forked from pytorch/torchtune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lora_finetune_distributed.py
615 lines (519 loc) · 25.2 KB
/
lora_finetune_distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import sys
import time
from functools import partial
from typing import Any, Dict, Optional, Tuple
from warnings import warn
import torch
from omegaconf import DictConfig
from torch import nn
from torch.distributed import destroy_process_group, init_process_group
from torch.distributed.fsdp import (
FullOptimStateDictConfig,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
StateDictType,
)
from torch.optim import Optimizer
from torch.utils.data import DataLoader, DistributedSampler
from torchtune import config, modules, utils
from torchtune.modules.peft.peft_utils import (
get_adapter_params,
get_merged_lora_ckpt,
set_trainable_params,
validate_state_dict_for_lora,
)
from torchtune.recipe_interfaces import FTRecipeInterface
from tqdm import tqdm
log = utils.get_logger("DEBUG")
class LoRAFinetuneRecipeDistributed(FTRecipeInterface):
"""
Distributed LoRA finetuning recipe for dense transformer-based LLMs such as Llama2. This recipe supports
distributed training and can be run on a single node (1 to 8 GPUs).
Features:
- FSDP. Supported using PyTorch's FSDP APIs. DDP is currently not supported. Traning on CPU is not
supported.
- Activation Checkpointing. This can be controlled using the ``activation_checkpointing``
flag. Activation checkpointing helps reduce the memory footprint since we no longer keep
activations in memory and instead recompute them during the backward pass. This is especially
helpful for larger batch sizes when you're memory constrained. But these savings in memory
come at the cost of training performance. In most cases training can slow-down quite a bit as
a result of this activation recomputation.
- Precision. Full fp32 and bf16 training are supported. Precision is controlled using the ``dtype``
flag. When ``dtype=bf16``, all activations, gradients and optimizer states are in bfloat16. In
most cases this should halve the memory footprint of full precision (fp32) training, without
loss in model quality (will depend on the model, training data and other settings). For
GPUs which do not support bfloat16, we fall back to fp32. Mixed precision training and fp16
precision are currently not supported.
- Gradient Accumulation. You can simulate larger batch sizes by accumulating gradients. This is
controlled using the ``gradient_accumulation_steps`` flag.
Total Batch Size = batch_size * number of GPUs * gradient accumulation steps.
For example: with batch_size=1, nproc_per_node=2 and gradient_accumulation_steps=32 we get a
total batch size of 64.
Gradient accumulation is especially useful when you are memory constrained. In this case,
accumulating gradients might give you better training speed than enabling activation
checkpointing.
- Checkpointing. Model weights are checkpointed both at the end of each epoch and at the end of
training. Currently we checkpoint both the adapter weights (trainable params only) and the
complete merged weights (adapter weights added back to the base model). For more details
please take a look at our LoRA tutorial
(https://pytorch.org/torchtune/main/tutorials/lora_finetune.html).
Optimizer State and recipe state (seed, total_epochs, number of epochs run etc) are
only saved at the end of a given epoch and used in case of resuming training. Resuming
training is controlled by the ``resume_from_checkpoint`` flag. Mid-epoch checkpointing is
currently not supported.
For more details on the checkpointer, please take a look at
our checkpointer deepdive (https://pytorch.org/torchtune/main/tutorials/checkpointer.html).
- Logging. Terminal, Disk, WandB and TensorBoard are all supported.
For a full list of example configs for this recipe, run ``tune ls`` on the command line. Each config
has example commands for how to kick-off training.
Args:
cfg (DictConfig): OmegaConf object parsed from yaml file
Raises:
ValueError: If ``dtype`` is set to fp16.
ValueError: If world_size is 1
RuntimeError: If ``dtype`` is set to bf16 and the hardware does not support bf16.
"""
def __init__(self, cfg: DictConfig) -> None:
self._device = utils.get_device(device=cfg.device)
self._dtype = utils.get_dtype(cfg.dtype, device=self._device)
if self._dtype == torch.float16:
raise ValueError(
"full fp16 training is not supported with this recipe. Please use bf16 or fp32 instead."
