-
Notifications
You must be signed in to change notification settings - Fork 34
/
actor.py
157 lines (138 loc) · 5.73 KB
/
actor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import torch.nn as nn
import torch.nn.functional as F
from config import Config, load_pkl, pkl_parser
from env import Env_tsp
class Greedy(nn.Module):
def __init__(self):
super().__init__()
def forward(self, log_p):
return torch.argmax(log_p, dim = 1).long()
class Categorical(nn.Module):
def __init__(self):
super().__init__()
def forward(self, log_p):
return torch.multinomial(log_p.exp(), 1).long().squeeze(1)
# https://github.com/higgsfield/np-hard-deep-reinforcement-learning/blob/master/Neural%20Combinatorial%20Optimization.ipynb
class PtrNet1(nn.Module):
def __init__(self, cfg):
super().__init__()
self.Embedding = nn.Linear(2, cfg.embed, bias = False)
self.Encoder = nn.LSTM(input_size = cfg.embed, hidden_size = cfg.hidden, batch_first = True)
self.Decoder = nn.LSTM(input_size = cfg.embed, hidden_size = cfg.hidden, batch_first = True)
if torch.cuda.is_available():
self.Vec = nn.Parameter(torch.cuda.FloatTensor(cfg.embed))
self.Vec2 = nn.Parameter(torch.cuda.FloatTensor(cfg.embed))
else:
self.Vec = nn.Parameter(torch.FloatTensor(cfg.embed))
self.Vec2 = nn.Parameter(torch.FloatTensor(cfg.embed))
self.W_q = nn.Linear(cfg.hidden, cfg.hidden, bias = True)
self.W_ref = nn.Conv1d(cfg.hidden, cfg.hidden, 1, 1)
self.W_q2 = nn.Linear(cfg.hidden, cfg.hidden, bias = True)
self.W_ref2 = nn.Conv1d(cfg.hidden, cfg.hidden, 1, 1)
self.dec_input = nn.Parameter(torch.FloatTensor(cfg.embed))
self._initialize_weights(cfg.init_min, cfg.init_max)
self.clip_logits = cfg.clip_logits
self.softmax_T = cfg.softmax_T
self.n_glimpse = cfg.n_glimpse
self.city_selecter = {'greedy': Greedy(), 'sampling': Categorical()}.get(cfg.decode_type, None)
def _initialize_weights(self, init_min = -0.08, init_max = 0.08):
for param in self.parameters():
nn.init.uniform_(param.data, init_min, init_max)
def forward(self, x, device):
''' x: (batch, city_t, 2)
enc_h: (batch, city_t, embed)
dec_input: (batch, 1, embed)
h: (1, batch, embed)
return: pi: (batch, city_t), ll: (batch)
'''
x = x.to(device)
batch, city_t, _ = x.size()
embed_enc_inputs = self.Embedding(x)
embed = embed_enc_inputs.size(2)
mask = torch.zeros((batch, city_t), device = device)
enc_h, (h, c) = self.Encoder(embed_enc_inputs, None)
ref = enc_h
pi_list, log_ps = [], []
dec_input = self.dec_input.unsqueeze(0).repeat(batch,1).unsqueeze(1).to(device)
for i in range(city_t):
_, (h, c) = self.Decoder(dec_input, (h, c))
query = h.squeeze(0)
for i in range(self.n_glimpse):
query = self.glimpse(query, ref, mask)
logits = self.pointer(query, ref, mask)
log_p = torch.log_softmax(logits, dim = -1)
next_node = self.city_selecter(log_p)
dec_input = torch.gather(input = embed_enc_inputs, dim = 1, index = next_node.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, embed))
pi_list.append(next_node)
log_ps.append(log_p)
mask += torch.zeros((batch,city_t), device = device).scatter_(dim = 1, index = next_node.unsqueeze(1), value = 1)
pi = torch.stack(pi_list, dim = 1)
ll = self.get_log_likelihood(torch.stack(log_ps, 1), pi)
return pi, ll
def glimpse(self, query, ref, mask, inf = 1e8):
""" -ref about torch.bmm, torch.matmul and so on
https://qiita.com/tand826/items/9e1b6a4de785097fe6a5
https://qiita.com/shinochin/items/aa420e50d847453cc296
Args:
query: the hidden state of the decoder at the current
(batch, 128)
ref: the set of hidden states from the encoder.
(batch, city_t, 128)
mask: model only points at cities that have yet to be visited, so prevent them from being reselected
(batch, city_t)
"""
u1 = self.W_q(query).unsqueeze(-1).repeat(1,1,ref.size(1))# u1: (batch, 128, city_t)
u2 = self.W_ref(ref.permute(0,2,1))# u2: (batch, 128, city_t)
V = self.Vec.unsqueeze(0).unsqueeze(0).repeat(ref.size(0), 1, 1)
u = torch.bmm(V, torch.tanh(u1 + u2)).squeeze(1)
# V: (batch, 1, 128) * u1+u2: (batch, 128, city_t) => u: (batch, 1, city_t) => (batch, city_t)
u = u - inf * mask
a = F.softmax(u / self.softmax_T, dim = 1)
d = torch.bmm(u2, a.unsqueeze(2)).squeeze(2)
# u2: (batch, 128, city_t) * a: (batch, city_t, 1) => d: (batch, 128)
return d
def pointer(self, query, ref, mask, inf = 1e8):
""" Args:
query: the hidden state of the decoder at the current
(batch, 128)
ref: the set of hidden states from the encoder.
(batch, city_t, 128)
mask: model only points at cities that have yet to be visited, so prevent them from being reselected
(batch, city_t)
"""
u1 = self.W_q2(query).unsqueeze(-1).repeat(1,1,ref.size(1))# u1: (batch, 128, city_t)
u2 = self.W_ref2(ref.permute(0,2,1))# u2: (batch, 128, city_t)
V = self.Vec2.unsqueeze(0).unsqueeze(0).repeat(ref.size(0), 1, 1)
u = torch.bmm(V, self.clip_logits * torch.tanh(u1 + u2)).squeeze(1)
# V: (batch, 1, 128) * u1+u2: (batch, 128, city_t) => u: (batch, 1, city_t) => (batch, city_t)
u = u - inf * mask
return u
def get_log_likelihood(self, _log_p, pi):
""" args:
_log_p: (batch, city_t, city_t)
pi: (batch, city_t), predicted tour
return: (batch)
"""
log_p = torch.gather(input = _log_p, dim = 2, index = pi[:,:,None])
return torch.sum(log_p.squeeze(-1), 1)
if __name__ == '__main__':
cfg = load_pkl(pkl_parser().path)
model = PtrNet1(cfg)
inputs = torch.randn(3,20,2)
pi, ll = model(inputs, device = 'cpu')
print('pi:', pi.size(), pi)
print('log_likelihood:', ll.size(), ll)
cnt = 0
for i, k in model.state_dict().items():
print(i, k.size(), torch.numel(k))
cnt += torch.numel(k)
print('total parameters:', cnt)
# ll.mean().backward()
# print(model.W_q.weight.grad)
cfg.batch = 3
env = Env_tsp(cfg)
cost = env.stack_l(inputs, pi)
print('cost:', cost.size(), cost)
cost = env.stack_l_fast(inputs, pi)
print('cost:', cost.size(), cost)