forked from curvefi/curve-contract
-
Notifications
You must be signed in to change notification settings - Fork 0
/
StableSwapRen.vy
743 lines (593 loc) · 23.5 KB
/
StableSwapRen.vy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
# @version 0.1.0b17
# (c) Curve.Fi, 2020
# Pools for renBTC/wBTC. Ren can potentially change amount of underlying bitcoins
# External Contracts
contract ERC20m:
def totalSupply() -> uint256: constant
def allowance(_owner: address, _spender: address) -> uint256: constant
def transfer(_to: address, _value: uint256) -> bool: modifying
def transferFrom(_from: address, _to: address, _value: uint256) -> bool: modifying
def approve(_spender: address, _value: uint256) -> bool: modifying
def mint(_to: address, _value: uint256): modifying
def burn(_value: uint256): modifying
def burnFrom(_to: address, _value: uint256): modifying
def name() -> string[64]: constant
def symbol() -> string[32]: constant
def decimals() -> uint256: constant
def balanceOf(arg0: address) -> uint256: constant
def set_minter(_minter: address): modifying
# External Contracts
contract cERC20:
def totalSupply() -> uint256: constant
def allowance(_owner: address, _spender: address) -> uint256: constant
def transfer(_to: address, _value: uint256) -> bool: modifying
def transferFrom(_from: address, _to: address, _value: uint256) -> bool: modifying
def approve(_spender: address, _value: uint256) -> bool: modifying
def burn(_value: uint256): modifying
def burnFrom(_to: address, _value: uint256): modifying
def name() -> string[64]: constant
def symbol() -> string[32]: constant
def decimals() -> uint256: constant
def balanceOf(arg0: address) -> uint256: constant
def mint(mintAmount: uint256) -> uint256: modifying
def redeem(redeemTokens: uint256) -> uint256: modifying
def redeemUnderlying(redeemAmount: uint256) -> uint256: modifying
def exchangeRateStored() -> uint256: constant
def exchangeRateCurrent() -> uint256: constant
def supplyRatePerBlock() -> uint256: constant
def accrualBlockNumber() -> uint256: constant
from vyper.interfaces import ERC20
# This can (and needs to) be changed at compile time
N_COINS: constant(int128) = 2 # <- change
ZERO256: constant(uint256) = 0 # This hack is really bad XXX
ZEROS: constant(uint256[N_COINS]) = [ZERO256, ZERO256] # <- change
USE_LENDING: constant(bool[N_COINS]) = [True, False]
FEE_DENOMINATOR: constant(uint256) = 10 ** 10
LENDING_PRECISION: constant(uint256) = 10 ** 18
PRECISION: constant(uint256) = 10 ** 18 # The precision to convert to
PRECISION_MUL: constant(uint256[N_COINS]) = [convert(10000000000, uint256), convert(10000000000, uint256)]
# PRECISION_MUL: constant(uint256[N_COINS]) = [
# PRECISION / convert(PRECISION, uint256), # DAI
# PRECISION / convert(10 ** 6, uint256), # USDC
# PRECISION / convert(10 ** 6, uint256)] # USDT
admin_actions_delay: constant(uint256) = 3 * 86400
min_ramp_time: constant(uint256) = 86400
# Events
TokenExchange: event({buyer: indexed(address), sold_id: int128, tokens_sold: uint256, bought_id: int128, tokens_bought: uint256})
AddLiquidity: event({provider: indexed(address), token_amounts: uint256[N_COINS], fees: uint256[N_COINS], invariant: uint256, token_supply: uint256})
RemoveLiquidity: event({provider: indexed(address), token_amounts: uint256[N_COINS], fees: uint256[N_COINS], token_supply: uint256})
RemoveLiquidityOne: event({provider: indexed(address), token_amount: uint256, coin_amount: uint256})
RemoveLiquidityImbalance: event({provider: indexed(address), token_amounts: uint256[N_COINS], fees: uint256[N_COINS], invariant: uint256, token_supply: uint256})
CommitNewAdmin: event({deadline: indexed(timestamp), admin: indexed(address)})
NewAdmin: event({admin: indexed(address)})
CommitNewFee: event({deadline: indexed(timestamp), fee: uint256, admin_fee: uint256})
NewFee: event({fee: uint256, admin_fee: uint256})
RampA: event({old_A: uint256, new_A: uint256, initial_time: timestamp, future_time: timestamp})
StopRampA: event({A: uint256, t: timestamp})
coins: public(address[N_COINS])
balances: public(uint256[N_COINS])
fee: public(uint256) # fee * 1e10
admin_fee: public(uint256) # admin_fee * 1e10
max_admin_fee: constant(uint256) = 5 * 10 ** 9
max_fee: constant(uint256) = 5 * 10 ** 9
max_A: constant(uint256) = 10 ** 6
max_A_change: constant(uint256) = 10
owner: public(address)
token: ERC20m
initial_A: public(uint256)
future_A: public(uint256)
initial_A_time: public(timestamp)
future_A_time: public(timestamp)
admin_actions_deadline: public(timestamp)
transfer_ownership_deadline: public(timestamp)
future_fee: public(uint256)
future_admin_fee: public(uint256)
future_owner: public(address)
kill_deadline: timestamp
kill_deadline_dt: constant(uint256) = 2 * 30 * 86400
is_killed: bool
@public
def __init__(_coins: address[N_COINS],
_pool_token: address,
_A: uint256, _fee: uint256):
"""
_coins: Addresses of ERC20 conracts of coins
_pool_token: Address of the token representing LP share
_A: Amplification coefficient multiplied by n * (n - 1)
_fee: Fee to charge for exchanges
"""
for i in range(N_COINS):
assert _coins[i] != ZERO_ADDRESS
self.balances[i] = 0
self.coins = _coins
self.initial_A = _A
self.future_A = _A
self.fee = _fee
self.owner = msg.sender
self.kill_deadline = block.timestamp + kill_deadline_dt
self.is_killed = False
self.token = ERC20m(_pool_token)
@constant
@private
def _A() -> uint256:
"""
Handle ramping A up or down
"""
t1: timestamp = self.future_A_time
A1: uint256 = self.future_A
if block.timestamp < t1:
A0: uint256 = self.initial_A
t0: timestamp = self.initial_A_time
# Expressions in uint256 cannot have negative numbers, thus "if"
if A1 > A0:
return A0 + (A1 - A0) * (block.timestamp - t0) / (t1 - t0)
else:
return A0 - (A0 - A1) * (block.timestamp - t0) / (t1 - t0)
else: # when t1 == 0 or block.timestamp >= t1
return A1
@constant
@public
def A() -> uint256:
return self._A()
@private
@constant
def _rates() -> uint256[N_COINS]:
result: uint256[N_COINS] = PRECISION_MUL
use_lending: bool[N_COINS] = USE_LENDING
for i in range(N_COINS):
rate: uint256 = LENDING_PRECISION # Used with no lending
if use_lending[i]:
rate = cERC20(self.coins[i]).exchangeRateCurrent()
result[i] *= rate
return result
@private
@constant
def _xp(rates: uint256[N_COINS]) -> uint256[N_COINS]:
result: uint256[N_COINS] = rates
for i in range(N_COINS):
result[i] = result[i] * self.balances[i] / LENDING_PRECISION
return result
@private
@constant
def _xp_mem(rates: uint256[N_COINS], _balances: uint256[N_COINS]) -> uint256[N_COINS]:
result: uint256[N_COINS] = rates
for i in range(N_COINS):
result[i] = result[i] * _balances[i] / PRECISION
return result
@private
@constant
def get_D(xp: uint256[N_COINS], amp: uint256) -> uint256:
S: uint256 = 0
for _x in xp:
S += _x
if S == 0:
return 0
Dprev: uint256 = 0
D: uint256 = S
Ann: uint256 = amp * N_COINS
for _i in range(255):
D_P: uint256 = D
for _x in xp:
D_P = D_P * D / (_x * N_COINS) # If division by 0, this will be borked: only withdrawal will work. And that is good
Dprev = D
D = (Ann * S + D_P * N_COINS) * D / ((Ann - 1) * D + (N_COINS + 1) * D_P)
# Equality with the precision of 1
if D > Dprev:
if D - Dprev <= 1:
break
else:
if Dprev - D <= 1:
break
return D
@private
@constant
def get_D_mem(rates: uint256[N_COINS], _balances: uint256[N_COINS], amp: uint256) -> uint256:
return self.get_D(self._xp_mem(rates, _balances), amp)
@public
@constant
def get_virtual_price() -> uint256:
"""
Returns portfolio virtual price (for calculating profit)
scaled up by 1e18
"""
D: uint256 = self.get_D(self._xp(self._rates()), self._A())
# D is in the units similar to DAI (e.g. converted to precision 1e18)
# When balanced, D = n * x_u - total virtual value of the portfolio
token_supply: uint256 = self.token.totalSupply()
return D * PRECISION / token_supply
@public
@constant
def calc_token_amount(amounts: uint256[N_COINS], deposit: bool) -> uint256:
"""
Simplified method to calculate addition or reduction in token supply at
deposit or withdrawal without taking fees into account (but looking at
slippage).
Needed to prevent front-running, not for precise calculations!
"""
_balances: uint256[N_COINS] = self.balances
rates: uint256[N_COINS] = self._rates()
amp: uint256 = self._A()
D0: uint256 = self.get_D_mem(rates, _balances, amp)
for i in range(N_COINS):
if deposit:
_balances[i] += amounts[i]
else:
_balances[i] -= amounts[i]
D1: uint256 = self.get_D_mem(rates, _balances, amp)
token_amount: uint256 = self.token.totalSupply()
diff: uint256 = 0
if deposit:
diff = D1 - D0
else:
diff = D0 - D1
return diff * token_amount / D0
@public
@nonreentrant('lock')
def add_liquidity(amounts: uint256[N_COINS], min_mint_amount: uint256):
# Amounts is amounts of c-tokens
assert not self.is_killed
use_lending: bool[N_COINS] = USE_LENDING
fees: uint256[N_COINS] = ZEROS
_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
_admin_fee: uint256 = self.admin_fee
amp: uint256 = self._A()
token_supply: uint256 = self.token.totalSupply()
rates: uint256[N_COINS] = self._rates()
# Initial invariant
D0: uint256 = 0
old_balances: uint256[N_COINS] = self.balances
if token_supply > 0:
D0 = self.get_D_mem(rates, old_balances, amp)
new_balances: uint256[N_COINS] = old_balances
for i in range(N_COINS):
if token_supply == 0:
assert amounts[i] > 0
# balances store amounts of c-tokens
new_balances[i] = old_balances[i] + amounts[i]
# Invariant after change
D1: uint256 = self.get_D_mem(rates, new_balances, amp)
assert D1 > D0
# We need to recalculate the invariant accounting for fees
# to calculate fair user's share
D2: uint256 = D1
if token_supply > 0:
# Only account for fees if we are not the first to deposit
for i in range(N_COINS):
ideal_balance: uint256 = D1 * old_balances[i] / D0
difference: uint256 = 0
if ideal_balance > new_balances[i]:
difference = ideal_balance - new_balances[i]
else:
difference = new_balances[i] - ideal_balance
fees[i] = _fee * difference / FEE_DENOMINATOR
self.balances[i] = new_balances[i] - (fees[i] * _admin_fee / FEE_DENOMINATOR)
new_balances[i] -= fees[i]
D2 = self.get_D_mem(rates, new_balances, amp)
else:
self.balances = new_balances
# Calculate, how much pool tokens to mint
mint_amount: uint256 = 0
if token_supply == 0:
mint_amount = D1 # Take the dust if there was any
else:
mint_amount = token_supply * (D2 - D0) / D0
assert mint_amount >= min_mint_amount, "Slippage screwed you"
# Take coins from the sender
for i in range(N_COINS):
if amounts[i] > 0:
assert_modifiable(
cERC20(self.coins[i]).transferFrom(msg.sender, self, amounts[i]))
# Mint pool tokens
self.token.mint(msg.sender, mint_amount)
log.AddLiquidity(msg.sender, amounts, fees, D1, token_supply + mint_amount)
@private
@constant
def get_y(i: int128, j: int128, x: uint256, _xp: uint256[N_COINS]) -> uint256:
# x in the input is converted to the same price/precision
assert (i != j) and (i >= 0) and (j >= 0) and (i < N_COINS) and (j < N_COINS)
amp: uint256 = self._A()
D: uint256 = self.get_D(_xp, amp)
c: uint256 = D
S_: uint256 = 0
Ann: uint256 = amp * N_COINS
_x: uint256 = 0
for _i in range(N_COINS):
if _i == i:
_x = x
elif _i != j:
_x = _xp[_i]
else:
continue
S_ += _x
c = c * D / (_x * N_COINS)
c = c * D / (Ann * N_COINS)
b: uint256 = S_ + D / Ann # - D
y_prev: uint256 = 0
y: uint256 = D
for _i in range(255):
y_prev = y
y = (y*y + c) / (2 * y + b - D)
# Equality with the precision of 1
if y > y_prev:
if y - y_prev <= 1:
break
else:
if y_prev - y <= 1:
break
return y
@public
@constant
def get_dy(i: int128, j: int128, dx: uint256) -> uint256:
# dx and dy in c-units
rates: uint256[N_COINS] = self._rates()
xp: uint256[N_COINS] = self._xp(rates)
x: uint256 = xp[i] + (dx * rates[i] / PRECISION)
y: uint256 = self.get_y(i, j, x, xp)
dy: uint256 = (xp[j] - y - 1) * PRECISION / rates[j]
_fee: uint256 = self.fee * dy / FEE_DENOMINATOR
return dy - _fee
@public
@constant
def get_dy_underlying(i: int128, j: int128, dx: uint256) -> uint256:
# dx and dy in underlying units
rates: uint256[N_COINS] = self._rates()
xp: uint256[N_COINS] = self._xp(rates)
precisions: uint256[N_COINS] = PRECISION_MUL
x: uint256 = xp[i] + dx * precisions[i]
y: uint256 = self.get_y(i, j, x, xp)
dy: uint256 = (xp[j] - y - 1) / precisions[j]
_fee: uint256 = self.fee * dy / FEE_DENOMINATOR
return dy - _fee
@private
def _exchange(i: int128, j: int128, dx: uint256, rates: uint256[N_COINS]) -> uint256:
assert not self.is_killed
# dx and dy are in c-tokens
old_balances: uint256[N_COINS] = self.balances
xp: uint256[N_COINS] = self._xp_mem(rates, old_balances)
x: uint256 = xp[i] + dx * rates[i] / PRECISION
y: uint256 = self.get_y(i, j, x, xp)
dy: uint256 = xp[j] - y - 1 # -1 just in case there were some rounding errors
dy_fee: uint256 = dy * self.fee / FEE_DENOMINATOR
dy_admin_fee: uint256 = dy_fee * self.admin_fee / FEE_DENOMINATOR
# Convert all to real units
dy = (dy - dy_fee) * PRECISION / rates[j]
dy_admin_fee = dy_admin_fee * PRECISION / rates[j]
# Change balances exactly in same way as we change actual ERC20 coin amounts
self.balances[i] = old_balances[i] + dx
# When rounding errors happen, we undercharge admin fee in favor of LP
self.balances[j] = old_balances[j] - dy - dy_admin_fee
return dy
@public
@nonreentrant('lock')
def exchange(i: int128, j: int128, dx: uint256, min_dy: uint256):
rates: uint256[N_COINS] = self._rates()
dy: uint256 = self._exchange(i, j, dx, rates)
assert dy >= min_dy, "Exchange resulted in fewer coins than expected"
use_lending: bool[N_COINS] = USE_LENDING
assert_modifiable(cERC20(self.coins[i]).transferFrom(msg.sender, self, dx))
assert_modifiable(cERC20(self.coins[j]).transfer(msg.sender, dy))
log.TokenExchange(msg.sender, i, dx, j, dy)
@public
@nonreentrant('lock')
def remove_liquidity(_amount: uint256, min_amounts: uint256[N_COINS]):
total_supply: uint256 = self.token.totalSupply()
amounts: uint256[N_COINS] = ZEROS
fees: uint256[N_COINS] = ZEROS # Fees are unused but we've got them historically in event
use_lending: bool[N_COINS] = USE_LENDING
for i in range(N_COINS):
value: uint256 = self.balances[i] * _amount / total_supply
assert value >= min_amounts[i], "Withdrawal resulted in fewer coins than expected"
self.balances[i] -= value
amounts[i] = value
assert_modifiable(cERC20(self.coins[i]).transfer(msg.sender, value))
self.token.burnFrom(msg.sender, _amount) # Will raise if not enough
log.RemoveLiquidity(msg.sender, amounts, fees, total_supply - _amount)
@public
@nonreentrant('lock')
def remove_liquidity_imbalance(amounts: uint256[N_COINS], max_burn_amount: uint256):
assert not self.is_killed
use_lending: bool[N_COINS] = USE_LENDING
token_supply: uint256 = self.token.totalSupply()
assert token_supply > 0
_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
_admin_fee: uint256 = self.admin_fee
rates: uint256[N_COINS] = self._rates()
amp: uint256 = self._A()
old_balances: uint256[N_COINS] = self.balances