)
_, rank = utils.get_world_size_and_rank()
# _is_rank_zero is used primarily for logging. In the future, the logger
# should directly take care of this
self._is_rank_zero = rank == 0
# logging attributes
self._output_dir = cfg.output_dir
self._log_every_n_steps = cfg.log_every_n_steps if cfg.log_every_n_steps else 1
self._log_peak_memory_every_n_steps = 100
# training attributes
self._enable_activation_checkpointing = cfg.enable_activation_checkpointing
# These attributes constitute the recipe state and are updated by ``load_checkpoint``
# when ``resume_from_checkpoint`` is ``True``
self.seed = utils.set_seed(seed=cfg.seed)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
self.total_training_steps = 0
self._resume_from_checkpoint = cfg.resume_from_checkpoint
self._gradient_accumulation_steps = cfg.gradient_accumulation_steps
def load_checkpoint(self, cfg_checkpointer: DictConfig) -> Dict[str, Any]:
"""
Extract the checkpoint state from file and validate. This includes the
base model weights. If resume_from_checkpoint is True, this also includes
the adapter weights and recipe state
"""
self._checkpointer = config.instantiate(
cfg_checkpointer,
resume_from_checkpoint=self._resume_from_checkpoint,
)
checkpoint_dict = self._checkpointer.load_checkpoint()
# When resuming from checkpoint for LoRA, the recipe expects the adapter weights
# and recipe state to be present. The keys should match up with what ``save_checkpoint``
# used to create these intermediate checkpoints
if self._resume_from_checkpoint:
if utils.ADAPTER_KEY not in checkpoint_dict:
raise ValueError(
"Adapter weights not found. Please ensure a valid adapter checkpoint is provided."
)
# _update_recipe_state will throw an exception if the recipe state is not corrctly loaded
# no need to check here
self._update_recipe_state(checkpoint_dict)
return checkpoint_dict
def _update_recipe_state(self, ckpt_dict: Dict[str, Any]) -> None:
"""
Updates the recipe state from checkpoint.
"""
if not (
utils.SEED_KEY in ckpt_dict
and utils.TOTAL_EPOCHS_KEY in ckpt_dict
and utils.MAX_STEPS_KEY in ckpt_dict
):
raise KeyError(
"Checkpoint does not contain the required keys needed for updating recipe state."
"Are you sure you passed in the right recipe checkpoint?"
)
# If seed, total_epoch or max_steps_per_epoch don't match,
# warn the user and overwrite
if (
self.seed != ckpt_dict[utils.SEED_KEY]
or self.total_epochs != ckpt_dict[utils.TOTAL_EPOCHS_KEY]
or self.max_steps_per_epoch != ckpt_dict[utils.MAX_STEPS_KEY]
):
warn(
message="""Configured value for seed, epochs or max_steps_per_epoch
does not match the value stored in checkpoint."""
)
self.seed = utils.set_seed(seed=ckpt_dict[utils.SEED_KEY])
self.epochs_run = ckpt_dict[utils.EPOCHS_KEY]
self.total_epochs = ckpt_dict[utils.TOTAL_EPOCHS_KEY]
self.max_steps_per_epoch = ckpt_dict[utils.MAX_STEPS_KEY]
def setup(self, cfg: DictConfig) -> None:
"""
Setup the recipe state. This includes recipe state (if resume_from_checkpoint is True),
model, tokenizer, loss, optimizer, learning rate scheduler, sampler, and dataloader.
"""
if self._is_rank_zero:
self._metric_logger = config.instantiate(cfg.metric_logger)
# log config with parameter override
self._metric_logger.log_config(cfg)
checkpoint_dict = self.load_checkpoint(cfg_checkpointer=cfg.checkpointer)
self._model = self._setup_model(
cfg_model=cfg.model,
enable_activation_checkpointing=cfg.enable_activation_checkpointing,
base_model_state_dict=checkpoint_dict[utils.MODEL_KEY],
lora_weights_state_dict=(
checkpoint_dict[utils.ADAPTER_KEY]
if self._resume_from_checkpoint
else None
),
)
self._tokenizer = config.instantiate(cfg.tokenizer)
self._optimizer = self._setup_optimizer(
cfg_optimizer=cfg.optimizer,
opt_state_dict=checkpoint_dict[utils.OPT_KEY]
if self._resume_from_checkpoint
else None,
)
self._loss_fn = config.instantiate(cfg.loss)
# sampler and dataloader depend on the tokenizer and loss_fn and should be
# setup after all of these are setup
self._sampler, self._dataloader = self._setup_data(
cfg_dataset=cfg.dataset,
shuffle=cfg.shuffle,
batch_size=cfg.batch_size,
)
