGoM8HsaDMpfAOxeeLzr7Y7HY4NxyTdMOmVCI5WrzhnhT5aSshERgJc6vWnLZc1PiEQiZkAoiqboxnA4tOREnp9KhIKsXC5jbW0NZ2dnODw8tOqa4XBonehKpRI2NzdtXXU6HeTzeWQyGRQKBcvr2N/f98S7lVS4uvOvPA14efWmDQEALxnlatjMChnS043FYshkMvjbv/1b2yOCRj/RA+5ceXp6imazaR4yG7S1Wi3bD4LX+f777605EfeJmJ+fRzabxc7ODnZ3dz2KjMbA4uIivvzyS+zt7ZlheffuXeRyOfz85z/H5uYmwuGw9ZL44osvPN4wEYe5uTnbH4Tn0lAWn5HzynCrjhf5mQmQROuSyaSFPBiC63a7tuYoAxRtJK/QyyepoayQP+BtXaz3ClxssMT75XuGJ5j4TuK5ybt+RuRl9NoJhLMWip+1rYkRWjbHhCVNGlTIWq9HBh+Px8jlclhcXDS4SutHeQ/6O/c8Kny1XCYcDhtTkTn0eBeaB7x5EIyl0atSOJ+Weih03m9gPB5bgxuiFDRSiF7wMyoWXk87NvIedeL1PcMUhJOZ0Og+h5bAEYZmVrpfWEJ/q4bRNB65KeGqAtQ1SHTMFGJnFzN654oQuXNKLx6A5Q/QwCJ0SeHt/rkegx+K4SIKXOi8L5YGUlhqwyAiRWrAZbNZ24CJuy0yxszKCS0r5Bix3wA7A9brdSwtLRlkqqGBxcVFQ614n61WC41GA5PJxBrlUBZw3Hm8NpYhj7ORDuUDW4GPRiPE43FPprhLKng1F2AaT950eEBJ753vNalNZZnyqCYqP3361BIBqcDX1tY8OTTasQ+Awfsa5tEOeYS16YANBgOrrGJOEvMRqPCTyaTJnnw+b/k1yWQSnU4HJycndn46SEyinUwmnv1ZGGYuFApWKkmeVQcAuFjnGh7jGFI587zaRdblFdUTLvmFcahDOHfaeMtFrDhn+qrzT51A+TJLvs4KI0yj1zIGXOZzFYLePJUtM0210x0nlH3Q5+fnDfL3u54mW9y9e9dapmrfARe58DMOOJkaW1Vkg523dDcpzZBWL4sKlC1YWaZVKBSsnpYGTDQatTahqVQKCwsLGA6H2NvbM9iN3qJ2VaRVrRAyYVRNwvSDQ+m1xuNxlMtlvHjxAtlsFq1WCycnJx6FxNBMu91Gt9vFyckJ9vf3DYpWAcQxcA0kv3G/aWSAipr3qvdFK17jrclk0poPhUIhy7PQLGM3KZHxU8Kw7KRGL5oCil4Ok5Y03OKiaZrgpLXW6m3QQ6DHrjue8Tl5Dd7v3bt3sbq6ivn5eSwsLHiSB9mim0JcM8S5/WyhUECv17Pe8PV6HVtbW+j3+xZa+fLLL/HFF19Y2ImdPU9PTxGJRDA/P+8RrFQya2trWFpawsrKCpaXly2hdm5uDqVSyXZzBIBSqYTV1VVkMhl8++23NrZumIDP5/Ku8iY/19/dBlKDEIBHiZFUAXLu6UmzGdZ/+S//Bf/9v/93M/w++eQT/If/8B8MXQmFQiZb2QMgGj3v+Nput3F4eIhqtWpx+0KhgI2NDYPwQ6EQfvvb3+LJkycoFovY2NhAoVDAgwcPkMlksLy8jHQ6jWazaWWHd+7cQSx2vhNtLBbD4eEh9vb2sLCwgNXVVfR6PRwdHXnCtUwuD4fDdi9sy60hKIbfyLscI82v4BjSyOV+AJqfwXCDVjqwFbAfAkVe4jpWlJXHUGeoI8ffaKWPVjHxnlutFiqVim2YBnh7C6g8do2Ty+iN2hHzQdzF40JsagXxlV6IC3+55+GfG6unJ0NhDMBjxSlN8xZc5cXJoOD1i7m4Sg+4gCG1Hp0CjNemhajCDzjPHmXFA5WHa10SBaARwARLeq5qnJHUMqSSUNSC4+mOE5mJ1jg3lXHHVv93k2OmMeBNIQOuhew3h/xMPXZVHsoXVJK6AFVYaP8KNVD9yv5cw433pMlVruBR/ldFruE4Vonoc9LbJ3xP75zXIl9yXbrIgCJH4fB5rs/8/LyVqdEYYC5CMpm0PASGCOr1ulX9UHkzvAXAkrSIWNC4UYNBQymcC96vX4mtOgrT5v+2kh/f+t2za3Arz00mE9uxlM7Y6ekpKpUKQqGQxeNZpcKmQ91u19oBszKBc8IkztFoZPk0/J6dOguFgu174Dp48Xjckvwoe5kjxd4s3L+Aih2AXYOhJvI5y/z0+fVVx0n/lPf5bEqu8+AiiX7k8plrYF5F37mylk6BhqH9eICvr2PUvlGfgWmxNb2paaQbsTDpjh4x45FUSJx0TqCb+e4udI3r66JXj0DLqnistuGsVquYTCYvtZXkObSDFP9nvHl9fd02VOImSCcnJ5a7wDhsNpvF6uoqfvrTn6LVamFpacn2eGfFgZY2xuNx3Lt3D/l8Hg8ePLANkmhY8P4oAKgU+DlDGfob4ILheQ56BpVKBXt7e54MYD/Fqq86735IwU2Qen4aV6WCmUwmHk+KcPXh4aGnF8P+/j46nQ6Wl5exurrqUZRUSEyArVQqiMViNpasLqHnQmGgRoR+rufWnBHGZkulkgfdomCld6fZyfyO4TQaAkTEyBtaZst8E507LWmLxWJYX19HNptFt9vFRx99hNFoZN5aJpNBKpXC9vY2fvWrX6FSqeDrr79Gq9XCw4cPsb6+bvxFIzwUCmFtbc0qitjchWuWxovb2XCaYlcBriE78oAKZT9D4TYgBGq0q/wCvPuDqEOgOQSEy5nxTn4ZDs83IFpdXcV//I//EcViEf/yL/+C3/72tzg5OcGLFy8AwBIQ/+2//be4d++ex+Bk21+GEiKRCO7fv4/NzU189tlnSKfTWFtbw2AwwP/8n/8TW1tbWFlZwdLSEkqlEu7evYter4c//OEPtsPnYDBAu922ZlSPHz+2/JNEIoHDw0MUCgXLjQFg+x9wvjVXy+3OyjWnaLKGBzQJmMaUji0NZZUdlLeqoLW8VedKw9LkVxdhVb7k81QqFdTrdXt1e264hsDryNxr6TPgCn+X/G6KFp0qaU6i62mq8PaL17jWlBoIfsaKJpKo98+6fk1AccuyVHhqUpJ6aRSozH+gNRcKXeQMkCnT6TTK5bKVQBJe1mZKZMJkMonV1VXbs4FJay6UqELDVdIMq7jepM6fZqtr33cd21njz+NugzBVIi+4c6m84LalJtoTCoVs0x/WuAMvW+NEcCjUWC4HXEC8+hvyjJZHqeBg7ormr9BDVkWnzaF4TuBcmLPkiVtsayMlXSNULIoW6DwqQqDCkWuFxkA6nfbc/+7uLk5PTy0xd3193TzBSqVi52Q8mIKfwtaNt2qozg8N1HtWXnXzXlxBehvJla06HoA3H0bnk8eTbzTLfTg872TK7oA0UE9OTvDkyRPs7+/jyZMniEQitvNqIpHA8vKyKWyWCo7HY9vi+uzsDKlUCvfu3cPHH3+MVCqF+fl5M4JrtRqWlpYMDS2Xy1YFwtwA6gBWJBwcHHh6SAAXjdeUL5T3lR9U0XI81aBhoi5/z3CLq6g1Twfwlutq4iz1lOuEuujtNKSS36kcGI/HFjpg++7LkAHlm6vy9ytvYawP7yYpuF66+xt6+hR+GqOlYaCKmoIPgMf6nUwmnvIpthtlViwHkczFRJZQKOTp6kbLko0yXOXO43Ri1DviufmnRgUb1jD2ViqVjPGYp0CkYHV1Ff1+33aRI+Sqmb+MVS0sLFieBRNdXCOIC0K/o7BdXV3F3NwcNjY2UK/XLc+BuzBOJhPPXgsMEeh8TBO2nG8/XrhJ44AL1c0oVwRJ++nXajUcHx9jd3cXuVwOm5ubSCQSaDQaqNVqZpixGYkKZPIB99QYDodYWFgw48rt9c57UL6lJ9fpdDztsenlsPqGyluRDf7PsEYsdr65FWPvuo40SZDjxHbduqkXn8nPgOBni4uLAGD16PV6HbVaDYeHh9YemQKVcc9qtWpIDDeA0jCWCuBwOIxMJuMRrCytZCmw7vbJsXHjuG4IaJojc1sMWVdJuGgs0S4XCXUz1vmq803kkQgpM9XZj4Tlm+Vy2ZJUyVfxeBybm5uW/6GVLFT0/X7f+hR8+eWX+Pjjj7GysoLFxUUzEskb5NW5uTnP9sgfffQRANj6AGAVD5Rz7Xbb9Av5kZ6528FRDQFF3mhwqEc/Hl/sRspQFsNSDHOoh0/dohVYiiyq0c51ClxUE2jiMnN3qLN2d3dxdHSESqXiSSB0Fb/yCc99VV5+ZWRADQHXY3C9JL1B/kZL7rhoNVbjnntaSRAT3DqdDg4PD22QmVBHZU1BSG+F96A102wSpJ5yOBw2eJaxSdd61InX+9QSFyYQsvxGmTUcDltTi9FohHw+bx6Te49kQoYZNCnK9do1NKCwE73Dubk5rKys4OjoyGK7vG81lIhokFSJqkIj3RYB6pKiP67VrYqRXhJL9o6OjjAej23x12o1tFoti4kz410XpCogZm8DF+EXjq9WJxAxUh5nuRMRCW5hTZ5hEhXj5PSweG4NMw0G51v/LiwseJrCqIcPwBKUuNUsvXPdV4DPQr6iYc/1Rer1etb1kgmpVO5UOo1GA81m07MNMmWBelvARUvxUOii1W2z2cTx8bFtQa79MXhvapS6yCPpNqJYLimvqpGvzpaSrlUX3eH65TrnWLPygAmzRGkouyg7B4OBdSykg8EkPKVqtYoffvgBg8EADx48sB0TM5kMdnZ28OzZM0tw5Dnn5ubsHnjuSCRia4f9KGg4Ukbz96p8+R3XHNeyKmoAnnJh5TuGr+kg0GBhGBGAB6Ujf+k4qxGg7zmWnEPgYjddljQywXAwGOD4+Bh7e3uWw+E64i6vUEe9Cl+/cQLhqxynUAqhIQCm9LRfOT11MjUHTrP6B4MBqtUqHj9+jMlkguPjYxMmjJkWi0UTxOFw2LZYZf0sB5/7CiQSCWxsbCASiZhnxo1V6EHyvmgIMJbJY7e3t61LFhNsGKN1e76TlGEAbyMRMokKcI6vG7pwURl3PsjsFOAaNyaDcp8HbdABeL19NQCnCanbQmq9Ay+XigLeEAk9gtPTUwCwLaq5SUskErHEJvIPe7jz/Fz4NNioPImGqSBQxIWfub0dgIvSp3w+j0KhYHA/a5tpBHBtUUAxMYutZFmnzx4AykOVSsWjFDKZDJaWliwc5ZZGKb/q2DIE0G63MZlMzIPkcZVKxQQb82fYQtZNsOR6c8Mo/X7fEuNoXPF+NNzhopm8T766POu3vm6K3Huaxbt+5Pcs/KxWqyGXy5mnWSwWsbm5icXFRWxubiKXy+GLL75AsVjE6uqqJX5SHjHZc3t729MSmdUGg8EACwsLAGCoFABTzlTimrTHjd6KxaIZuor08NhwOGwGAt8TWSCpoUNjX+U2UV41jqPRqKciiHKQY0TdRZ7SnByODQDTX65jpjpQ1wxf3aR4osxHR0c4ODgwFITPrL+n8tdE31cxCN6oA+GsY9z3nAhODpX+eDw2j5hKKJ/PW3tfTiI9VHpQTMza39/Hb37zG3S7XVskxWIRmUwGDx48wM9+9jNTyMD5LmCMyTMznPF6Zuv/5Cc/wcOHD9FoNFCpVFCpVPCnP/3JLFKGHQgTxWIxs95oYe/s7GB9fR2dTsc6qbEMRhmEk0mERMeY/6v35i5oNw6t4+9ajuodaX8Gzo/C5CcnJ7ZvAn+rnquL1Chk7Sd4blKgKmTK5+D/bvIkk47q9TpevHhhDVfK5TIePXqExcVFVKtV7OzsIJPJYDAYWJhFk1zJF0runLkeNtcHoU/eE+8xk8lgPB5jcXER6+vrZogOh0PzXJisWK1WEQqF0Gq1DOHodDqYm5vD6uoqFhcXTXAzr2U4HOLp06c4OTlBqVTC/Pw8FhcXX0LWtNJA4Vh+FwqFUK/Xsbe3Z/0H4vE4lpaWEI1GsbOzg52dHWsyxB0euYsehS0FGwWk2y2S61/bhmtIg0KRMoe8r6EGnfvLQgc3QXoPrrE96z6VD4GXt59mK+u5uTkzylZWVvDTn/7UOnBms1lsbm5aWDIej6PdbpvDlc/n0Wg08P/+3//D4eEhTk9P0W63sbGxgUePHqFYLOLjjz9GPB73bIdMQ4BePp0SogTZbNbCDEzk1s2NyCMa4giHwxa6I28SLaCRrN60OghUynwuInHtdttkOq9DPcR1FY/HUSwWEY/HLeTK62keD/lLQ1VaVqxIAo0aIhONRgNPnz41JEXz59RB4znVGPjRkQGX4UizvFKSC/+plcikLVqMrsJRYpZrNpu1+mM2x1GLiRNCIUCrz90tbTKZGBzKlpzsDqhCaTKZeCB8N+5EzzoUCtk2rdFo1JqtkEmUGf2UNyeYr27zCkVNXJTBfa+MqA2MeA4yEueBY+PWa6thonAjj/MLHdwGcsdZURSXT7kgufC5GKPRqKfMUue91+tZ7a+Wurl1xPrqXl+NLo4px5UCgugBDVJeixA651NLGGOxmAl74MJ7IK8pSqXGSrfbRbVatX706nWwEoj3rZ43u3Yyn4feGyHecDhs48hcGjafIZLhB4GqINYQHHnVzwB1+dvPS7oMybppg8BV+tMUv0ua+OaiYmp0Mpnw+PgYsVjMoH+WLrP2nnK6Xq+boXl0dIRGo2H9I8ibzPvQPVb88pj03hVN83tWeuR8Lt67lt0SLdbraCjLRYV4HZJurkT5x2