From 2ef05200031109514d8171cf5fda3dd5e0fa537f Mon Sep 17 00:00:00 2001 From: stellarator-x Date: Sat, 25 Jul 2020 23:21:45 +0530 Subject: [PATCH 1/4] avoidance modules --- .gitmodules | 3 +++ ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance- | 1 + 2 files changed, 4 insertions(+) create mode 160000 ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance- diff --git a/.gitmodules b/.gitmodules index 0663916..aa930cf 100644 --- a/.gitmodules +++ b/.gitmodules @@ -10,3 +10,6 @@ [submodule "openvslam"] path = openvslam url = https://github.com/isro01/openvslam +[submodule "ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance-"] + path = ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance- + url = https://github.com/adit-khokar/petcat-obstacle-avoidance- diff --git a/ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance- b/ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance- new file mode 160000 index 0000000..6404eb7 --- /dev/null +++ b/ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance- @@ -0,0 +1 @@ +Subproject commit 6404eb768a1b1b1293514cf4549bd11fdb7f5e33 From a7125a45b32935dd32e60532fe8eca51a04d2b22 Mon Sep 17 00:00:00 2001 From: stellarator-x Date: Sat, 25 Jul 2020 23:24:59 +0530 Subject: [PATCH 2/4] avoidance module --- .gitmodules | 3 + .../CMakeLists.txt | 218 ++ .../GaussianPF_PathPlanning.cpp | 81 + Avoidance_Gaussian_Potential_Field/ODG-PF.h | 176 ++ Avoidance_Gaussian_Potential_Field/README.md | 251 ++ .../matplotlibcpp.h | 2212 +++++++++++++++++ .../petcat-obstacle-avoidance- | 1 + .../random_explorer.cpp | 56 + 8 files changed, 2998 insertions(+) create mode 100644 Avoidance_Gaussian_Potential_Field/CMakeLists.txt create mode 100644 Avoidance_Gaussian_Potential_Field/GaussianPF_PathPlanning.cpp create mode 100644 Avoidance_Gaussian_Potential_Field/ODG-PF.h create mode 100644 Avoidance_Gaussian_Potential_Field/README.md create mode 100644 Avoidance_Gaussian_Potential_Field/matplotlibcpp.h create mode 160000 Avoidance_Gaussian_Potential_Field/petcat-obstacle-avoidance- create mode 100644 Avoidance_Gaussian_Potential_Field/random_explorer.cpp diff --git a/.gitmodules b/.gitmodules index aa930cf..499d385 100644 --- a/.gitmodules +++ b/.gitmodules @@ -13,3 +13,6 @@ [submodule "ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance-"] path = ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance- url = https://github.com/adit-khokar/petcat-obstacle-avoidance- +[submodule "Avoidance_Gaussian_Potential_Field/petcat-obstacle-avoidance-"] + path = Avoidance_Gaussian_Potential_Field/petcat-obstacle-avoidance- + url = https://github.com/adit-khokar/petcat-obstacle-avoidance- diff --git a/Avoidance_Gaussian_Potential_Field/CMakeLists.txt b/Avoidance_Gaussian_Potential_Field/CMakeLists.txt new file mode 100644 index 0000000..c994428 --- /dev/null +++ b/Avoidance_Gaussian_Potential_Field/CMakeLists.txt @@ -0,0 +1,218 @@ +cmake_minimum_required(VERSION 2.8.3) +project(husky_custom_navigation) +add_compile_options(-std=c++11) +find_package(PythonLibs 2.7) + + + +## Compile as C++11, supported in ROS Kinetic and newer + +## Find catkin macros and libraries +## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz) +## is used, also find other catkin packages +find_package(catkin REQUIRED COMPONENTS + roscpp + std_msgs + sensor_msgs + cv_bridge + image_transport + OpenCV REQUIRED +) + +## System dependencies are found with CMake's conventions +# find_package(Boost REQUIRED COMPONENTS system) + + +## Uncomment this if the package has a setup.py. This macro ensures +## modules and global scripts declared therein get installed +## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html +# catkin_python_setup() + +################################################ +## Declare ROS messages, services and actions ## +################################################ + +## To declare and build messages, services or actions from within this +## package, follow these steps: +## * Let MSG_DEP_SET be the set of packages whose message types you use in +## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...). +## * In the file package.xml: +## * add a build_depend tag for "message_generation" +## * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET +## * If MSG_DEP_SET isn't empty the following dependency has been pulled in +## but can be declared for certainty nonetheless: +## * add a exec_depend tag for "message_runtime" +## * In this file (CMakeLists.txt): +## * add "message_generation" and every package in MSG_DEP_SET to +## find_package(catkin REQUIRED COMPONENTS ...) +## * add "message_runtime" and every package in MSG_DEP_SET to +## catkin_package(CATKIN_DEPENDS ...) +## * uncomment the add_*_files sections below as needed +## and list every .msg/.srv/.action file to be processed +## * uncomment the generate_messages entry below +## * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...) + +## Generate messages in the 'msg' folder +# add_message_files( +# FILES +# Message1.msg +# Message2.msg +# ) + +## Generate services in the 'srv' folder +# add_service_files( +# FILES +# Service1.srv +# Service2.srv +# ) + +## Generate actions in the 'action' folder +# add_action_files( +# FILES +# Action1.action +# Action2.action +# ) + +## Generate added messages and services with any dependencies listed here +# generate_messages( +# DEPENDENCIES +# std_msgs +# ) + +################################################ +## Declare ROS dynamic reconfigure parameters ## +################################################ + +## To declare and build dynamic reconfigure parameters within this +## package, follow these steps: +## * In the file package.xml: +## * add a build_depend and a exec_depend tag for "dynamic_reconfigure" +## * In this file (CMakeLists.txt): +## * add "dynamic_reconfigure" to +## find_package(catkin REQUIRED COMPONENTS ...) +## * uncomment the "generate_dynamic_reconfigure_options" section below +## and list every .cfg file to be processed + +## Generate dynamic reconfigure parameters in the 'cfg' folder +# generate_dynamic_reconfigure_options( +# cfg/DynReconf1.cfg +# cfg/DynReconf2.cfg +# ) + +################################### +## catkin specific configuration ## +################################### +## The catkin_package macro generates cmake config files for your package +## Declare things to be passed to dependent projects +## INCLUDE_DIRS: uncomment this if your package contains header files +## LIBRARIES: libraries you create in this project that dependent projects also need +## CATKIN_DEPENDS: catkin_packages dependent projects also need +## DEPENDS: system dependencies of this project that dependent projects also need +catkin_package( +# INCLUDE_DIRS include +# LIBRARIES husky_custom_navigation +# CATKIN_DEPENDS roscpp std_msgs +# DEPENDS system_lib +) + +########### +## Build ## +########### + +## Specify additional locations of header files +## Your package locations should be listed before other locations +include_directories( +# include + ${catkin_INCLUDE_DIRS} +) + +## Declare a C++ library +# add_library(${PROJECT_NAME} +# src/${PROJECT_NAME}/husky_custom_navigation.cpp +# ) + +## Add cmake target dependencies of the library +## as an example, code may need to be generated before libraries +## either from message generation or dynamic reconfigure +# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS}) + +## Declare a C++ executable +## With catkin_make all packages are built within a single CMake context +## The recommended prefix ensures that target names across packages don't collide +# add_executable(${PROJECT_NAME}_node src/husky_custom_navigation_node.cpp) + +## Rename C++ executable without prefix +## The above recommended prefix causes long target names, the following renames the +## target back to the shorter version for ease of user use +## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node" +# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "") + +## Add cmake target dependencies of the executable +## same as for the library above +# add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS}) + +## Specify libraries to link a library or executable target against +# target_link_libraries(${PROJECT_NAME}_node +# ${catkin_LIBRARIES} +# ) + +############# +## Install ## +############# + +# all install targets should use catkin DESTINATION variables +# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html + +## Mark executable scripts (Python etc.) for installation +## in contrast to setup.py, you can choose the destination +# catkin_install_python(PROGRAMS +# scripts/my_python_script +# DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} +# ) + +## Mark executables for installation +## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html +# install(TARGETS ${PROJECT_NAME}_node +# RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION} +# ) + +## Mark libraries for installation +## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html +# install(TARGETS ${PROJECT_NAME} +# ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION} +# LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION} +# RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION} +# ) + +## Mark cpp header files for installation +# install(DIRECTORY include/${PROJECT_NAME}/ +# DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION} +# FILES_MATCHING PATTERN "*.h" +# PATTERN ".svn" EXCLUDE +# ) + +## Mark other files for installation (e.g. launch and bag files, etc.) +# install(FILES +# # myfile1 +# # myfile2 +# DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION} +# ) + +############# +## Testing ## +############# + +## Add gtest based cpp test target and link libraries +# catkin_add_gtest(${PROJECT_NAME}-test test/test_husky_custom_navigation.cpp) +# if(TARGET ${PROJECT_NAME}-test) +# target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME}) +# endif() + +## Add folders to be run by python nosetests +# catkin_add_nosetests(test) + + +add_executable(random_explorer random_explorer.cpp) + +target_include_directories(random_explorer PRIVATE ${Python_INCLUDE_DIRS}) +target_link_libraries(random_explorer ${catkin_LIBRARIES} ${PYTHON_LIBRARIES}) \ No newline at end of file diff --git a/Avoidance_Gaussian_Potential_Field/GaussianPF_PathPlanning.cpp b/Avoidance_Gaussian_Potential_Field/GaussianPF_PathPlanning.cpp new file mode 100644 index 0000000..feeee25 --- /dev/null +++ b/Avoidance_Gaussian_Potential_Field/GaussianPF_PathPlanning.cpp @@ -0,0 +1,81 @@ +# pragma once + +#include "ODG-PF.h" +#include +#include +#include +#include +#include +// #include "matplotlibcpp.h" +// namespace plt = matplotlibcpp; +using namespace std; + + + + +vector get_obstacles(vector polar_dat){ + vector obs; + int flag = 0; // represents whether an obs is being read + float theta1, theta2, angular_width, mean_angle, dist, d; + polar_dat[polar_dat.size()-1] = MAX_DIST; + for(int i=0;i=MAX_DIST)){ + flag = 0; + theta2 = i-1; + angular_width = theta2-theta1; + mean_angle = (theta2+theta1)/2; + d = accumulate(&polar_dat[theta1], &polar_dat[theta2], 0.0f) / angular_width; + assert(angular_width >= 0); + obs.push_back(obstacle(d, angular_width, mean_angle)); + theta1 = theta2; + } + } + + return obs; +} + +vector process_obs(vector &obs){ + vector obs_ = obs; + for (int i = 0; i potential){ + int header = std::distance(potential.begin(), std::min_element(potential.begin(), potential.end())); + return header; +} + +vector polar_data(360); // vector of size 360 : length of free path along each dir +vector potential(360); // Final potential at each angle + +float get_header_rad(vector polardat, float goal_angle, bool showPlot){ + float header; + + auto obstacles = get_obstacles(polardat); + // obstacles = process_obs(obstacles); + // For debugging + if(1){ + for(auto a:obstacles){ + cout << "Obstacle is " << a.get_dist()<< "m away at angle "< input[360]; + + +//sample output array for storing potential field values +vector field[360]; + +float index_to_angle(int i){ + return (PI*i)/180; +} + +float angle_to_index(float a){ + return (a*180)/PI; +} + +void draw_circle(float cx, float cy, float rad){ + vector x; + vector