new_balances: uint256[N_COINS] = old_balances
D0: uint256 = self.get_D_mem(rates, old_balances, amp)
for i in range(N_COINS):
new_balances[i] -= amounts[i]
D1: uint256 = self.get_D_mem(rates, new_balances, amp)
fees: uint256[N_COINS] = ZEROS
for i in range(N_COINS):
ideal_balance: uint256 = D1 * old_balances[i] / D0
difference: uint256 = 0
if ideal_balance > new_balances[i]:
difference = ideal_balance - new_balances[i]
else:
difference = new_balances[i] - ideal_balance
fees[i] = _fee * difference / FEE_DENOMINATOR
self.balances[i] = new_balances[i] - (fees[i] * _admin_fee / FEE_DENOMINATOR)
new_balances[i] -= fees[i]
D2: uint256 = self.get_D_mem(rates, new_balances, amp)
token_amount: uint256 = (D0 - D2) * token_supply / D0 + 1
assert token_amount <= max_burn_amount, "Slippage screwed you"
for i in range(N_COINS):
if amounts[i] > 0:
assert_modifiable(cERC20(self.coins[i]).transfer(msg.sender, amounts[i]))
self.token.burnFrom(msg.sender, token_amount) # Will raise if not enough
log.RemoveLiquidityImbalance(msg.sender, amounts, fees, D1, token_supply - token_amount)
@private
@constant
def get_y_D(A: uint256, i: int128, xp: uint256[N_COINS], D: uint256) -> uint256:
"""
Calculate x[i] if one reduces D from being calculated for xp to D
Done by solving quadratic equation iteratively.
x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
x_1**2 + b*x_1 = c
x_1 = (x_1**2 + c) / (2*x_1 + b)
"""
# x in the input is converted to the same price/precision
assert (i >= 0) and (i < N_COINS)
c: uint256 = D
S_: uint256 = 0
Ann: uint256 = A * N_COINS
_x: uint256 = 0
for _i in range(N_COINS):
if _i != i:
_x = xp[_i]
else:
continue
S_ += _x
c = c * D / (_x * N_COINS)
c = c * D / (Ann * N_COINS)
b: uint256 = S_ + D / Ann
y_prev: uint256 = 0
y: uint256 = D
for _i in range(255):
y_prev = y
y = (y*y + c) / (2 * y + b - D)
# Equality with the precision of 1
if y > y_prev:
if y - y_prev <= 1:
break
else:
if y_prev - y <= 1:
break
return y
@private
@constant
def _calc_withdraw_one_coin(_token_amount: uint256, i: int128, rates: uint256[N_COINS]) -> (uint256, uint256):
# First, need to calculate
# * Get current D
# * Solve Eqn against y_i for D - _token_amount
amp: uint256 = self._A()
_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
precisions: uint256[N_COINS] = PRECISION_MUL
total_supply: uint256 = self.token.totalSupply()
xp: uint256[N_COINS] = self._xp(rates)
D0: uint256 = self.get_D(xp, amp)
D1: uint256 = D0 - _token_amount * D0 / total_supply
xp_reduced: uint256[N_COINS] = xp
new_y: uint256 = self.get_y_D(amp, i, xp, D1)
dy_0: uint256 = (xp[i] - new_y) / precisions[i] # w/o fees
for j in range(N_COINS):
dx_expected: uint256 = 0
if j == i:
dx_expected = xp[j] * D1 / D0 - new_y
else:
dx_expected = xp[j] - xp[j] * D1 / D0
xp_reduced[j] -= _fee * dx_expected / FEE_DENOMINATOR
dy: uint256 = xp_reduced[i] - self.get_y_D(amp, i, xp_reduced, D1)
dy = (dy - 1) / precisions[i] # Withdraw less to account for rounding errors
return dy, dy_0 - dy
@public
@constant
def calc_withdraw_one_coin(_token_amount: uint256, i: int128) -> uint256:
rates: uint256[N_COINS] = self._rates()
return self._calc_withdraw_one_coin(_token_amount, i, rates)[0]
@public
@nonreentrant('lock')
def remove_liquidity_one_coin(_token_amount: uint256, i: int128, min_amount: uint256):
"""
Remove _amount of liquidity all in a form of coin i
"""
dy: uint256 = 0
dy_fee: uint256 = 0
