Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Working with custom dataset, IndexError: index out of range in self #89

Open
varundesai10 opened this issue Dec 17, 2023 · 1 comment
Open

Comments

@varundesai10
Copy link

Forecaster
L2: 1e-06
Linear Window: 0
Linear Shared Weights: False
RevIN: False
Decomposition: False
/home/vdesai/spacetimeformer/spacetimeformer/spacetimeformer_model/nn/decoder.py:43: UserWarning: The implementation of Local Cross Attn with exogenous variables
makes an unintuitive assumption about variable order. Please see
spacetimeformer_model.nn.decoder.DecoderLayer source code and comments
warnings.warn(
GlobalSelfAttn: AttentionLayer(
(inner_attention): PerformerAttention(
(kernel_fn): ReLU()
)
(query_projection): Linear(in_features=200, out_features=800, bias=True)
(key_projection): Linear(in_features=200, out_features=800, bias=True)
(value_projection): Linear(in_features=200, out_features=800, bias=True)
(out_projection): Linear(in_features=800, out_features=200, bias=True)
(dropout_qkv): Dropout(p=0.0, inplace=False)
)
GlobalCrossAttn: AttentionLayer(
(inner_attention): PerformerAttention(
(kernel_fn): ReLU()
)
(query_projection): Linear(in_features=200, out_features=800, bias=True)
(key_projection): Linear(in_features=200, out_features=800, bias=True)
(value_projection): Linear(in_features=200, out_features=800, bias=True)
(out_projection): Linear(in_features=800, out_features=200, bias=True)
(dropout_qkv): Dropout(p=0.0, inplace=False)
)
LocalSelfAttn: AttentionLayer(
(inner_attention): PerformerAttention(
(kernel_fn): ReLU()
)
(query_projection): Linear(in_features=200, out_features=800, bias=True)
(key_projection): Linear(in_features=200, out_features=800, bias=True)
(value_projection): Linear(in_features=200, out_features=800, bias=True)
(out_projection): Linear(in_features=800, out_features=200, bias=True)
(dropout_qkv): Dropout(p=0.0, inplace=False)
)
LocalCrossAttn: AttentionLayer(
(inner_attention): PerformerAttention(
(kernel_fn): ReLU()
)
(query_projection): Linear(in_features=200, out_features=800, bias=True)
(key_projection): Linear(in_features=200, out_features=800, bias=True)
(value_projection): Linear(in_features=200, out_features=800, bias=True)
(out_projection): Linear(in_features=800, out_features=200, bias=True)
(dropout_qkv): Dropout(p=0.0, inplace=False)
)
Using Embedding: spatio-temporal
Time Emb Dim: 6
Space Embedding: True
Time Embedding: True
Val Embedding: True
Given Embedding: True
Null Value: -1
Pad Value: -1
Reconstruction Dropout: Timesteps 0.05, Standard 0.1, Seq (max len = 5) 0.2, Skip All Drop 1.0
*** Spacetimeformer (v1.5) Summary: ***
Model Dim: 200
FF Dim: 800
Enc Layers: 3
Dec Layers: 3
Embed Dropout: 0.2
FF Dropout: 0.3
Attn Out Dropout: 0.0
Attn Matrix Dropout: 0.0
QKV Dropout: 0.0
L2 Coeff: 1e-06
Warmup Steps: 0
Normalization Scheme: batch
Attention Time Windows: 1
Shifted Time Windows: False
Position Emb Type: abs
Recon Loss Imp: 0.0


/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/loops/utilities.py:91: PossibleUserWarning: max_epochs was not set. Setting it to 1000 epochs. To train without an epoch limit, set max_epochs=-1.
rank_zero_warn(
GPU available: True, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:1823: PossibleUserWarning: GPU available but not used. Set accelerator and devices using Trainer(accelerator='gpu', devices=2).
rank_zero_warn(
Trainer(limit_val_batches=1.0) was configured so 100% of the batches will be used..

| Name | Type | Params

0 | spacetimeformer | Spacetimeformer | 13.5 M

13.5 M Trainable params
0 Non-trainable params
13.5 M Total params
54.080 Total estimated model params size (MB)
Sanity Checking DataLoader 0: 0%| | 0/2 [00:01<?, ?it/s]Traceback (most recent call last):
File "train.py", line 181, in
trainer.fit(model, datamodule=data_module)
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 771, in fit
self._call_and_handle_interrupt(
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 724, in _call_and_handle_interrupt
return trainer_fn(*args, **kwargs)
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 812, in _fit_impl
results = self._run(model, ckpt_path=self.ckpt_path)
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1237, in _run
results = self._run_stage()
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1324, in _run_stage
return self._run_train()
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1346, in _run_train
self._run_sanity_check()
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1414, in _run_sanity_check
val_loop.run()
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 204, in run
self.advance(*args, **kwargs)
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py", line 153, in advance
dl_outputs = self.epoch_loop.run(self._data_fetcher, dl_max_batches, kwargs)
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 204, in run
self.advance(*args, **kwargs)
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 127, in advance
output = self._evaluation_step(**kwargs)
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 222, in _evaluation_step
output = self.trainer._call_strategy_hook("validation_step", *kwargs.values())
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1766, in _call_strategy_hook
output = fn(*args, **kwargs)
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/pytorch_lightning/strategies/strategy.py", line 344, in validation_step
return self.model.validation_step(*args, **kwargs)
File "/home/vdesai/spacetimeformer/spacetimeformer/forecaster.py", line 256, in validation_step
stats = self.step(batch, train=False)
File "/home/vdesai/spacetimeformer/spacetimeformer/spacetimeformer_model/spacetimeformer_model.py", line 183, in step
loss_dict = self.compute_loss(
File "/home/vdesai/spacetimeformer/spacetimeformer/spacetimeformer_model/spacetimeformer_model.py", line 228, in compute_loss
forecast_out, recon_out, (logits, labels) = self(
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "/home/vdesai/spacetimeformer/spacetimeformer/forecaster.py", line 204, in forward
preds, *extra = self.forward_model_pass(
File "/home/vdesai/spacetimeformer/spacetimeformer/spacetimeformer_model/spacetimeformer_model.py", line 286, in forward_model_pass
forecast_output, recon_output, (logits, labels), attn = self.spacetimeformer(
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "/home/vdesai/spacetimeformer/spacetimeformer/spacetimeformer_model/nn/model.py", line 266, in forward
enc_vt_emb, enc_s_emb, enc_var_idxs, enc_mask_seq = self.enc_embedding(
File "/home/vdesai/spacetimeformer/spacetimeformer/spacetimeformer_model/nn/embed.py", line 91, in call
return emb(y=y, x=x)
File "/home/vdesai/spacetimeformer/spacetimeformer/spacetimeformer_model/nn/embed.py", line 239, in spatio_temporal_embed
space_emb = self.space_emb(var_idx)
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/torch/nn/modules/sparse.py", line 158, in forward
return F.embedding(
File "/home/vdesai/anaconda3/envs/bats/lib/python3.8/site-packages/torch/nn/functional.py", line 2183, in embedding
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
IndexError: index out of range in self

Any help would be appreciated.

@pdy265
Copy link

pdy265 commented Jul 8, 2024

can you help me how to use custom datasets?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants