-
Notifications
You must be signed in to change notification settings - Fork 34
/
train.py
136 lines (121 loc) · 4.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from time import time
from datetime import datetime
from actor import PtrNet1
from critic import PtrNet2
from env import Env_tsp
from config import Config, load_pkl, pkl_parser
from data import Generator
# torch.autograd.set_detect_anomaly(True)
torch.backends.cudnn.benchmark = True
def train_model(cfg, env, log_path = None):
date = datetime.now().strftime('%m%d_%H_%M')
if cfg.islogger:
param_path = cfg.log_dir + '%s_%s_param.csv'%(date, cfg.task)# cfg.log_dir = ./Csv/
print(f'generate {param_path}')
with open(param_path, 'w') as f:
f.write(''.join('%s,%s\n'%item for item in vars(cfg).items()))
act_model = PtrNet1(cfg)
if cfg.optim == 'Adam':
act_optim = optim.Adam(act_model.parameters(), lr = cfg.lr)
if cfg.is_lr_decay:
act_lr_scheduler = optim.lr_scheduler.StepLR(act_optim,
step_size=cfg.lr_decay_step, gamma=cfg.lr_decay)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
act_model = act_model.to(device)
if cfg.mode == 'train':
cri_model = PtrNet2(cfg)
if cfg.optim == 'Adam':
cri_optim = optim.Adam(cri_model.parameters(), lr = cfg.lr)
if cfg.is_lr_decay:
cri_lr_scheduler = optim.lr_scheduler.StepLR(cri_optim,
step_size = cfg.lr_decay_step, gamma = cfg.lr_decay)
cri_model = cri_model.to(device)
ave_cri_loss = 0.
mse_loss = nn.MSELoss()
dataset = Generator(cfg, env)
dataloader = DataLoader(dataset, batch_size = cfg.batch, shuffle = True)
ave_act_loss, ave_L = 0., 0.
min_L, cnt = 1e7, 0
t1 = time()
# for i, inputs in tqdm(enumerate(dataloader)):
for i, inputs in enumerate(dataloader):
inputs = inputs.to(device)
pred_tour, ll = act_model(inputs, device)
real_l = env.stack_l_fast(inputs, pred_tour)
if cfg.mode == 'train':
pred_l = cri_model(inputs, device)
cri_loss = mse_loss(pred_l, real_l.detach())
cri_optim.zero_grad()
cri_loss.backward()
nn.utils.clip_grad_norm_(cri_model.parameters(), max_norm = 1., norm_type = 2)
cri_optim.step()
if cfg.is_lr_decay:
cri_lr_scheduler.step()
elif cfg.mode == 'train_emv':
if i == 0:
L = real_l.detach().mean()
else:
L = (L * 0.9) + (0.1 * real_l.detach().mean())
pred_l = L
adv = real_l.detach() - pred_l.detach()
act_loss = (adv * ll).mean()
act_optim.zero_grad()
act_loss.backward()
nn.utils.clip_grad_norm_(act_model.parameters(), max_norm = 1., norm_type = 2)
act_optim.step()
if cfg.is_lr_decay:
act_lr_scheduler.step()
ave_act_loss += act_loss.item()
if cfg.mode == 'train':
ave_cri_loss += cri_loss.item()
ave_L += real_l.mean().item()
if i % cfg.log_step == 0:
t2 = time()
if cfg.mode == 'train':
print('step:%d/%d, actic loss:%1.3f, critic loss:%1.3f, L:%1.3f, %dmin%dsec'%(i, cfg.steps, ave_act_loss/(i+1), ave_cri_loss/(i+1), ave_L/(i+1), (t2-t1)//60, (t2-t1)%60))
if cfg.islogger:
if log_path is None:
log_path = cfg.log_dir + '%s_%s_train.csv'%(date, cfg.task)#cfg.log_dir = ./Csv/
with open(log_path, 'w') as f:
f.write('step,actic loss,critic loss,average distance,time\n')
else:
with open(log_path, 'a') as f:
f.write('%d,%1.4f,%1.4f,%1.4f,%dmin%dsec\n'%(i, ave_act_loss/(i+1), ave_cri_loss/(i+1), ave_L/(i+1), (t2-t1)//60, (t2-t1)%60))
elif cfg.mode == 'train_emv':
print('step:%d/%d, actic loss:%1.3f, L:%1.3f, %dmin%dsec'%(i, cfg.steps, ave_act_loss/(i+1), ave_L/(i+1), (t2-t1)//60, (t2-t1)%60))
if cfg.islogger:
if log_path is None:
log_path = cfg.log_dir + '%s_%s_train_emv.csv'%(date, cfg.task)#cfg.log_dir = ./Csv/
with open(log_path, 'w') as f:
f.write('step,actic loss,average distance,time\n')
else:
with open(log_path, 'a') as f:
f.write('%d,%1.4f,%1.4f,%dmin%dsec\n'%(i, ave_act_loss/(i+1), ave_L/(i+1), (t2-t1)//60, (t2-t1)%60))
if(ave_L/(i+1) < min_L):
min_L = ave_L/(i+1)
else:
cnt += 1
print(f'cnt: {cnt}/20')
if(cnt >= 20):
print('early stop, average cost cant decrease anymore')
if log_path is not None:
with open(log_path, 'a') as f:
f.write('\nearly stop')
break
t1 = time()
if cfg.issaver:
torch.save(act_model.state_dict(), cfg.model_dir + '%s_%s_step%d_act.pt'%(cfg.task, date, i))#'cfg.model_dir = ./Pt/'
print('save model...')
if __name__ == '__main__':
cfg = load_pkl(pkl_parser().path)
env = Env_tsp(cfg)
if cfg.mode in ['train', 'train_emv']:
# train_emv --> exponential moving average, not use critic model
train_model(cfg, env)
else:
raise NotImplementedError('train and train_emv only, specify train pkl file')