# Finally update the recipe state which can only be correctly set after all of the
# other components have been initialized and updated.
# Number of training steps in each epoch depends on the number of batches produced
# by the dataloader and the max_steps_per_epoch param set by the user and is used
# for logging and tracking training state. This should be computed after the dataloader
# has been setup
self._steps_per_epoch = (
len(self._dataloader) // self._gradient_accumulation_steps
)
if (
self.max_steps_per_epoch is not None
and self.max_steps_per_epoch < self._steps_per_epoch
):
self._steps_per_epoch = self.max_steps_per_epoch
self.total_training_steps = self.epochs_run * self._steps_per_epoch
# Learning rate scheduler can only be set up after number of steps
# has been computed
self._lr_scheduler = self._setup_lr_scheduler(
cfg_lr_scheduler=cfg.lr_scheduler,
num_training_steps=self.total_epochs * self._steps_per_epoch,
last_epoch=self.total_training_steps - 1,
)
def _setup_model(
self,
cfg_model: DictConfig,
enable_activation_checkpointing: bool,
base_model_state_dict: Dict[str, Any],
lora_weights_state_dict: Optional[Dict[str, Any]] = None,
) -> nn.Module:
"""
Model initialization has some important considerations:
a. To minimize GPU peak memory, we load the model on CPU with the right
dtype. To ensure that we don't instantiate ``world_size`` number of models,
we initialize on meta_device for all ranks other than rank 0.
b. Rank 0 is also responsible for calling ``load_state_dict`` and loading the
model weights from checkpoint.
c. While wrapping the model with FSDP, we set ``sync_module_states``
to TRUE and broadcast module params and buffers from rank 0.
d. The ``device_id`` param ensures that the FSDP initialization happens on
the correct device.
"""
if self._is_rank_zero:
log.info("FSDP is enabled. Instantiating Model on CPU for Rank 0 ...")
init_start = time.perf_counter()
with utils.set_default_dtype(self._dtype):
model = config.instantiate(cfg_model)
log.info(
f"Model instantiation took {time.perf_counter() - init_start:.2f} secs"
)
# The model contains LoRA params which won't have any matching keys in
# the state dict. As a result, we need to load with strict=False.
# Before loading the state dict, ensure the state dict keys for the base
# model and adapters (if available) match the keys in the full LoRA model
# This is a good sanity check to prevent silent errors
validate_state_dict_for_lora(
lora_attn_modules=cfg_model.lora_attn_modules,
apply_lora_to_mlp=cfg_model.apply_lora_to_mlp,
apply_lora_to_output=cfg_model.apply_lora_to_output,
full_model_state_dict_keys=model.state_dict().keys(),
lora_state_dict_keys=(
lora_weights_state_dict.keys()
if lora_weights_state_dict is not None
else None
),
base_model_state_dict_keys=base_model_state_dict.keys(),
)
# Load both the base model weights and (if available) the adapter weights. Both
# of this should happen only on Rank 0
model.load_state_dict(base_model_state_dict, strict=False)
if lora_weights_state_dict:
model.load_state_dict(lora_weights_state_dict, strict=False)
else:
# For non-zero ranks, load the model on meta device
with utils.set_default_dtype(self._dtype), torch.device("meta"):
model = config.instantiate(cfg_model)
if self._dtype == torch.bfloat16:
model = model.to(torch.bfloat16)
# LoRA hyper-params needed for merging weights while saving checkpoints
self._lora_rank = cfg_model.lora_rank
self._lora_alpha = cfg_model.lora_alpha
# Note: this needs to be set before wrapping with FSDP
self.adapter_params = get_adapter_params(model)
set_trainable_params(model, self.adapter_params)
model = FSDP(
module=model,
auto_wrap_policy=utils.lora_fsdp_wrap_policy(
modules_to_wrap={modules.TransformerDecoderLayer}
),
sharding_strategy=torch.distributed.fsdp.ShardingStrategy.FULL_SHARD,
device_id=self._device,
# this recipe does not currently support mixed precision training
mixed_precision=None,
# Ensure we broadcast params and buffers from rank 0
sync_module_states=True,
# Initialize empty modules on all non-zero ranks
param_init_fn=(
lambda module: module.to_empty(
device=torch.device("cuda"), recurse=False
