forked from gooofy/zamia-speech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
speech_stats.py
executable file
·195 lines (152 loc) · 5.76 KB
/
speech_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2013, 2014, 2016, 2017, 2018, 2019 Guenter Bartsch
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
# print stats about an audio corpus
#
import sys
import re
import os
import StringIO
import ConfigParser
import wave
import codecs
import logging
from optparse import OptionParser
from speech_transcripts import Transcripts
from speech_lexicon import Lexicon
from nltools import misc
PROC_TITLE = 'speech_stats'
DEBUG_LIMIT = 0
# DEBUG_LIMIT = 1000
#
# init terminal
#
misc.init_app (PROC_TITLE)
#
# command line
#
parser = OptionParser("usage: %prog [options] corpus")
parser.add_option ("-c", "--csv", dest="csvfn", type = "str",
help="CSV output file")
parser.add_option ("-s", "--speaker-stats", action="store_true", dest="speaker_stats",
help="show per-speaker stats")
parser.add_option ("-v", "--verbose", action="store_true", dest="verbose",
help="enable debug output")
(options, args) = parser.parse_args()
if len(args) != 1:
parser.print_usage()
sys.exit(1)
corpus_name = args[0]
csv_fn = options.csvfn
# csv_fn = 'foo.csv'
speaker_stats = options.speaker_stats
# speaker_stats = True
# corpus_name = 'tedlium3'
# corpus_name = 'm_ailabs_en'
# corpus_name = 'voxforge_en'
if options.verbose:
logging.basicConfig(level=logging.DEBUG)
logging.getLogger("requests").setLevel(logging.WARNING)
else:
logging.basicConfig(level=logging.INFO)
#
# config
#
config = misc.load_config('.speechrc')
wav16_dir = config.get("speech", "wav16")
#
# load transcripts
#
logging.info("loading transcripts...")
transcripts = Transcripts(corpus_name=corpus_name)
logging.info("loading transcripts...done.")
#
# compute stats
#
def format_duration(duration):
m, s = divmod(duration, 60)
h, m = divmod(m, 60)
return "%3d:%02d:%02d" % (h, m, s)
spk_test = transcripts.spk_test
cnt = 0
total_duration = 0.0
duration_per_spk = {}
subs_per_spk = {}
cnt = 0
duration_per_set = {'train' : 0.0, 'test' : 0.0, 'poor' : 0.0, 'unrated' : 0.0}
subs_per_set = {'train' : 0.0, 'test' : 0.0, 'poor' : 0.0, 'unrated' : 0.0}
for cfn in transcripts:
entry = transcripts[cfn]
spk = entry['spk']
if entry['quality'] == 0:
s = 'unrated'
elif entry['quality'] == 1:
s = 'poor'
elif spk in spk_test:
s = 'test'
else:
s = 'train'
wavfn = '%s/%s/%s.wav' % (wav16_dir, corpus_name, cfn)
wavef = wave.open(wavfn, 'rb')
num_frames = wavef.getnframes()
frame_rate = wavef.getframerate()
duration = float(num_frames) / float(frame_rate)
wavef.close()
# print '%s has %d frames at %d samples/s -> %fs' % (wavfn, num_frames, frame_rate, duration)
if not spk in duration_per_spk:
duration_per_spk[spk] = 0.0
subs_per_spk[spk] = 0
duration_per_set[s] += duration
subs_per_set[s] += 1
total_duration += duration
duration_per_spk[spk] += duration
subs_per_spk[spk] += 1
cnt += 1
if cnt % 1000 == 0:
logging.info ('%6d/%6d: total=%s (train=%s, test=%s, poor=%s, unrated=%s)' % (cnt, len(transcripts),
format_duration(total_duration),
format_duration(duration_per_set['train']),
format_duration(duration_per_set['test']),
format_duration(duration_per_set['poor']),
format_duration(duration_per_set['unrated'])))
if DEBUG_LIMIT and cnt > DEBUG_LIMIT:
logging.warn('debug limit reached -> stopping.')
break
logging.info ('CORPUS STATS for %s: total=%s (train=%s, test=%s, poor=%s, unrated=%s)' % (corpus_name,
format_duration(total_duration),
format_duration(duration_per_set['train']),
format_duration(duration_per_set['test']),
format_duration(duration_per_set['poor']),
format_duration(duration_per_set['unrated'])))
#
# CSV output
#
if csv_fn:
with codecs.open(csv_fn, 'w', 'utf8') as csvf:
csvf.write('speaker,duration,subs\n')
for spk in sorted(duration_per_spk):
csvf.write( "%s,%f,%d\n" % (spk, duration_per_spk[spk], subs_per_spk[spk]))
logging.info('%s written.' % csv_fn)
#
# print stats per speaker if requested
#
if speaker_stats:
logging.info('stats per speaker:')
for spk in sorted(duration_per_spk):
logging.info( "%-42s %s (%5d)" % (spk, format_duration(duration_per_spk[spk]), subs_per_spk[spk]))