rates: uint256[N_COINS] = self._rates()
dy, dy_fee = self._calc_withdraw_one_coin(_token_amount, i, rates)
assert dy >= min_amount, "Not enough coins removed"
self.balances[i] -= (dy + dy_fee * self.admin_fee / FEE_DENOMINATOR)
self.token.burnFrom(msg.sender, _token_amount)
assert_modifiable(ERC20(self.coins[i]).transfer(msg.sender, dy))
log.RemoveLiquidityOne(msg.sender, _token_amount, dy)
### Admin functions ###
@public
def ramp_A(_future_A: uint256, _future_time: timestamp):
assert msg.sender == self.owner
assert block.timestamp >= self.initial_A_time + min_ramp_time
assert _future_time >= block.timestamp + min_ramp_time
_initial_A: uint256 = self._A()
assert (_future_A > 0) and (_future_A < max_A)
assert ((_future_A >= _initial_A) and (_future_A <= _initial_A * max_A_change)) or\
((_future_A < _initial_A) and (_future_A * max_A_change >= _initial_A))
self.initial_A = _initial_A
self.future_A = _future_A
self.initial_A_time = block.timestamp
self.future_A_time = _future_time
log.RampA(_initial_A, _future_A, block.timestamp, _future_time)
@public
def stop_ramp_A():
assert msg.sender == self.owner
current_A: uint256 = self._A()
self.initial_A = current_A
self.future_A = current_A
self.initial_A_time = block.timestamp
self.future_A_time = block.timestamp
# now (block.timestamp < t1) is always False, so we return saved A
log.StopRampA(current_A, block.timestamp)
@public
def commit_new_fee(new_fee: uint256, new_admin_fee: uint256):
assert msg.sender == self.owner
assert self.admin_actions_deadline == 0
assert new_admin_fee <= max_admin_fee
assert new_fee <= max_fee
_deadline: timestamp = block.timestamp + admin_actions_delay
self.admin_actions_deadline = _deadline
self.future_fee = new_fee
self.future_admin_fee = new_admin_fee
log.CommitNewFee(_deadline, new_fee, new_admin_fee)
@public
def apply_new_fee():
assert msg.sender == self.owner
assert self.admin_actions_deadline <= block.timestamp\
and self.admin_actions_deadline > 0
self.admin_actions_deadline = 0
_fee: uint256 = self.future_fee
_admin_fee: uint256 = self.future_admin_fee
self.fee = _fee
self.admin_fee = _admin_fee
log.NewFee(_fee, _admin_fee)
@public
def revert_new_parameters():
assert msg.sender == self.owner
self.admin_actions_deadline = 0
@public
def commit_transfer_ownership(_owner: address):
assert msg.sender == self.owner
assert self.transfer_ownership_deadline == 0
_deadline: timestamp = block.timestamp + admin_actions_delay
self.transfer_ownership_deadline = _deadline
self.future_owner = _owner
log.CommitNewAdmin(_deadline, _owner)
@public
def apply_transfer_ownership():
assert msg.sender == self.owner
assert block.timestamp >= self.transfer_ownership_deadline\
and self.transfer_ownership_deadline > 0
self.transfer_ownership_deadline = 0
_owner: address = self.future_owner
self.owner = _owner
log.NewAdmin(_owner)
@public
def revert_transfer_ownership():
assert msg.sender == self.owner
self.transfer_ownership_deadline = 0
@public
def withdraw_admin_fees():
assert msg.sender == self.owner
for i in range(N_COINS):
c: address = self.coins[i]
value: uint256 = cERC20(c).balanceOf(self) - self.balances[i]
if value > 0:
assert_modifiable(cERC20(c).transfer(msg.sender, value))
@public
def kill_me():
assert msg.sender == self.owner
assert self.kill_deadline > block.timestamp
self.is_killed = True
@public
def unkill_me():
assert msg.sender == self.owner
self.is_killed = False