diff --git a/.github/workflows/fork-maintenance.yml b/.github/workflows/fork-maintenance.yml index 21634e52a15b04..41c04f2197a11e 100644 --- a/.github/workflows/fork-maintenance.yml +++ b/.github/workflows/fork-maintenance.yml @@ -24,9 +24,9 @@ jobs: { "upstream_main_branch": "main", "upstream_release_branch": "v4.43-release", - "downstream_main_branch": "upstream_sync", - "downstream_testing_branch": "rocm6.3_testing_rel4.43_testing_2", - "downstream_develop_branch": "develop", + "downstream_main_branch": "upstream_sync_test", + "downstream_testing_branch": "rocm6.3_testing_rel4.43_test", + "downstream_develop_branch": "develop_test", "commits": [ "731f0308bb0a2796e28b68664f4ed050eab6dbfd", "0c1b311bff616a4faf214461584a758fbab14a6f", @@ -37,7 +37,6 @@ jobs: requirements_command: > sudo sed -i 's/torchaudio//g' examples/pytorch/_tests_requirements.txt && pip install -r examples/pytorch/_tests_requirements.txt && pip install --no-cache-dir GPUtil azureml azureml-core tokenizers ninja cerberus sympy sacremoses sacrebleu==1.5.1 sentencepiece scipy scikit-learn urllib3 && pip install huggingface_hub datasets && pip install parameterized && pip install -e . unit_test_command: cd tests; folders=\$(python3 -c 'import os; tests = os.getcwd(); models = \"models\"; model_tests = os.listdir(os.path.join(tests, models)); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [os.path.join(models, x) for x in model_tests]))); d1.remove(models); d = d2 + d1; print(\" \".join(d[:5]))' ); cd ..; for folder in \${folders[@]}; do pytest tests/\${folder} -v --make-reports=huggingface_unit_tests_\${machine_type}_run_models_gpu_\${folder} -rfEs --continue-on-collection-errors -m \"not not_device_test\" -p no:cacheprovider; done; allstats=\$(find reports -name stats.txt); for stat in \${allstats[@]}; do echo \$stat; cat \$stat; done - performance_test_command: > - echo "python examples/pytorch/language-modeling/run_mlm.py --model_name_or_path bert-base-uncased --dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train --do_eval --output_dir /tmp/test-mlm --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --max_steps 500" + performance_test_command: echo "python examples/pytorch/language-modeling/run_mlm.py --model_name_or_path bert-base-uncased --dataset_name wikitext --dataset_config_name wikitext-2-raw-v1 --do_train --do_eval --output_dir /tmp/test-mlm --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --max_steps 500" docker_image: rocm/pytorch:latest docker_options: --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 16G --network=host