u7461ogpYn6ncaFlDlrffAYzhWLnLMZ2q324Y8u/eh61bliZv0eBm9UQdCV1n7KQ73e0LRHBzCiWdnZ9ja2kKj0bDd2dgr2+/apVIJuVzO4Nl6vY6nT59aBng0GrUGFczoPjs7w9HREY6Pjz0TRI+JSUyET4kM/PDDD/jDH/5gGf58BqIRhDa5Zzfj/FSuLCtkUshwODQrVgWYyygcL5ZdqpCkpewuIP7eFSD0eMlUACxWSyPp8PAQnU7HtjrWLUKpCKiIuMi19TKNK7d0xk9YvU1SD4DeoypjHX/GADkm4/EY3377rYV6zs7ODAYl7zSbTTx//hyj0QiLi4uWdLW+vu4x2HR+VPmTJpOJp9EUW/PSe6dxOj8/b7kjuv8GE8mACyHSaDQwPz+PdruN7e1tC42R/8hD5C2WnjYaDWxvb+P09NRaZ3O/D/aX5xrV+PPu7i5qtRp2dnYs8VFrxrWN6p07d/DJJ59Y3gyNZeb5ELWiwGceRaVSsWxzrmsqCq4F5gJx3jVXCfCGjvyMMndubop4b37GqyoU9Q45ZoA3vOoiUMwx+ed//mecnJzg5z//Ob788ktPPhTbuNPr//777/H999+jUqng6dOnVv0EAH//93+PL774Aqurq/joo488/TjYH0CdEZbeUmZSIRIZY4iUqDHXLpMZySus1plMJi81yqKM9+sCqqGl8XiM4+NjzyZyKs9cL546ihvjabmiKnUmivM7N1eJBhR3SGSLfaIf3W7XULbt7W1rNkRDRPUtx1HRz1ehNzIG/DwuV7i5C84PGVDhx2xSJrBMi49wwLPZrCnxarXqscbobVDIUmjQWtZnIMzEskAte2TbVgpnvwWnE8FXKnFmx8ZiMUuM0Sxtd9L4zNpogttk6mLWuXCFhH6m487zabyRXhPRFa3jnjbvGi9Wpeo39373eFN0GXTmIh70cgFYwhvjhOpd1et1C21RWHCvB01k4zjwHtwwBb3eTqdjHjTH0q9VMMeYBo4aOkQwCoUCotGoCTueR++Nz64JUVTwjONqa2aFnClYmaugmw7Ro2QeAnfMpDDN5/NWFcPxcMdE+dNNcqNyceeV8+g6KK7hfVVP+zbQVdYPQzmuU6YKQp9/NBpZWBCANRIiMkuPmkq31WqhWq3i5OQEe3t7pjBpYBYKBUMTNA9G1xXfk9eYO6YhDS0dBC5Caxr2cefWz9jT5mAcHzc8wPNrHgPPS5SQ1+DaYzddbdLl6ihFBfzkJhEFbeTEdUnDhTJZc+n0ua8iV6/Kz6+9UZGf8J/1G04uF7CWX9Cyq1Qq6Pf71tqUiUsMCejA8vrpdBqbm5vodrtIJBJot9uoVqvmpW9vb3s8Dtbq0xuhAJ2bm7P4qAqSaDSKzc1N/M3f/A0qlQp2dnZsowgqaV6L46JZoUwuabVaGA6H+Oqrr5BOp7GysoJyuYxUKmWJUyQ2lajVaqjVanaP9Ard3eS4IFXZ6KJXJOPk5MT+qtWqdSVkDIzjx+xvZgmTkTXr/bIyLReyvSljQL0+HRNXMQDw8DaPIzz35MkT1Go1rK2tYW1tzYQZDQZ6xsfHxzg4OMD+/r5l8c/NzdkGXApvUrESTj84OECtVsPu7i4eP35su5SFQiH7vXp2GjbSyhaNPwKwEEar1cL6+jqWlpZMkGn8kqVf8/PzKBQKViZGFIDPwa5zFKCHh4fmxbD3PMtVmVBL4/3u3bvWoY7rg89Boch1f3Z2ZkjA48ePbYMtKiZNIguFQjYGFNBu9RLRAxcZIrkQ8k0bsFdBKnS98TfuWnRRXNbyTyYT7O/vIxQK4eDgwPYGYI6I35oGzo2GBw8eIJVK4c///M9RLBaxsrJiia2dTuelsjoq53D4fJOqzz77DI1GA9988w2azaYnSY8hHc4tw1LsiqqxceUfog4sjdWmbTouNHL1GuRZKvvJZGItt2k0u/08FHWgnFWDljqGf5pbBMByaZLJJDY3N1Eqlay6bH9/H7/85S+xv79vMoBGme52qyEL8jWbxLkdFWfRayMDKjCnMakyEr1xrYcGLmIbhLCBc6OAMB9hERoD7vVjsRhKpZJZTZ1Ox2N81Go1y6gOh8Pm9bMlq9Z3kpF5j8whYJYt+wAw6UZ3/VMGoFCisI1EIlYDfXBw4IGMRqORdSmkQcB2oCcnJzg6OjIhyqQ/jptauH5hGx0rLjCGCVjuBZx7lTRq+B3DA2pZq5LRBXQVw9APAXnb5Cfc/O7JtbppSLKqQDcxYlIfvWguQnr2FKqaTa2Z11Rm9Ej29/dxfHyM7e1tPH361PhCwwEad6XwU8HoCqvJZOIJcRDmB7zJjDQ4aECMx2NP22v2uqDCVtSq2WxaBja9F/IJUROWNpZKJaytrZn3SBqPxy+1WZ5MJmi1Wmg2m9jb2zNDlbkbrgepQpHlcIpKunM7Cxm4aUMAmL3rnGu46OeXrTUiNpFIBI1GA6lUymQa+cjvHJQzNHJLpRL+6q/+CisrKx7Di/OjeVnqGadSKSwuLpqHTbnt5/UD8DiOlE0qk1zESpWzjqUmF2qIArjw1DXfQMOHVPzTEF3g5RJ6RSR4fa3IoS7KZDKWtEu+bjabePLkiSF6PL/mE+l865wRReG1rkKvjQy4HhRpGhPyWM1q1SQ8eq7AORwbi53vhlWpVKwPAC0+eqzqtbbbbXz11VfWRYtKl5YYvQ22O2WiC40OxozUc+Ax3Nue0C83aun3+zg5OUEodNEARY0DAB7mGY1G2N3dtWz1nZ0dK9uh4UBLvdFomHfJpK10Oo0/+7M/s1aeimwA070IxtdYUtloNDzdrChsaQhoh6/xeGylc3wG4KIcVBUJ70OFLqHq14lh3QYiz04mE1NEyldshUrkZ2FhAfl83jb7icVitp0wa58J/TFJj2M0mUzsOOYIMGTA+CET7wqFgnkweq+cEwpE1kQzKbbX6xk0T4VAYUfeD4VC5hFlMhmsrq4agsR1ydpvhTA1ke/09BRPnz7F8fGxGUNra2uWT8F8gEaj4fFuAHg6D9ZqNbx48QKNRgPHx8fmzSosTKeAoRTGizXRV4WnaxiQ1AhwPeF3mfRZNLF1MDjf3Or4+Bi9Xg9Pnz61XBduPkTFQ15+9OgRyuWyjWEymbS9VRjievr0Kf74xz9ak7R4PG4bSrGVNvNQKM91IzQaCGzARmOZMpXIKI09opiMoWvCoIbM3PGgXKLcUmXqGgM8VhO3tUrJNRy0NHAymdjaAbzdIOnM0ginLGm1Wtjf37e8HUXcNLynRhBf3aquq9IblRZS4OiAkKbFRqnU+UoveTgcWg1lvV5HOHzenY+wFS0jdmAql8sol8s2