)
if not self._is_rank_zero
else None
),
)
# Ensure no params and buffers are on meta device
utils.validate_no_params_on_meta_device(model)
if enable_activation_checkpointing:
utils.set_activation_checkpointing(
model, auto_wrap_policy={modules.TransformerDecoderLayer}
)
if self._is_rank_zero:
memory_stats = utils.memory_stats_log(device=self._device)
log.info(f"Memory Stats after model init:\n{memory_stats}")
# synchronize before training begins
torch.distributed.barrier()
return model
def _setup_optimizer(
self, cfg_optimizer: DictConfig, opt_state_dict: Optional[Dict[str, Any]] = None
) -> Optimizer:
optimizer = config.instantiate(cfg_optimizer, self._model.parameters())
if opt_state_dict:
# Note: technically we should check _contains_fsdp for
# just the state dict of the adapter cfg, but should be equivalent
opt_state_dict = utils.transform_opt_state_dict(
opt_state_dict, self._model, optimizer
)
optimizer.load_state_dict(opt_state_dict)
if self._is_rank_zero:
log.info("Optimizer and loss are initialized.")
return optimizer
def _setup_lr_scheduler(
self,
cfg_lr_scheduler: DictConfig,
num_training_steps: int,
last_epoch: int,
) -> Optimizer:
lr_scheduler = config.instantiate(
cfg_lr_scheduler,
self._optimizer,
num_training_steps=num_training_steps,
last_epoch=last_epoch,
)
if self._is_rank_zero:
log.info("Learning rate scheduler is initialized.")
return lr_scheduler
def _setup_data(
self,
cfg_dataset: DictConfig,
shuffle: bool,
batch_size: int,
) -> Tuple[DistributedSampler, DataLoader]:
"""
All data related setup happens here. Currently this recipe only supports the
DistributedSamplers with Map-style Datasets which fit into memory. Other samplers,
iterable datasets and streaming datasets are not supported.
"""
world_size, rank = utils.get_world_size_and_rank()
ds = config.instantiate(cfg_dataset, tokenizer=self._tokenizer)
sampler = DistributedSampler(
ds, num_replicas=world_size, rank=rank, shuffle=shuffle, seed=0
)
dataloader = DataLoader(
dataset=ds,
batch_size=batch_size,
sampler=sampler,
collate_fn=partial(
utils.padded_collate,
padding_idx=self._tokenizer.pad_id,
ignore_idx=self._loss_fn.ignore_index,
),
)
if self._is_rank_zero:
log.info("Dataset and Sampler are initialized.")
return sampler, dataloader
def save_checkpoint(
self,
epoch: int,
) -> None:
"""
Checkpoint the state of the recipe. The constructed checkpoint state dict
contains the following information:
- Merged weights with key MODEL_KEY
- Adapter weights with key ADAPTER_KEY
- Relevant recipe state if training is not complete
Checkpointer will save the merged weights, adapter weights and recipe state in
different checkpoint files. To correctly resume from training, the adapter weights
and recipe state must be provided along with the base model weights.
"""
# final dict passed onto the checkpointer
checkpoint_dict = {}
intermediate_checkpoint = epoch + 1 < self.total_epochs
# To prevent GPU memory from spiking during checkpoint save,
# we consolidate the full model and optim state dicts on CPU for rank 0
with FSDP.state_dict_type(
self._model,
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(offload_to_cpu=True, rank0_only=True),
FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True),
):
cpu_state_dict = self._model.state_dict()
if intermediate_checkpoint:
opt_state_dict = FSDP.optim_state_dict(self._model, self._optimizer)
else:
opt_state_dict = None
# Now that we have the model and opt state dict, create the actual checkpoint dict
# to be sent to the checkpointer and ultimately written to file
if self._is_rank_zero:
# Filter out the adapter keys and weights from the model state dict. These will
# be saved separately
adapter_key_filter = lambda x: x in self.adapter_params
adapter_state_dict = {
k: v for k, v in cpu_state_dict.items() if adapter_key_filter(k)
}
checkpoint_dict.update({utils.ADAPTER_KEY: adapter_state_dict})
# merge the adapter weights and base weights to create the model checkpoint
merged_state_dict = get_merged_lora_ckpt(
cpu_state_dict,
rank=self._lora_rank,
alpha=self._lora_alpha,
)
checkpoint_dict.update({utils.MODEL_KEY: merged_state_dict})
