forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CMinTable.lua
46 lines (41 loc) · 1.6 KB
/
CMinTable.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
local CMinTable, parent = torch.class('nn.CMinTable', 'nn.Module')
function CMinTable:__init()
parent.__init(self)
self.gradInput = {}
self.minIdx = torch.Tensor()
self.mask = torch.Tensor()
self.minVals = torch.Tensor()
self.gradMaxVals = torch.Tensor()
end
function CMinTable:updateOutput(input)
self.output:resizeAs(input[1]):copy(input[1])
self.minIdx:resizeAs(input[1]):fill(1)
for i=2,#input do
self.maskByteTensor = self.maskByteTensor or
(torch.type(self.output) == 'torch.CudaTensor' and
torch.CudaByteTensor() or torch.ByteTensor())
self.mask:lt(input[i], self.output)
self.maskByteTensor:resize(self.mask:size()):copy(self.mask)
self.minIdx:maskedFill(self.maskByteTensor, i)
self.minVals:maskedSelect(input[i], self.maskByteTensor)
self.output:maskedCopy(self.maskByteTensor, self.minVals)
end
return self.output
end
function CMinTable:updateGradInput(input, gradOutput)
for i=1,#input do
self.gradInput[i] = self.gradInput[i] or input[i].new()
self.gradInput[i]:resizeAs(input[i]):fill(0.0)
self.maskByteTensor = self.maskByteTensor or
(torch.type(self.output) == 'torch.CudaTensor' and
torch.CudaByteTensor() or torch.ByteTensor())
self.mask:eq(self.minIdx, i)
self.maskByteTensor:resize(self.mask:size()):copy(self.mask)
self.gradMaxVals:maskedSelect(gradOutput, self.maskByteTensor)
self.gradInput[i]:maskedCopy(self.maskByteTensor, self.gradMaxVals)
end
for i=#input+1, #self.gradInput do
self.gradInput[i] = nil
end
return self.gradInput
end