QZVKBb///e+xvb2Nr7/+Gjs7O+adJ5NJ6+M/mUxQLpextLRk+7VTyb948QKdTsdiXvPz81Ybvby8bNurUiAxDEEFy9pzjW8pLETItNFoYG9vD6lUCuVyGRsbG56wCTtz7e7uYmdnx86Tz+cRDodNqC4tLXmgb3eOSFxM3HiEXb+oZAgZavhDE21oEAHwNETSck41Bugdq7H4KhbqbSLOM7OuXcGgMPxkMrGYKY0B8jPHgD0ruGnP9vY2AFiSIM9N5Tsej62tMY2IWCxmpV5M8GKMXjsVAhdNUYh0DQYD4zUmiPLe1HAjIpDL5bC+vm5ogOs9EQGhMcB1fnx8jG+++caMm3Q6jbt372JxcRGZTMZCejo2NIIYBuGYP336FM1mE6enp1YOzBAAY9uaq6GC2C//5bLwwPtIfF6iTDT4RqMRDg8PcXJygh9++MEqOx4+fGgGFeHybDaLxcVFj9MxHo8NOSNC9NVXX+E//+f/jFgsho2NDWSzWfzZn/0ZFhcX8emnn9ouhZlMxpJ0dT8AorSs/KKsYZhXu7iSB4AL5UyDh565KkqS5pS5qIWSq+j5W/d3vG4oFLJmZOxVwrA470nD5GwEp5t30fDd29vD8+fPUavVrKkYjQHN1+K603wCXc9XpR+t6ZALx6nRoKQJSEQG2u02otGolbxEo1Gcnp5iPB5b18FarYZ6vY5kMol8Pm8hBg4wkzvYzalUKlmpDL0SMhtjkj/88IM1ZUkmk5YARkak1cUGL5oMQ0GmCTe8T+YnhEIh24SJ8dZms4mDgwNPYuDh4aG1vmUzJDaWaTabFl9jIyU3cYUMQRi30WhYfwUaVbxnIgP6jBqDIpTFc/vBeO6c+kFoLoL0rpGGw4gCxWIx63hJmLNarSKVSqFUKpl3rcagthKlgcfYHpEDzYxniCgSiSCXy6FQKBisyB4ZvC+G2+idaPyT37tChMlbzMJmTFRLtlR5qpflQvAKYdIAoGImEkEPj4mq9Og0GSsSiRhSxcZFmkhJVAC4SNLiffNPETo/JMDl3fcJCZhFjDm76B0A6+hYq9WsKstNfnXX9nA4xO7urmX/0+hkHwzKXQCeTH1Vogw9qUzV+aVMJy+Tp7TCSnOS1FhV2aiOE/mEx2vIQUm9f31VQ4C/1yRJylNNRB+NRjamLIsvFoueHW6p43744Qdsb29bJQ5RE71Xdy74zPocPzoyoAOiAzSN/JQFiZblaDSybTPH47HB2GRceh9sycj9zhcXF/HZZ59ZuIF9nc/OzqydZj6fx8OHDw2mogBlb/Td3V1UKhX84z/+I+r1OsrlMrLZLB4+fGi10ZxMDSsow3KCeSytwslkgmKxaNAYYeRKpWJw/d7enlnHHAfNHiWjDYdDHB4eIhwOo1qtWoWCblrDMSXcVK/XcXR0hG+++caavAAXRhP78DP2q0qIoQkqCQoQP9hVX6cZA++ioPVDXWq1mrXRnZ+fBwBDtUKhEE5PT62DGz38cDhsFTMUIMxbUWXKPvuEcCko4vE4NjY2sLy8jLW1NaysrHigUjbOYtKdohcMP4XDYcvsJ8R/dHSEaDSKlZUVywuIRqOeZK7hcGiGCteAJm2p4cm8Ce65QYMjHD7ftOj09NQMBu6XQKiUAh8Anj59im+//dYQN8aJCQVzvdMAZwMwClVC1lptMG1uXUP1dSDW20z6bEy8VCORsmxvb8+Mzi+++AKZTMb2JfALqwDnfP9//+//xeHhIdbW1jA/P498Po+//du/tdwAhhtYDkq0l4Z0Nps1w1AbE5FH1MmiR91qtTy9DYjQ0SumAa7OC3mXspLzTp7T5GjX63eNRteYIbpF3mu1WpbjRUfg7OzMNn5aWFjA2toakskkSqWSIV3D4RDffPMN/uEf/gE7OztWsaEOmtutlPdDI4nrU6srrkJvjAxc1dvzUw76v3oWHLh2u20JgMwcZqWANrVglyoqMmbxJ5NJgzu5pzYtKhod7EHPjVPYYGY4HFoCHyeASp4oBr0bwIsOuJ22eF/0BDWGz5gwj6dxpMKP9b7sE05IeZrCpVJnJy3+8ZkBeHI21Bul0qBgZfY6F5ObsOUKUb85V6/6fSCOAaF24GKTkmaziVAohFqthtPTU+NFKmJ6B1zQ9CSofBuNhnVr03lwm7lofNMVFIA3Lk7DjcdQuPA7NRwIZ1LZ8nkJUaoHpHknblIT66+ZcAl4NxvjvfC5GGfVqiMmJWo8WZ/NL1lSDRRFBq7Kf+8Tn/qRn6Gj+Sq1Wg2VSgWHh4c4OzuzqhE1iv1QFcotTT52FSqvUa1WLZRGBInNvcgjnDeNjQMvd+ujEuQzqPxSI88t8wMukhJdL1uP8wsb6DWmoSZqaJAviQbSQWBiribKdjodnJ6e4uTkBM1m07N2ef1pOncWgnMVei1k4DpJPWwKIMKCtVrN9junEiazUelRgRMyjUQiWF5etrhUIpGwdpq0LrvdLp49e2aQ2Pb2tm2sQgWeSCQspqvWG8eAcRzNbNaNVFjPTQXMfvLLy8uIx+P4+uuv8ezZM+zv7+Po6MjT8Y/WLkMcKysrVr7z+eefW9apW2JIJIENQvb29rC7u4tGo4H9/X2LrRF9qNVqhjDQQAmHwxZKYZyQQoIVH1ruo4JF63Z1Yb1PXpYuysFgYA1XqHi63S4ODg5wcHCAx48fGzoVDoetkUmpVLIEQDZe2dnZMfgUAEqlkpW6slkVW/ayXEgbuFApMrejXq8bMsXYIRNnORfam50CitU29Cxo2KghTOORiV9clzyeG2EtLi56jiEP0XPhVtwqMGnsHx8fo1qtWk4ClT9wgXwxRMhkS+A8+ZioAA1c9WpnCUo1Nt4ndECfgyEVVXb00I+OjnB4eGi9BDY2NvDv//2/R7lctg3NGNunczM3N4d79+4hn8/j6OgIT548MURybm4O5XIZ8XgcKysrSKVS2N/fx5/+9Cc8ePDA8rAePHhgjdCoD5hrwnkl71EJE1UjokrDVo1EGhVasaJhJIaeSBpSUh7xQ7a1XNI1kojoMbchEomYA1culw0p5o6n1G+/+tWvsLW1hV//+tf47rvvLDSsFV18Jl5P8wI054g0DRXzozcqLXxT0piVxqQVhtZ8As067XQ6tr81Y43Ly8uWfKUtWzXmTQFRqVQsUe/w8NBgU3pKZIx+v49UKoXRaOSpDGAPAPVYtGxE46eErubm5lAsFpFOpy3jnPkHfgkuNGRY2lgqlbCxsWF9CRTm5KLQLoOq7LVVM59rWoMhv9I0bfCieQXKmGqZA/6lfO8yuUKBBhj/J1xOT7rX61nMH4CNITPwyRNnZ2fY3t5Gp9OxDa0Yb+f