# if training is in-progress, checkpoint the optimizer state and recipe state
# as well.
if intermediate_checkpoint:
checkpoint_dict.update(
{
utils.OPT_KEY: opt_state_dict,
utils.SEED_KEY: self.seed,
utils.EPOCHS_KEY: self.epochs_run,
utils.TOTAL_EPOCHS_KEY: self.total_epochs,
utils.MAX_STEPS_KEY: self.max_steps_per_epoch,
}
)
self._checkpointer.save_checkpoint(
checkpoint_dict,
epoch=epoch,
intermediate_checkpoint=intermediate_checkpoint,
)
def train(self) -> None:
"""
The core training loop.
"""
# clean up before training begins
utils.cleanup_before_training()
_, rank = utils.get_world_size_and_rank()
# zero out the gradients before starting training
self._optimizer.zero_grad()
# self.epochs_run should be non-zero when we're resuming from a checkpoint
for curr_epoch in range(self.epochs_run, self.total_epochs):
# Update the sampler to ensure data is correctly shuffled across epochs
# in case shuffle is True
self._sampler.set_epoch(curr_epoch)
for idx, batch in enumerate(
pbar := tqdm(self._dataloader, disable=not (rank == 0))
):
if (
self.max_steps_per_epoch is not None
and (idx // self._gradient_accumulation_steps)
== self.max_steps_per_epoch
):
break
input_ids, labels = batch
input_ids = input_ids.to(self._device)
labels = labels.to(self._device)
logits = self._model(input_ids)
# Shift so that tokens < n predict n
logits = logits[..., :-1, :].contiguous()
labels = labels[..., 1:].contiguous()
logits = logits.transpose(1, 2)
# Compute loss
loss = self._loss_fn(logits, labels)
if (
self.total_training_steps % self._log_every_n_steps == 0
and self._is_rank_zero
):
pbar.set_description(f"{curr_epoch+1}|{idx+1}|Loss: {loss.item()}")
self._metric_logger.log_dict(
{
"loss": loss.item(),
"lr": self._optimizer.param_groups[0]["lr"],
"gpu_resources": torch.cuda.memory_allocated(),
},
step=self.total_training_steps, # Each step is unique, not limited to each epoch
)
loss = loss / self._gradient_accumulation_steps
loss.backward()
if (idx + 1) % self._gradient_accumulation_steps == 0:
self._optimizer.step()
self._optimizer.zero_grad(set_to_none=True)
self._lr_scheduler.step()
# Update the number of steps when the weights are updated
self.total_training_steps += 1
if (
self.total_training_steps % self._log_peak_memory_every_n_steps == 0
and self._is_rank_zero
):
# Log peak memory for iteration
memory_stats = utils.memory_stats_log(device=self._device)
self._metric_logger.log_dict(
memory_stats, step=self.total_training_steps
)
self.epochs_run += 1
self.save_checkpoint(epoch=curr_epoch)
def cleanup(self) -> None:
if self._is_rank_zero:
self._metric_logger.close()
destroy_process_group()
@config.parse
def recipe_main(cfg: DictConfig) -> None:
"""
Entry point for the recipe.
Configurable parameters are read in the following order:
- Parameters specified in config (see available configs through ``tune ls``)
- Overwritten by arguments from the command-line
"""
if not utils.is_distributed():
raise RuntimeError(
"Distributed finetune recipe should be run via a distributed launcher."
"If using tune CLI, please specify --nnodes 1 and --nproc_per_node [num_gpus]"
)
init_process_group(backend="gloo" if cfg.device == "cpu" else "nccl")
config.log_config(recipe_name="LoRAFinetuneRecipeDistributed", cfg=cfg)
recipe = LoRAFinetuneRecipeDistributed(cfg=cfg)
recipe.setup(cfg=cfg)
recipe.train()
recipe.cleanup()
if __name__ == "__main__":
sys.exit(recipe_main())