/7IpJKJOCT40BFVLuMRRcLJ2lkOKx/CO6wD8AtuaoaNUA1tDRZDIxJInwLseIIQQ2E+O4FAoF40ftvqiblql3pHPA5yGvUl5oAuxVFfr7wJ9XITeWDlzExWl4HRwc4OnTpwBgvUgYruK4Uu5Q0Q2HQ+zv75u8qdfrJofVK2Zoitt6s28Fw5JM5mbZo3rvruIjksQwhD4jj3Mz/tVQ8EObXHLXvCvb/JBRzUXgvbAsl1VwfE9EhftsPHv2DIeHh4Ywugggr+NnrLroBp/nqgjBjSIDLszU6/UMFnWzzxVe1CSJ4fB8K9NIJGIClvALvRg/uOfk5ATHx8dW3hUKhWwTIW48wxa9TGAMh8OGPlCg04MG4LkehSlh2YODA3S7XRPuBwcHOD4+NiiIz61EKIlGg1p+Cp9SSRM1ITMxAZEWMKsG+v2+oSLcllOtVyqiXq9n+QuNRsPjYWnCjsuUbgxW43LvIvnxvC5GzrcKL3rS9FLVi2AbXRIRBQBYWFjA0tISyuWylfQRDdBQFX9HYcgugSyXDYVCVs1A/qKhwZJIhjWYX0Lkgjk17G1AQ/Po6Mjafu/u7tq40ANk1Y6WPXJNRKNR5PN5y0FhVju9Og1VaVLxZDIxo0RrvbW8k0id5h+54Szg5SSwaXP7qvDqu0BU3hw3JhICXtg/Fouh1Wrh22+/RaVSQTqdRrlcxieffIKFhQX7o2KmkxSPx7G7u4vf/e53FpZMJBJYXl62tvE0NEulEnq9Hn79619b07hkMon19XUkk0kLU6jcUH2gSKSGEhgy4DokSqDyiN/7ySMaker1q95QReuGP4CL9UhZTbRN18fq6qrlx7Ba5o9//COOj4/xm9/8Bs+ePbOcCl5LUQ9XzirRMXARhKvSa+cMvKlRoHEgChyWOZHUY+FvOAlqGDAprtFoAIBlcrOUjklMyjjaXIeZs/Pz85blmUgk0O12DSLl/VBRUmgBQKFQ8AgwZUpCUqenp+j3+8hms+h0OqhWq6jX63bvwEUCC5M+2HmRcSW1aqmgiQRQ0XP/Bf5PuBQ4Z1aGNpitDcDyLNgpj+PdbDZxcnJiNe4an7ssW9U1CFxj7F0k91nV69ZmOZosCMAaXhGtogdGLxaAKbZCoYC1tTUUi0XMz89bgyM1kKnwdB3yugwxhUIhK02kMUBvhEZFv99HsVi0nSrpXZ2dnXn2zqCSZjLqt99+i6+//trGgVAvewgA8AhcvhLWpbHCtaH5K25OC5+NiophLCamMVzDEjRtPDML7lX5c9X5fleJz8oxZKUUwy/6nOTPk5MT22StWCyi2+1ibW0Njx49ssZnWgoYi8VwenqKH374wfY3SSaTaLfbKJVKtoshExR7vR6+/vpr43ftdMlQsSJPirgqj/D5NLeA4TfOv/t85EeV6xwfGjluCICkn/N3ym88Dw0fItM0hFmuTv5uNpv4+uuvsbe3h2+++cZKyfm89PC174ubs8H/6RjonL8KvXHxtyv0X4XcG/crn9CYsz4cS/fUGyP1ej2EQiHrk87mFRREFNbaJYqxfiY1URBzO2XWkSvTjcdj5HI5y4Zl+SAZkZ59JBIxiJXn39/ftz3dGYMDYLFUraVmUgn7HQDA/v6+xffoFdFLosVPhmNlA7ct1V0hyXgsoWRMkNcFYIqE/2tIZxZUpUz7LgvWafFlzjVwkVSosCV5l+RXqkfjkfykPEkvnoYUQxLM7FfDmIKRxqQKKEWrWKUQDoetLrzVamF3dxdnZ2eGqhHC5zrULcTdbGUm+/EeOTZzc3O2ppjbQsFOr5L5Ndwy+8WLF55e+WqAarMZ4KKPABOOXQNJnQh3LtUR+RCIcotOgxtLJr8ReWEI6+TkxBK2md/07Nkzy9eYTCao1+u23S9lGXuiUPb87ne/w87OjicBmjA5kV2iWWxDz9yBwWBgu4Jql0/leQ2B+pUI8li/vCY1DlwDkuTyieourkOuCeawFAoFbGxsWNUR1/NgMMDp6SkODg6ws7OD7777zpwutjf3C7+61/VDJvS4V0Vkb7QTjGux0wPRSaWCc60iQt+EY3RSmDlPD5ieD61YHUSNnzFOlc/nsbq6akzV6XRwdHRkRgEFOHDu7RSLRZydnVnSDIkxM7ckMBKJ4OjoyLrP0QOi4FteXkapVLKYf7PZtFrepaUlDAYD/PDDD/jhhx8s94E5ExTkrOtmmcv+/r5l8qohoLvDMWeCY6YMpS1qgYvNRNz5dBW/nxX7rpErHDgG9H7pZZN3yYfkKx6v3fD8xk6b5BDW53nUQyfRsOS5AXiUPYUTdwok5M6YZbvdxsnJCSqVCr766iu0Wi1DoRiuoEEMwBNqoMFLI4Fd7Hq9nq1d7QToB9Uyt6Ver+OHH35AvV7Ht99+i9PTUw/KwlcqERKNW00Gcz03jq1LrjHghx68T8TQDFEpNSQBGJLEElXmbmxvb2M0Om+jTg+XTXVWVlY8RuHW1pahSqVSCWdnZ2Yg7O3tIRwO49NPP8WjR4+Qz+exvLxsVVtsV53L5TA/P4+HDx9agjgTvuv1uoUrVRf45UBoPoHqDx6vBqOWG+r6ooOqv1E+1lApcLHOufPn4uIiPv/8c6uYCYfDpkO2trbwT//0T9jZ2cFvfvMbNJtNMyJ0x0ReW1EQdZR5XQ0laMhEkycvozcyBjgwb4IOKLlCl54TB0OvoxOlwlcHiDEgAKbwaJ2RyAwaJmAPAw4mS2y4SQYXymAwMCgIuNg/gRPFMhIqCjcUoq2SadRoaEBbJmvPBT6fJuZQ8KpiYqc7Gkesu9asWy5k9Wz5vwrTWbEqv7lz6V33wFyL+1Wf133vKip+z/rpdDptVTIsTXQTgtSQdBu28Bh63wA89eL9ft9q+JnDoAYNW4IztknFwVKwYrHo2VaW98MkQfK+3jPPQS++Xq/j+PjYKluI3nFN0sjn+d3+FrxfHVtXwfmN8XWEOd9Voix1lSDRLM1lUc+SIS02d3MTV5n3QoOXsobykPKKSAGN1k6nY8qT12H3TnX2crmcp/SVStUNG6hh4OdVK7zvGo+zxswPAXVLEhl+KxQKVvnD8CHl7PHxMer1Ora2trC1tWVGtPaTUR7X6+n/6ni5KIUrn66qm994o6JXuZjfOZRoxZBJtdWkWmMcXMKfWm+q2ZcUlrFYzJQ7M1fJBOl02rpk3b17F9lsFvfu3bP4FeFxGh+E+7e3t7G/v49+v29Jeevr69Z1ioo+Go16YFiWV3GDiuXlZdy/fx8ALJmLMWJm2rKLIHAhAPncuVzOwhNcBNVqFb1ez5MkyZgwjSsynSYSkQl5fn1uP6h/2rzP8sTeNfLjc7XKXXSJ5HoY/L1ruBL5YiLd1tYWDg8PrdFOqVTCJ598glgs5snk1lgilftkMrFkRW0iRcRrOBx69pR/8uQJfv/73xvMr4Yg98ZgsmEikcCDBw9s18FUKoXT01Ps7Ox4jMlarWY7GLJ1ciaTMfgZAPb29nB0dIT9/X08fvzY+JOGDfdOYFkZURPm3bgGAHCRYEbZ4c6bawi4gv2yuX/Xic9CmcgKAcqB8fiisRuz3kOhEHK5nGcM2LskFApha2vL0EVFZJljxFwkGguTycT67DPxmu14U6kUfvrTn9qOlmzRTqPy4cOHAGBGo5adU6axJbc6j+pEkgeJaqkc1XFyx0wdT+oNVj/QmdM1ff/+fdy/f9++o2PW7Xbxy1/+Et9++y1++OEH/P73v7e1A8Bj2Kujqwabn6FL/qYsIalhfBW6FQ3j9cF0AfpZdaqkVGmpxed6AqHQRd0+t2HlxNHLYXIHY6X5fN46sqnwJVLA7GvdJIOMp/sRMN7K+D8A86ZoETMBkcl+ZD56YeqxUQEA3h3aNIGRpYRMklSvz4VHXSiN37lMNA0N+FDJ5VV+dtXfugub56NHVa/XLYGL/ENyUQVFdAAYz2m1CY1nrYRhkxM2TgIuwj/8HY0I5pIAsL4d9O55LQp9GiIMGdBD5Hixjp1/mpNDlEwFGX/H+1APUAX5ZZ7QZYr9feZnXd+quPSZXWQQuIDCNQdF0VrKHk0G1dwZdVJo9FLODYdDyw1IJpM4OTmxTbVarZahpDQqeA2iGHSUyOc0fP2MRUW2KKv1HnmMkuZEab6LGinsfqlhLVZPcKy0Wd7h4SF2d3dxdHRkPUqoY/xysDhu7ly5cmcauvEqqP2NIgPARROMyWRiGcFaA82YqMKebqIEBYLGWQCYFciklFQqZXtHa5IiS7I0xEDIzK0jJ+OxVIaTzYQ7CnJ2ZlO4jMIrGo1abIybhTSbTXz//ffodDoWyrh37x4++eQTTwy43+9bA6F0Oo1ut2vKf39/H91u11ra8vpqIZPUkNI5DchL6lVywWkNu+sx8FgNWamHoXOh1QRqnE0mExwcHKDX61mFB/cloFBUflJkgYJLIXUeS/j28PAQx8fHODk5QTgcts6GwHnjGSYDch2w9TLzXfL5PFZWVtBoNLC8vGz5MkyonUwuGhRFo1GL83JdPH/+HAcHB7Z3h3qXXJfdbheNRsPGiOPjVvIoAqOxZDeJbFqIwE+QuvP1rhPnYzI5zxnhroNu0x3KXR5P2axjQ2VIRcdwqBoDusmWXpcohCZ6srKKMrhWq1nZNXMPEokE1tbWLLmVyXnkvaOjI8uHYldMJpdTNzDcSl6n3FbnijpAjXNX3zCUy30FNNmceRl89lqthufPn+Pk5AS/+tWvcHR0hBcvXliyYDabNZTOVdp+0D8Az/hRhmu4h0Y314Ia+pfRteQMvAlRIWvMWpOw3GzIWfEUV+FpzaluDJHJZF6CWsn0rhXM83LCyDha48zPtfafsVq3SQ9f2W+AGbWDwcCSBWkMfPTRRygUCp4Naer1usVcNSubyTZMCmNsz0VJ3PkL6GrkKgvymtb2qvLX95x/l3fJN+6x9J6pULl3BPNCKOSIDAFeiJHnUUUJXKBA7XYblUrFs09FOp1GKBRCpVLx/I5hJPJ3r9ezbWgZDmO/DW6cxd9RWfA5Dg4O0G63sbOzg6OjI1sb9LQU/dCSWfYfoZeoKKCrtDnGfpDqNENA6X1dEzQOqUxZ1qZjRWWiXQZdY0ATUxWd0T/G+VX+aRUW+Z7KmNVfR0dHnqqqVCqF4XDo6SCbyWQshFEsFs1ho/NDea6efCgUMi+em8YxiVpzaih3XeULeJMDaZyXSiWkUiksLi4aUsBKH5a7Hh4eYn9/H7/73e+wu7trm8xpm3JNnPcLAygp8kJdqagHx5hIg5uoPIve2Bh408VDZiBjsayFTKF9roGXEzdcRnUFBD0LbpbCiaAlp0YI6/4nkwkqlYrnHsnUmpRIq4yJUlxErBTglrMKZel9MZ+BySa0FCkYl5aWUCgUMBgMzAjY39+3nRabzabt30BEgKVW0yClgF6d/AwqfkYF5mfVz8obuAza42JvNpv44YcfkM1m0W63DSFgF0qS8qR6xzQUR6MRKpWKKWXyCnmbwpGGsyJRfE4mfmk4gMlP9BCZu8CsdSp1tm5mOSONFhrk2ooZuEhQ43l1XNTQccdRQ100wtzQmN/cuse9L6gAiY7DZDKxRGQ/Y0m9TZWnepyGG0KhkCd5lTxJxUyHyQ3nqtKiwcEGcAx1xuNx7OzsGGJQLBaxvr5uKC9LsMvlMvr9PvL5vCGxytvARTUFr605NUTnaAy4WfkajuUxzLnQ52VOy7Nnz2zr4RcvXqDRaODk5MTGnTzP95rf4Bd+1DF3nUrlf7/fu6GPmTxy5SMduq4F48Y6NfZCWFMNAN1i1VV4Oij8zM2CpcKmpQhcNGxgkl6r1XrpO/6xWQwZi5AVr0tP7uTkxOKm+qwcL8a3yMyJRAI//elPjdEikYjB/CypabVa2NraemmrUS4gwn7an8H1DgN6M3KVukvTjDDXkHArNdz1RCHRaDTw9OlT87xZu8yd2miMaAmUems0BhgeoCFJXtdkXQo93U6YVTOTycTinm5fD+AiLEJvkDzaarVwcHBg/S64djTUQWNAkT31NF1lpdUuFMYcT56PY6iQL8/hQrA6Lyqc3xeDgModgIUH+LkfMkI5y/fusTpHgFeGU/mrEemem147z8MQAve3aDQaOD4+tvLURCKBWq2GUqlkybDc34Pyc9q8ugYe8xVoyAIXaBoVPY8hMkKUwnVU+dtms4mzszMcHBygVqvhl7/8JX71q1/Z5kvK+xw3dYKnhbDceeGzTesdcBXkaxbdeAKhCkaSm8jm50n5LWT9Df8nDERItF6ve64BXAgyl8mBlxvF8Le0QFutFhqNhscQYRtgNlTRc9EY4W/I7NzukpApG8QQFdje3ka73TaotV6vG5SsfeJ1bPjZNMgpoLdLfvPgt3jVu6fQGI1GZmCGQhcNsljt4uYukIfIo4PBwBr7cDdAhec1AZDKgxtRsWcFvahWq2XhBNfAJRLGBEhtZOUiJbOUrmvIThsn9/uryBOdA/2O5HpcAf04pGOrCBX/Jx+yHHE4PN//gAmGDJXSmKCi1vCGGotqFKnMpzHA3AfmP9DY5HHkfaIKTMTlutra2kKtVsPW1panQZL2FlHj1HUWbprXbjxMoBOmcT+1ohQZ4HF+v3O9YE4gYX/u453NZrGwsGBdoQqFgjGTK4h5Xvfe3Exohbs0b4CMRqFJwc5dEnd2dvD9998jFotZUiK3dCWx6VCv10OlUvHsNc/rAxdeHsdGGXCaNRnQ26FpMKnreVFIaZJQvV5HKHTeUTMWi2F7exuZTMZQNACe9cLEW/bWoDJmMynmvyQSCavfVqSN0Dy9IXp6rVYLvV4Ph4eHBvmz1wD5nLypmwxpUy0+t5s5rYYsyQ/V0jHS4/1gUUUS1LHgGCnKwPFjImNgCPy4xHmkw0YeI6+QNxhqGA6HVj1QrVaRzWZtV08m8LFUUTu/0thlBRmNZL0Gr6mhEb1Phuu4uyiRX2509/z5czSbTTx79gzVatWSFBme1pwzNS70HvR6N4VGXUs1wZuSu6Bf9XfTSL0OxoUYLtAMam6k4nrUek8qSNTbJkpA4ULmIQNoVrdf/I0QEmOxhKk0cafVatleA4Rt3STHaYjJVcYpoLdHs+ZCFRaNUzWMKTgJb2q2tFs50O12rU6f/MKEPJ6LOQGauKQxVfKvJksyHMXwA6Fd8qL+TqsA/J51mgy5jF8vG0OXKHz9kBlVSnwfrJebITdcpoYck0jr9TrS6bShofF4HGdnZ9Z5lYYAN61j9Q1fXc+cRoiLKOufVogx+bVSqWB/f9/CYZ1OB41GA+122+S4rot3Idx048iA0jT4VK+lQsuNu6q3oRn8hFrPzs4MXmUbVNZLx2Ixax7B87CMRrO2NXufMJU2AgIuSrIIJTFUwYxoJp8QfmVSIg0VtySt2+1a8heRBTVONMtchRkTMgO6veR6v5xH7R/BY2iwjkYj22QKgAk05X/tjMljKFgZ+6TBqhnJ5J1MJmNeDZNSNfEPgDUrcgUpX6cp2KvESF+H+IzMJ+AfQymK+PEYzQ0CXs7reReE+LtKfiEawOsd05linkuv18PBwYFHXpOfy+UyMpmMJdlqYyC+MleMiJUmuDK0q+XiRLiIyOpur5oAyD/u9MncMtfQcJ/xJpEAl248Z+AqpIaAO7B+lrxrOAAXMCoVKSsK2BKT8VF6/pPJxJSsktvt0K8bnetJkbnoxTGkwC1cFUlwoVMaMvS4eKyeS/93hfLroi4BvV1yBYMqM37GeXbRJqJTKpSYb+Ln5WrfAf1Mj2XclXypwpPXZIts/h7w8uCsXJUfix/dPAQ3h0DXp4Zs1PAKjIC3Ry5E7ifjaZAy14oynMYuf9ftdpHJZJDP59Futz3GALfOZiM5ylN2d+Ur87wY72fsnxu9sYqLfKS9GKg/aJRSVuvz8fW2GQLANVUT+Fk+b0ruQKk3oV64Hq+12vq5noNClI1QWDtNT0qTRtgjm3F8zSdgW0yN3/OPzERFz2tqbW0ymfRk4FKAa+yMAl1LZfzgVc2d8DMqXIEYwKA3Q5wTt55YFRQAq/F2k594vJsDwvWnPKiGhIs+sD5ZY/3ufWp1Co0B5gCQn8hnPKfy2VUNgOvkxVAoZCiAXpNJvO44EMEj2gLAs2YDo+DHI9cI4KvyupsTBsCS+Nx5Ydk4PX+2QeZ3VNjMIeDcs0LMRY0o0/mquTCah6UItUu6TrUXwG2t9LoVYQLXi+VnfgaBaxT4CcpZpN62hg/oCTHJJBqNIpPJ2GZEzLbmPbhtftWDoiGgrVNV0ANeOFKZSb06loTRK3Ofn791+yvwPtw4cGAE3C5ykRzOveYMEIVyjQA3oRbwduAj+UGxbkhNSQ1XzYImXzF8xnCZnludgqugArOOeV1ywysMw+lzagKnW7Gg6Nt1hzEC8ie/0C+TWnUfAUVbNTGV5+h2u56+H5x7JRrZLqo2mVy0wtbQHMl1ftUQ8HNM9Y/PxnWt5a+3iW5FAqGekzRNQKjgc3/D3/l5J5wYZkdr7F+7bQEwhIB7D+hmFDwnjQH19jkmbudBFdpkYM0nIIMzzqTMrt6XPovf+LtIgBsLDoyBmyPXkHMVop9QIf/QQKDyJfmFwfzO66JJVPb83xVa/EyP8ctt0Fwava5fuErHYdozXAe5StxFxQDvWLvriC3Mua797jmgNyflEfKWlp9qx1e/UILSNNSYjh1/p+dQZ5IhYpWrfg6qn9Opa0lDuG7+lvsbvzXpooVvm24cGZhmAMyacHcA1UueBsVwMrR9q0Lw6oHRu9AkFXdnKr9OfyRCjQr18j6p4JmPwESUfr9vO8e5isFPmftBmO44MAFSxyEQbDdH7npRRaXeimvwuq9+0KTrXZFfXEGpr/pbt3mPCupp1TCKTkzjLxeR0HPPEuyvS5pc6655EsdHvUvKEu5bwoTf2+jBvQ/EcKx66Kr4XT5wPXH9vf6O8pPHu1C+VseQ97Q8112j09arri9FLVy02i+Xhud11xSP4+vbltW3KoFQJ4g0bVD8mMYVMn5QD+CF5V2lq8mATFyJRqNW2kKDQXdx0+u6npjL5GpQ+An1N4FQOVZ+TOeOVUBvn/yMummesp8nw+NdRT/retPO6ZJrWPvB5H6GxVXuwc/Lcs95neSiHa4jMc1LpMyYhrwFdH00CyHy+24a76ohqzyppbaayOeW6vohR65HP+0+3c/dRNVpstfPCJh17rdFN96OmOdSmjYB0wbXjY/TItTYH49x4cPJxLuZhZYWalkVGYSWppvRTSTB7V6o8a5Q6CKBJZFI2J4GrsXrvvcTwn6M46ckXGg5oJuhacLCRa70zz1ey+Y4z9NCB34G6iwlp579NGVK0mZWet1ZglJf9Zx+9/K6QtEdT107zMcYj8ee3fn4O44je4a4OToBXT/5IVTKp36eOPCyA8hQAMOzGqJ1E2Q1n4pylsmGvK7uYeA2a/NL4ubvFIHSpmH6PIqkTVv7fMa3jQ68cZjgummaogNe9pD8futnWLiegVtt4Cpiv/Nr/J/Cw4VP2WhCYSLN7iZkyTCEe58qtC/zIGeRHxPN8s4Cejvk56m+ym/dP1dgTIMYZ11HkSylaV603/mmfe5+r/fmh3ZcF7nr/aoIBtfnrAzxgK6H3DlxZZ6++ilK/Z17Xr5Ok4Pu+vPjv1nGrd+19Dcuaqbnn3Yt/f+mDNAbzxmYdl6S38D5CRMAL3nNfh6OX3apmytAQUAPQru+uSVHk8nEGrdQobvJI9r0gq8s3VIrluWGWiLmF7N0mW/W+E0bx4BuhvwUtc6N8tYsIahltH6G41UUodvOmEau/k69Iz+Ebhra4IcG+Aluv8TENyH+XuFgkvarp9fI3AC2AF9eXkYymcTz58+t5Cyg6yfKTeVxd2MqRQbIY6781bwPystQ6KI1vLslMasFlF/5XrcS1twTXl/vXV95jFvh42d4zDI69LeKGrwtuhVhgsuu49JlFp9CMzyeRAHBSdA8ABoC2nWQm71QabtJJoo2qDGif1quyJ2xCFtqBi2ND9ZFz2KKqxoBASJwu0i9Bz+ahVzpZ5f9z/P4eWDu/bivquD9PDS/UNWsa7jnn8an18GjfgIVuEhYU2Nf74kNafL5PNLpNA4ODjxhhoCunxRR9UMGXGXshrLc/0kqy/2y+t0SXFeGu+eaJVf1Xl+VZq3dy9bTj0G3IoHwqorN/Y2iBPo7TRjhguarG3fV69NSBbz71LPlr9ughAykBob7DLSAe72edTdkTFKNDP1TBa6xzauO3at8H9DbIz+BQ8Xkl0jqGtyKBmhei343bb5d4crzEPFyPTT1ylyh7CID04Sh+xs/FMEPQXhd0nvxy6XQrG/gfI3n83kkk0msra0hlUrh448/RjabRbVaxfPnz4P18yOSO7Zuzwc/ZEA/5+85r+4amEwutlJ2jQz+r2vI7ThLfaGfuWWpet8qu93wm1viTX50144iIH7lxj8m3Tgy4KdA9dU9bppn4yIDLnO4pSV+g0yvXxUwIVKiBRSWPK9bnuQ3LmoM0ODQSVfUQZ/dr0Y8oHeXXP5whYNr3PrxqevZXMWj5veaeAhclNfSMw6FQh4+d/Nk/Lyxy2LrfvAq7+l1PapZ5NeMyZURdAjm5uaQzWZRLBbx4MEDZLNZfPLJJ8hms/jDH/7wo9xfQBfkynT10F0l6vIOvX7Au323JoD7NWtjzhbPo99pjwnXqSRp0yLAm1Co6+UyY8Bdt3ovV63UuW66dQmE02CZV/mtH5PpMa5152aIKnSvTTD43vXGyIDu5LrnVQTBhaZuigECuhlyvQF9JfkpWlfB6f9+vDPN2Ob53X0tXONzGj++qaKcZsRclf+nXVtLBF1ZQEMhmUwiHA5jfn4ei4uLtvUtADx+/BgAcHBw4KsMArp+mub4uf/rez8+9VOkrlL2W3dqfKvxoGiW/sYvXDFrnbmfua+uUeLqqLdF15JAeBsU2GWGgDKHIgaTyctJhYzZs8xoGnSqUKQaBK6hQSajkAK80JJf0pb7XAG9P3SZIeCHgvnxgZ9C9jvPrPvQXS15DRdiv8p1r5Mukyl+fULUUwMuEn117dIr5O52a2tr+Oijj2xddjod/PKXv8TBwQFOT09nbsEc0JuR3xrQz6chwfqZy6d+8X63NNDvXOQnv6RTv/V12TGzDPVZRoLffb8zYQJ9fVfossH1szT9PP9XvZYrrPwsWb12AE9+2HRV6P/HPsePRW96b7pG/Dw07ezI3UkzmQxisRhyuRzS6TTi8bhByd1uF61WC81mE61Wy7aeDejt0ywD4DrO9arHvO11dFPr8o2QgR8TQnudAXGV7+uew/V8/KxBv+NnxUHdRBSNi80qrwoEUkC3jfxinpcd63522W/81pKbAc5Xv9isNvfK5XJIJpNYXl5GOp22pMFms4kXL16gXq/j2bNn6PV6to1t0KwroA+N3ria4MfKG7jJc/gZA9OQEBVafvDlrPO4gixAAwJ6V+hVePVVj6WhoX8uEsBXd60yDMhSwWQyiXQ6jWQyaUZAMplEPB5HvV5Ho9FAvV63/eoD4zugD5XeOEzwPpL7bJeFRPi5X4mhX3KXGyObFR8LKKAPidzSWs3CdkNrsVjMQgBsJc5taPP5PHK5HOLxOLLZrDWSabfb2NvbQ6fTQbVaRbVatZwhlpZNJhclaQEF9KHQrexAeBtomkGgdBl6wCYns47R88xKLAsMhYA+BLqsmsFNtGVSYCaTsQ6fsVgM5XIZpVIJ8XgcmUwGg8EAJycnODs7w8HBAY6Pj9Fut9FsNj15Be7ujQEF9KHQrWg6dNvoMsXvvne9fjcU4P7v/n5aRrhb3hIYBAG9j+SHlCkaoH086P3HYjGkUilks1nEYjGk02nrGMpQQa/XQ7vdxuHhIfr9vhkDjUbDcnjm5uYwHo9xdnZm1RVa9RNQQB8KXVvOwPumrKYp7mkeg5sD4MYzXYNhWnhgWmLU+zS2AQXkkvbucLcR146B4XAY2WwWmUwG2WwWpVLJDAOtKR8MBmi322g0Gtjb20Ov10OlUkG/30cymbSd7ubm5tDv99FutzGZTCzMEBgDAX1odC3IwPtqEPihAe4zzvL4+f20937neh/oKrW0AQWk5Fdf7v6vhjWNBGb+M1+HfT36/b4p+W63i7OzM09DIjaX0X1BFIULKKAPja7NGHifDAG/8sBZBoDrvbvlUNPOo7/V/9/lXIzLSr8CCmgaaVWOGypQohGgSYXcca7T6Zgh0O/3PW2+mRPgtqkNhUJIpVIA4GkAFlBAHxIFOQOXkJ+Bc1l1gV9o4DK67FyvQtdx3Tc5flrOREABTaOr9giZTC56zmvfenr+nU4Hg8HA/vR8TA5URMC9fpCfE9CHSteSM/C+IQOA/yYa7uu0EkH93bTzKvlVDrjC6Srkd4/T7vmyz97kO797CiigaeSHlrmwv/JRr9czY4A7gLJjID37WCyGZDJpfKqhAe0JwmtrzsK0xmEBBfQ+07WGCd4Xmlb3f1Uv91UFyWWowOtkN7vw/Kz313HMrOe4aZp1X4HQvx10FaObr1TqpNFohLOzM49DEovFLBFQfz8ej1/anAm4MAYCQyCgD5WuLUzwPqEDl3m4lxkLuv/AtHO+ijJVWNPv2Fnn9jvmsv9f93e3lS7bWORVPrvKdwG9PpHXNX8gFou9hBawNJAVBNxwSY0KbjhGYpKgHkfieyILQTVBQB8aXWs1wftGfs81K5bJVxfWdL8HvPtg+3nbfPU7Xr9731CZH4PUGJgWyrlKF8jAAPjxiOEwhgUI14fDYc/+8zQEGCaYTCZmMOj8jEYjSzLUnUeB2QY4dzsM1lRAHxq9N2GCq3jKl3132bGX/c5PiU8771Vj77Pg+YCuRvQQZ1WITPvsVRGDVznuTb+/7Jg3/f11fH/VY9Rj173c1bjmKxW7Huvn8bsNjPRa7vqhYRGECQL6UOlaEwhviqZ51K8S677M677Kd69zzwH9+NTpdH70a1yGOMz6f9p3VznmOv+fdu03vddXIVXGNAC4T4CGIqPRqCcRUNek3pN7Pj1Wj1GUQc8RUEAfCr13pYXTvPLLPPNX+czvfUC3l97GHKkCedX/X5VcT/i6/p/1PH7HTDv+dWjaHPmhZK6y9/vtZXM+634DQyCgD5FCk0CbBRRQQAEFFNAHTcHWXAEFFFBAAQX0gVNgDAQUUEABBRTQB06BMRBQQAEFFFBAHzgFxkBAAQUUUEABfeAUGAMBBRRQQAEF9IFTYAwEFFBAAQUU0AdOgTEQUEABBRRQQB84BcZAQAEFFFBAAX3gFBgDAQUUUEABBfSB0/8PPNyJQ4s+AkQAAAAASUVORK5CYII=",
+ "text/plain": [
+ "