y; + for(int i =0;i<360;i++){ + float a = index_to_angle(i); + x.push_back(cx+rad*cos(a)); + y.push_back(cy+rad*sin(a)); + } + // plt::plot(x, y); +} + +class obstacle +{ +private: + float d; //average distance to each obstacle + float phi; //the angle occupied by it + // float sigma; //half of the angle occupied by the obstacle considering for size of bot + float theta; //center angle for obstacle + float A ; + +public: + obstacle(float d_in, float phi_in,float theta_in); //constructor + void increase_width(float w); // + void compute_field(vector& field); //compute and add field to the total field + float get_theta(){ return theta;} + float get_dist(){return d;} + float get_phi(){ return phi;} + bool inVic(); +}; + +obstacle::obstacle(float d_in, float phi_in,float theta_in) +{ + d = d_in; + phi = phi_in; + theta = theta_in; + A = (MAX_DIST-d)*exp(0.5); +} + +void obstacle::increase_width(float w){ + float phi_ = index_to_angle(phi); + phi_ = 2*atan((tan(phi_/2)+ (w/2) )/d ); + phi_ = angle_to_index(phi_); + this->phi = phi_; +} + +void obstacle::compute_field(vector &field) +{ + float theta = index_to_angle(this->theta); + float ph = index_to_angle(this->phi); + for(int i=0;i < field.size();i++){ + float angle = index_to_angle(i); + double temp = A*exp(-1*((theta-angle)*(theta-angle))/(2*ph*ph)); + field[i] += temp; + } +} + +bool obstacle::inVic(){ + return (d<=0.15); +} + +float get_goal_angle(float x, float y, float goal_x, float goal_y){ + float a = atan((goal_y-y)/(goal_x-x)); + if(goal_y-y<0 && goal_x-x>0){ + a = 2*PI + a; + } + else if(goal_y-y<0 && goal_x-x<0){ + a = PI + a; + } + else if(goal_y-y>0 && goal_x-x<0){ + a = PI+ a; + } + return a; +} + +void goal_field(vector &field, float goal_angle){ + for (int i = 0; i < field.size(); i++) + { + float angle = index_to_angle(i); + auto temp = (Gamma)*abs(angle - goal_angle); + field[i] += temp; + } + +} + +class rect{ + float x1, x2, x3, x4; + float y1, y2, y3, y4; + public: + rect(float x1_, float y1_, float x3_, float y3_){ + x1 = x1_; + x2 = x3_; + x3 = x3_; + x4 = x1_; + y1 = y1_; + y2 = y1_; + y3 = y3_; + y4 = y3_; + } + + bool on_line(float x, float y); + float get_min_dist(float x, float y, float theta); + void draw(); + +}; + +bool rect::on_line(float x, float y){ + float cx = (x1+x2)/2; + float cy = (y1+y4)/2; + float rad = abs(x1-x2)/2; + if((x-cx)*(x-cx)+ (y-cy)*(y-cy) <= rad*rad) + return true; + + return false; +} + +float rect::get_min_dist(float x, float y, float theta){ + float d = 0; + if(this->on_line(x, y)){ + float cx = (this->x1+this->x2)/2; + float cy = (this->y1+this->y4)/2; + float atoc = get_goal_angle(x, y,cx, cy); + return abs(theta-atoc); + } + for(d = 0; d < MAX_DIST; d+=0.001){ + float xi, yi; + xi = x + d*cos(theta); + yi = y + d*sin(theta); + + if(this->on_line(xi, yi)) + break; + + } + return d; +} + +void rect::draw(){ + draw_circle((x1+x2)/2, (y1+y3)/2, abs(x2-x1)/2); +} + +float mapx(float current, float goal, float max){ + return max*abs(current-goal); +} diff --git a/Avoidance_Gaussian_Potential_Field/README.md b/Avoidance_Gaussian_Potential_Field/README.md new file mode 100644 index 0000000..95eb06f --- /dev/null +++ b/Avoidance_Gaussian_Potential_Field/README.md @@ -0,0 +1,251 @@ +# Obstacle Avoidance with Gaussian Potential Field Method + +## Algorithm + +The main idea behind this method is to + +1. Receive distance data from the range sensor(s). +2. Consider only the objects that are within the threshold range. +3. Enlarge the obstacles with regard to the vehicle’s width. +4. Construct a Gaussian (repulsive) potential field from them. +5. Calculate the attractive field from the yaw angle information from an inertial measurement unit (IMU). +6. The total field is made of these two fields. Choose the angle with the minimum total field value. + +Work on the algorithm can be found [here](petcat-obstacle-avoidance-). + +The algorithm has been tested on a husky, the node for which can be found [here](random_explorer.cpp). + +## Modules + +### ODG-PF.h + +```cpp +#include "ODG-PF.h" +``` + +#### Global Constants + +```cpp +const float Gamma = 0.59 +const float LC = 1 +const float MAX_DIST = 3.5 +``` + +#### Functions + +``` cpp +float get_goal_angle(float x, float y, float goal_x, float goal_y) +void goal_field(vector &field, float goal_angle) +float index_to_angle(int i) +float angle_to_index(float a) +``` + +#### Description + +1. **get_goal_angle()** + +```cpp +float get_goal_angle( float x, + float y, + float goal_x, + float goal_y ) +``` + +Returns the goal angle in radians given the ego and goal positions + +*Parameters*: + +* **x** - Ego x coordinate +* **y** - Ego y coordinate +* **goal_x** - Goal’s x coordinate +* **goal_y** - Goal’s y coordinate + +2. **goal_field()** + +```cpp +void goal_field( vector &field, + float goal_angle ) +``` + +Adds the attractive goal field to the potential field + +*Parameters*: + +* **field** - The potential field +* **goal_angle** - Goal angle in radians + +3. **index_to_angle()** + +```cpp +float index_to_angle(int i) +``` + +Returns the angle in radians for index **i** + +4. **angle_to_index()** + +```cpp +float angle_to_index(float a) +``` + +Returns the index value for angle **a**(radians) + +#### Classes + +1. **obstacle** + +**Private Data Members** + +```cpp +float d +float phi +float theta +float A +``` + +**Public Member Functions** + +```cpp +obstacle(float d_in, float phi_in,float theta_in) +void increase_width(float w) +void compute_field(vector& field) +float get_theta() +float get_dist() +float get_phi() +``` + +**Detailed Description** + +1. **obstacle()** + +```cpp +obstacle( float d_in, + float phi_in, + float theta_in ) +``` + +Instantiates the obstacle object. + +*Parameters*: + +* **d_in** - Mean distance +* **phi_in** - Angular width +* **theta_in** - Mean angle of the obstacle + +2. **increase_width()** + +```cpp +void increase_width(float w) +``` + +Increases the width of all obstacles as per the bot’s width. + +*Parameters*: + +* **w** - Width of the bot + +3. **compute_field()** + +```cpp +void compute_field(vector& field) +``` + +Computes the Gaussian potential field due to this obstacle. + +*Parameters*: + +* **field** - Potential field to which this obstacles contribution is added + +4. **get_theta()** + +```cpp +float get_theta() +``` + +Returns the angular position of the obstacle. + +5. **get_dist()** + +```cpp +float get_dist() +``` + +Returns the distance of the obstacle from the bot. + +5. **get_phi()** + +```cpp +float get_phi() +``` + +Returns the angular width of the obstacle. + +### GaussianPF_PathPlanning.cpp + +```cpp +#include "GaussianPF_PathPlanning.cpp" +``` + +This module uses the OBD-GF header file for implementing the algorithm. + +#### Methods + +```cpp +vector get_obstacles(vector polar_dat) +vector process_obs(vector &obs) +int get_best_header(vector potential) +float get_header_rad(vector polardat, float goal_angle, bool showPlot) +``` + +#### Description + +1. **get_obstacles()** + +```cpp +vector get_obstacles(vector polar_dat) +``` + +Returns an array of obstacle instances for the given lidar scan data. + +*Parameters:* + +* **polar_dat** - Lidar scan data (array of distances) + +2. **process_obs()** + +```cpp +vector process_obs(vector &obs) +``` + +Augments the obstacle array by increasing the angular width of each obstacle as per the bot's width. + +*Parameters*: +* **obs** - Array of obstacles obtained from get_obstacles() + +3. **get_best_header()** + +```cpp +int get_best_header(vector potential) +``` + +Returns the angle with minimum potential given the potential field. + +*Parameters:* + +* **potential** - Potential field array : value of potential at the index angle + +4. **get_header_rad()** + +```cpp +get_header_rad( vector polardat, + float goal_angle, + bool showPlot) +``` + +Returns the angle of minimum potential in radians given the lidar scan data. + +*Parameters* : + +* **polardat** - Lidar scan data +* **goal_angle** - The desired heading angle towards the goal +* **show_plot** - Determines whether potential field plots are shown diff --git a/Avoidance_Gaussian_Potential_Field/matplotlibcpp.h b/Avoidance_Gaussian_Potential_Field/matplotlibcpp.h new file mode 100644 index 0000000..0112344 --- /dev/null +++ b/Avoidance_Gaussian_Potential_Field/matplotlibcpp.h @@ -0,0 +1,2212 @@ +#pragma once + +#include +#include +#include +#include +#include +#include +#include +#include // requires c++11 support +#include +#include + +#include + +#ifndef WITHOUT_NUMPY +# define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION +# include + +# ifdef WITH_OPENCV +# include +# endif // WITH_OPENCV + +/* + * A bunch of constants were removed in OpenCV 4 in favour of enum classes, so + * define the ones we need here. + */ +# if CV_MAJOR_VERSION > 3 +# define CV_BGR2RGB cv::COLOR_BGR2RGB +# define CV_BGRA2RGBA cv::COLOR_BGRA2RGBA +# endif +#endif // WITHOUT_NUMPY + +#if PY_MAJOR_VERSION >= 3 +# define PyString_FromString PyUnicode_FromString +# define PyInt_FromLong PyLong_FromLong +# define PyString_FromString PyUnicode_FromString +#endif + + +namespace matplotlibcpp { +namespace detail { + +static std::string s_backend; + +struct _interpreter { + PyObject *s_python_function_show; + PyObject *s_python_function_close; + PyObject *s_python_function_draw; + PyObject *s_python_function_pause; + PyObject *s_python_function_save; + PyObject *s_python_function_figure; + PyObject *s_python_function_fignum_exists; + PyObject *s_python_function_plot; + PyObject *s_python_function_quiver; + PyObject *s_python_function_semilogx; + PyObject *s_python_function_semilogy; + PyObject *s_python_function_loglog; + PyObject *s_python_function_fill; + PyObject *s_python_function_fill_between; + PyObject *s_python_function_hist; + PyObject *s_python_function_imshow; + PyObject *s_python_function_scatter; + PyObject *s_python_function_boxplot; + PyObject *s_python_function_subplot; + PyObject *s_python_function_subplot2grid; + PyObject *s_python_function_legend; + PyObject *s_python_function_xlim; + PyObject *s_python_function_ion; + PyObject *s_python_function_ginput; + PyObject *s_python_function_ylim; + PyObject *s_python_function_title; + PyObject *s_python_function_axis; + PyObject *s_python_function_axvline; + PyObject *s_python_function_xlabel; + PyObject *s_python_function_ylabel; + PyObject *s_python_function_gca; + PyObject *s_python_function_xticks; + PyObject *s_python_function_yticks; + PyObject *s_python_function_tick_params; + PyObject *s_python_function_grid; + PyObject *s_python_function_clf; + PyObject *s_python_function_errorbar; + PyObject *s_python_function_annotate; + PyObject *s_python_function_tight_layout; + PyObject *s_python_colormap; + PyObject *s_python_empty_tuple; + PyObject *s_python_function_stem; + PyObject *s_python_function_xkcd; + PyObject *s_python_function_text; + PyObject *s_python_function_suptitle; + PyObject *s_python_function_bar; + PyObject *s_python_function_colorbar; + PyObject *s_python_function_subplots_adjust; + + + /* For now, _interpreter is implemented as a singleton since its currently not possible to have + multiple independent embedded python interpreters without patching the python source code + or starting a separate process for each. + http://bytes.com/topic/python/answers/793370-multiple-independent-python-interpreters-c-c-program + */ + + static _interpreter& get() { + static _interpreter ctx; + return ctx; + } + + PyObject* safe_import(PyObject* module, std::string fname) { + PyObject* fn = PyObject_GetAttrString(module, fname.c_str()); + + if (!fn) + throw std::runtime_error(std::string("Couldn't find required function: ") + fname); + + if (!PyFunction_Check(fn)) + throw std::runtime_error(fname + std::string(" is unexpectedly not a PyFunction.")); + + return fn; + } + +private: + +#ifndef WITHOUT_NUMPY +# if PY_MAJOR_VERSION >= 3 + + void *import_numpy() { + import_array(); // initialize C-API + return NULL; + } + +# else + + void import_numpy() { + import_array(); // initialize C-API + } + +# endif +#endif + + _interpreter() { + + // optional but recommended +#if PY_MAJOR_VERSION >= 3 + wchar_t name[] = L"plotting"; +#else + char name[] = "plotting"; +#endif + Py_SetProgramName(name); + Py_Initialize(); + +#ifndef WITHOUT_NUMPY + import_numpy(); // initialize numpy C-API +#endif + + PyObject* matplotlibname = PyString_FromString("matplotlib"); + PyObject* pyplotname = PyString_FromString("matplotlib.pyplot"); + PyObject* cmname = PyString_FromString("matplotlib.cm"); + PyObject* pylabname = PyString_FromString("pylab"); + if (!pyplotname || !pylabname || !matplotlibname || !cmname) { + throw std::runtime_error("couldnt create string"); + } + + PyObject* matplotlib = PyImport_Import(matplotlibname); + Py_DECREF(matplotlibname); + if (!matplotlib) { + PyErr_Print(); + throw std::runtime_error("Error loading module matplotlib!"); + } + + // matplotlib.use() must be called *before* pylab, matplotlib.pyplot, + // or matplotlib.backends is imported for the first time + if (!s_backend.empty()) { + PyObject_CallMethod(matplotlib, const_cast("use"), const_cast("s"), s_backend.c_str()); + } + + PyObject* pymod = PyImport_Import(pyplotname); + Py_DECREF(pyplotname); + if (!pymod) { throw std::runtime_error("Error loading module matplotlib.pyplot!"); } + + s_python_colormap = PyImport_Import(cmname); + Py_DECREF(cmname); + if (!s_python_colormap) { throw std::runtime_error("Error loading module matplotlib.cm!"); } + + PyObject* pylabmod = PyImport_Import(pylabname); + Py_DECREF(pylabname); + if (!pylabmod) { throw std::runtime_error("Error loading module pylab!"); } + + s_python_function_show = safe_import(pymod, "show"); + s_python_function_close = safe_import(pymod, "close"); + s_python_function_draw = safe_import(pymod, "draw"); + s_python_function_pause = safe_import(pymod, "pause"); + s_python_function_figure = safe_import(pymod, "figure"); + s_python_function_fignum_exists = safe_import(pymod, "fignum_exists"); + s_python_function_plot = safe_import(pymod, "plot"); + s_python_function_quiver = safe_import(pymod, "quiver"); + s_python_function_semilogx = safe_import(pymod, "semilogx"); + s_python_function_semilogy = safe_import(pymod, "semilogy"); + s_python_function_loglog = safe_import(pymod, "loglog"); + s_python_function_fill = safe_import(pymod, "fill"); + s_python_function_fill_between = safe_import(pymod, "fill_between"); + s_python_function_hist = safe_import(pymod,"hist"); + s_python_function_scatter = safe_import(pymod,"scatter"); + s_python_function_boxplot = safe_import(pymod,"boxplot"); + s_python_function_subplot = safe_import(pymod, "subplot"); + s_python_function_subplot2grid = safe_import(pymod, "subplot2grid"); + s_python_function_legend = safe_import(pymod, "legend"); + s_python_function_ylim = safe_import(pymod, "ylim"); + s_python_function_title = safe_import(pymod, "title"); + s_python_function_axis = safe_import(pymod, "axis"); + s_python_function_axvline = safe_import(pymod, "axvline"); + s_python_function_xlabel = safe_import(pymod, "xlabel"); + s_python_function_ylabel = safe_import(pymod, "ylabel"); + s_python_function_gca = safe_import(pymod, "gca"); + s_python_function_xticks = safe_import(pymod, "xticks"); + s_python_function_yticks = safe_import(pymod, "yticks"); + s_python_function_tick_params = safe_import(pymod, "tick_params"); + s_python_function_grid = safe_import(pymod, "grid"); + s_python_function_xlim = safe_import(pymod, "xlim"); + s_python_function_ion = safe_import(pymod, "ion"); + s_python_function_ginput = safe_import(pymod, "ginput"); + s_python_function_save = safe_import(pylabmod, "savefig"); + s_python_function_annotate = safe_import(pymod,"annotate"); + s_python_function_clf = safe_import(pymod, "clf"); + s_python_function_errorbar = safe_import(pymod, "errorbar"); + s_python_function_tight_layout = safe_import(pymod, "tight_layout"); + s_python_function_stem = safe_import(pymod, "stem"); + s_python_function_xkcd = safe_import(pymod, "xkcd"); + s_python_function_text = safe_import(pymod, "text"); + s_python_function_suptitle = safe_import(pymod, "suptitle"); + s_python_function_bar = safe_import(pymod,"bar"); + s_python_function_colorbar = PyObject_GetAttrString(pymod, "colorbar"); + s_python_function_subplots_adjust = safe_import(pymod,"subplots_adjust"); +#ifndef WITHOUT_NUMPY + s_python_function_imshow = safe_import(pymod, "imshow"); +#endif + s_python_empty_tuple = PyTuple_New(0); + } + + ~_interpreter() { + Py_Finalize(); + } +}; + +} // end namespace detail + +/// Select the backend +/// +/// **NOTE:** This must be called before the first plot command to have +/// any effect. +/// +/// Mainly useful to select the non-interactive 'Agg' backend when running +/// matplotlibcpp in headless mode, for example on a machine with no display. +/// +/// See also: https://matplotlib.org/2.0.2/api/matplotlib_configuration_api.html#matplotlib.use +inline void backend(const std::string& name) +{ + detail::s_backend = name; +} + +inline bool annotate(std::string annotation, double x, double y) +{ + PyObject * xy = PyTuple_New(2); + PyObject * str = PyString_FromString(annotation.c_str()); + + PyTuple_SetItem(xy,0,PyFloat_FromDouble(x)); + PyTuple_SetItem(xy,1,PyFloat_FromDouble(y)); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "xy", xy); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, str); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_annotate, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); + + return res; +} + +namespace detail { + +#ifndef WITHOUT_NUMPY +// Type selector for numpy array conversion +template struct select_npy_type { const static NPY_TYPES type = NPY_NOTYPE; }; //Default +template <> struct select_npy_type { const static NPY_TYPES type = NPY_DOUBLE; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_FLOAT; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_BOOL; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_INT8; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_SHORT; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_INT; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_INT64; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_UINT8; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_USHORT; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_ULONG; }; +template <> struct select_npy_type { const static NPY_TYPES type = NPY_UINT64; }; + +template +PyObject* get_array(const std::vector& v) +{ + detail::_interpreter::get(); //interpreter needs to be initialized for the numpy commands to work + NPY_TYPES type = select_npy_type::type; + if (type == NPY_NOTYPE) + { + std::vector vd(v.size()); + npy_intp vsize = v.size(); + std::copy(v.begin(),v.end(),vd.begin()); + PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, NPY_DOUBLE, (void*)(vd.data())); + return varray; + } + + npy_intp vsize = v.size(); + PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, type, (void*)(v.data())); + return varray; +} + +template +PyObject* get_2darray(const std::vector<::std::vector>& v) +{ + detail::_interpreter::get(); //interpreter needs to be initialized for the numpy commands to work + if (v.size() < 1) throw std::runtime_error("get_2d_array v too small"); + + npy_intp vsize[2] = {static_cast(v.size()), + static_cast(v[0].size())}; + + PyArrayObject *varray = + (PyArrayObject *)PyArray_SimpleNew(2, vsize, NPY_DOUBLE); + + double *vd_begin = static_cast(PyArray_DATA(varray)); + + for (const ::std::vector &v_row : v) { + if (v_row.size() != static_cast(vsize[1])) + throw std::runtime_error("Missmatched array size"); + std::copy(v_row.begin(), v_row.end(), vd_begin); + vd_begin += vsize[1]; + } + + return reinterpret_cast(varray); +} + +#else // fallback if we don't have numpy: copy every element of the given vector + +template +PyObject* get_array(const std::vector& v) +{ + PyObject* list = PyList_New(v.size()); + for(size_t i = 0; i < v.size(); ++i) { + PyList_SetItem(list, i, PyFloat_FromDouble(v.at(i))); + } + return list; +} + +#endif // WITHOUT_NUMPY + +// sometimes, for labels and such, we need string arrays +inline PyObject * get_array(const std::vector& strings) +{ + PyObject* list = PyList_New(strings.size()); + for (std::size_t i = 0; i < strings.size(); ++i) { + PyList_SetItem(list, i, PyString_FromString(strings[i].c_str())); + } + return list; +} + +// not all matplotlib need 2d arrays, some prefer lists of lists +template +PyObject* get_listlist(const std::vector>& ll) +{ + PyObject* listlist = PyList_New(ll.size()); + for (std::size_t i = 0; i < ll.size(); ++i) { + PyList_SetItem(listlist, i, get_array(ll[i])); + } + return listlist; +} + +} // namespace detail + +/// Plot a line through the given x and y data points.. +/// +/// See: https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.plot.html +template +bool plot(const std::vector &x, const std::vector &y, const std::map& keywords) +{ + assert(x.size() == y.size()); + + // using numpy arrays + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + // construct positional args + PyObject* args = PyTuple_New(2); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +// TODO - it should be possible to make this work by implementing +// a non-numpy alternative for `detail::get_2darray()`. +#ifndef WITHOUT_NUMPY +template +void plot_surface(const std::vector<::std::vector> &x, + const std::vector<::std::vector> &y, + const std::vector<::std::vector> &z, + const std::map &keywords = + std::map()) +{ + // We lazily load the modules here the first time this function is called + // because I'm not sure that we can assume "matplotlib installed" implies + // "mpl_toolkits installed" on all platforms, and we don't want to require + // it for people who don't need 3d plots. + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + detail::_interpreter::get(); + + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + assert(x.size() == y.size()); + assert(y.size() == z.size()); + + // using numpy arrays + PyObject *xarray = detail::get_2darray(x); + PyObject *yarray = detail::get_2darray(y); + PyObject *zarray = detail::get_2darray(z); + + // construct positional args + PyObject *args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + PyTuple_SetItem(args, 2, zarray); + + // Build up the kw args. + PyObject *kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "rstride", PyInt_FromLong(1)); + PyDict_SetItemString(kwargs, "cstride", PyInt_FromLong(1)); + + PyObject *python_colormap_coolwarm = PyObject_GetAttrString( + detail::_interpreter::get().s_python_colormap, "coolwarm"); + + PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm); + + for (std::map::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + + + PyObject *fig = + PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple); + if (!fig) throw std::runtime_error("Call to figure() failed."); + + PyObject *gca_kwargs = PyDict_New(); + PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); + + PyObject *gca = PyObject_GetAttrString(fig, "gca"); + if (!gca) throw std::runtime_error("No gca"); + Py_INCREF(gca); + PyObject *axis = PyObject_Call( + gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); + + if (!axis) throw std::runtime_error("No axis"); + Py_INCREF(axis); + + Py_DECREF(gca); + Py_DECREF(gca_kwargs); + + PyObject *plot_surface = PyObject_GetAttrString(axis, "plot_surface"); + if (!plot_surface) throw std::runtime_error("No surface"); + Py_INCREF(plot_surface); + PyObject *res = PyObject_Call(plot_surface, args, kwargs); + if (!res) throw std::runtime_error("failed surface"); + Py_DECREF(plot_surface); + + Py_DECREF(axis); + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} +#endif // WITHOUT_NUMPY + +template +void plot3(const std::vector &x, + const std::vector &y, + const std::vector &z, + const std::map &keywords = + std::map()) +{ + // Same as with plot_surface: We lazily load the modules here the first time + // this function is called because I'm not sure that we can assume "matplotlib + // installed" implies "mpl_toolkits installed" on all platforms, and we don't + // want to require it for people who don't need 3d plots. + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + detail::_interpreter::get(); + + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + assert(x.size() == y.size()); + assert(y.size() == z.size()); + + PyObject *xarray = detail::get_array(x); + PyObject *yarray = detail::get_array(y); + PyObject *zarray = detail::get_array(z); + + // construct positional args + PyObject *args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + PyTuple_SetItem(args, 2, zarray); + + // Build up the kw args. + PyObject *kwargs = PyDict_New(); + + for (std::map::const_iterator it = keywords.begin(); + it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + + PyObject *fig = + PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple); + if (!fig) throw std::runtime_error("Call to figure() failed."); + + PyObject *gca_kwargs = PyDict_New(); + PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d")); + + PyObject *gca = PyObject_GetAttrString(fig, "gca"); + if (!gca) throw std::runtime_error("No gca"); + Py_INCREF(gca); + PyObject *axis = PyObject_Call( + gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs); + + if (!axis) throw std::runtime_error("No axis"); + Py_INCREF(axis); + + Py_DECREF(gca); + Py_DECREF(gca_kwargs); + + PyObject *plot3 = PyObject_GetAttrString(axis, "plot"); + if (!plot3) throw std::runtime_error("No 3D line plot"); + Py_INCREF(plot3); + PyObject *res = PyObject_Call(plot3, args, kwargs); + if (!res) throw std::runtime_error("Failed 3D line plot"); + Py_DECREF(plot3); + + Py_DECREF(axis); + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} + +template +bool stem(const std::vector &x, const std::vector &y, const std::map& keywords) +{ + assert(x.size() == y.size()); + + // using numpy arrays + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + // construct positional args + PyObject* args = PyTuple_New(2); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (std::map::const_iterator it = + keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call( + detail::_interpreter::get().s_python_function_stem, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) + Py_DECREF(res); + + return res; +} + +template< typename Numeric > +bool fill(const std::vector& x, const std::vector& y, const std::map& keywords) +{ + assert(x.size() == y.size()); + + // using numpy arrays + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + // construct positional args + PyObject* args = PyTuple_New(2); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, yarray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if (res) Py_DECREF(res); + + return res; +} + +template< typename Numeric > +bool fill_between(const std::vector& x, const std::vector& y1, const std::vector& y2, const std::map& keywords) +{ + assert(x.size() == y1.size()); + assert(x.size() == y2.size()); + + // using numpy arrays + PyObject* xarray = detail::get_array(x); + PyObject* y1array = detail::get_array(y1); + PyObject* y2array = detail::get_array(y2); + + // construct positional args + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, xarray); + PyTuple_SetItem(args, 1, y1array); + PyTuple_SetItem(args, 2, y2array); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill_between, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +template< typename Numeric> +bool hist(const std::vector& y, long bins=10,std::string color="b", + double alpha=1.0, bool cumulative=false) +{ + + PyObject* yarray = detail::get_array(y); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins)); + PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str())); + PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha)); + PyDict_SetItemString(kwargs, "cumulative", cumulative ? Py_True : Py_False); + + PyObject* plot_args = PyTuple_New(1); + + PyTuple_SetItem(plot_args, 0, yarray); + + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs); + + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +#ifndef WITHOUT_NUMPY +namespace detail { + +inline void imshow(void *ptr, const NPY_TYPES type, const int rows, const int columns, const int colors, const std::map &keywords, PyObject** out) +{ + assert(type == NPY_UINT8 || type == NPY_FLOAT); + assert(colors == 1 || colors == 3 || colors == 4); + + detail::_interpreter::get(); //interpreter needs to be initialized for the numpy commands to work + + // construct args + npy_intp dims[3] = { rows, columns, colors }; + PyObject *args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyArray_SimpleNewFromData(colors == 1 ? 2 : 3, dims, type, ptr)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_imshow, args, kwargs); + Py_DECREF(args); + Py_DECREF(kwargs); + if (!res) + throw std::runtime_error("Call to imshow() failed"); + if (out) + *out = res; + else + Py_DECREF(res); +} + +} // namespace detail + +inline void imshow(const unsigned char *ptr, const int rows, const int columns, const int colors, const std::map &keywords = {}, PyObject** out = nullptr) +{ + detail::imshow((void *) ptr, NPY_UINT8, rows, columns, colors, keywords, out); +} + +inline void imshow(const float *ptr, const int rows, const int columns, const int colors, const std::map &keywords = {}, PyObject** out = nullptr) +{ + detail::imshow((void *) ptr, NPY_FLOAT, rows, columns, colors, keywords, out); +} + +#ifdef WITH_OPENCV +void imshow(const cv::Mat &image, const std::map &keywords = {}) +{ + // Convert underlying type of matrix, if needed + cv::Mat image2; + NPY_TYPES npy_type = NPY_UINT8; + switch (image.type() & CV_MAT_DEPTH_MASK) { + case CV_8U: + image2 = image; + break; + case CV_32F: + image2 = image; + npy_type = NPY_FLOAT; + break; + default: + image.convertTo(image2, CV_MAKETYPE(CV_8U, image.channels())); + } + + // If color image, convert from BGR to RGB + switch (image2.channels()) { + case 3: + cv::cvtColor(image2, image2, CV_BGR2RGB); + break; + case 4: + cv::cvtColor(image2, image2, CV_BGRA2RGBA); + } + + detail::imshow(image2.data, npy_type, image2.rows, image2.cols, image2.channels(), keywords); +} +#endif // WITH_OPENCV +#endif // WITHOUT_NUMPY + +template +bool scatter(const std::vector& x, + const std::vector& y, + const double s=1.0, // The marker size in points**2 + const std::unordered_map & keywords = {}) +{ + assert(x.size() == y.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "s", PyLong_FromLong(s)); + for (const auto& it : keywords) + { + PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); + } + + PyObject* plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_scatter, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +template +bool boxplot(const std::vector>& data, + const std::vector& labels = {}, + const std::unordered_map & keywords = {}) +{ + PyObject* listlist = detail::get_listlist(data); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, listlist); + + PyObject* kwargs = PyDict_New(); + + // kwargs needs the labels, if there are (the correct number of) labels + if (!labels.empty() && labels.size() == data.size()) { + PyDict_SetItemString(kwargs, "labels", detail::get_array(labels)); + } + + // take care of the remaining keywords + for (const auto& it : keywords) + { + PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); + + return res; +} + +template +bool boxplot(const std::vector& data, + const std::unordered_map & keywords = {}) +{ + PyObject* vector = detail::get_array(data); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, vector); + + PyObject* kwargs = PyDict_New(); + for (const auto& it : keywords) + { + PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); + + return res; +} + +template +bool bar(const std::vector & x, + const std::vector & y, + std::string ec = "black", + std::string ls = "-", + double lw = 1.0, + const std::map & keywords = {}) { + PyObject * xarray = detail::get_array(x); + PyObject * yarray = detail::get_array(y); + + PyObject * kwargs = PyDict_New(); + + PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str())); + PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str())); + PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw)); + + for (std::map::const_iterator it = + keywords.begin(); + it != keywords.end(); + ++it) { + PyDict_SetItemString( + kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject * plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject * res = PyObject_Call( + detail::_interpreter::get().s_python_function_bar, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); + + return res; +} + +template +bool bar(const std::vector & y, + std::string ec = "black", + std::string ls = "-", + double lw = 1.0, + const std::map & keywords = {}) { + using T = typename std::remove_reference::type::value_type; + + std::vector x; + for (std::size_t i = 0; i < y.size(); i++) { x.push_back(i); } + + return bar(x, y, ec, ls, lw, keywords); +} + +inline bool subplots_adjust(const std::map& keywords = {}) +{ + + PyObject* kwargs = PyDict_New(); + for (std::map::const_iterator it = + keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), + PyFloat_FromDouble(it->second)); + } + + + PyObject* plot_args = PyTuple_New(0); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_subplots_adjust, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +template< typename Numeric> +bool named_hist(std::string label,const std::vector& y, long bins=10, std::string color="b", double alpha=1.0) +{ + PyObject* yarray = detail::get_array(y); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(label.c_str())); + PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins)); + PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str())); + PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha)); + + + PyObject* plot_args = PyTuple_New(1); + PyTuple_SetItem(plot_args, 0, yarray); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs); + + Py_DECREF(plot_args); + Py_DECREF(kwargs); + if(res) Py_DECREF(res); + + return res; +} + +template +bool plot(const std::vector& x, const std::vector& y, const std::string& s = "") +{ + assert(x.size() == y.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(s.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args); + + Py_DECREF(plot_args); + if(res) Py_DECREF(res); + + return res; +} + +template +bool quiver(const std::vector& x, const std::vector& y, const std::vector& u, const std::vector& w, const std::map& keywords = {}) +{ + assert(x.size() == y.size() && x.size() == u.size() && u.size() == w.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* uarray = detail::get_array(u); + PyObject* warray = detail::get_array(w); + + PyObject* plot_args = PyTuple_New(4); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, uarray); + PyTuple_SetItem(plot_args, 3, warray); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call( + detail::_interpreter::get().s_python_function_quiver, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) + Py_DECREF(res); + + return res; +} + +template +bool stem(const std::vector& x, const std::vector& y, const std::string& s = "") +{ + assert(x.size() == y.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(s.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_stem, plot_args); + + Py_DECREF(plot_args); + if (res) + Py_DECREF(res); + + return res; +} + +template +bool semilogx(const std::vector& x, const std::vector& y, const std::string& s = "") +{ + assert(x.size() == y.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(s.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogx, plot_args); + + Py_DECREF(plot_args); + if(res) Py_DECREF(res); + + return res; +} + +template +bool semilogy(const std::vector& x, const std::vector& y, const std::string& s = "") +{ + assert(x.size() == y.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(s.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogy, plot_args); + + Py_DECREF(plot_args); + if(res) Py_DECREF(res); + + return res; +} + +template +bool loglog(const std::vector& x, const std::vector& y, const std::string& s = "") +{ + assert(x.size() == y.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(s.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_loglog, plot_args); + + Py_DECREF(plot_args); + if(res) Py_DECREF(res); + + return res; +} + +template +bool errorbar(const std::vector &x, const std::vector &y, const std::vector &yerr, const std::map &keywords = {}) +{ + assert(x.size() == y.size()); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + PyObject* yerrarray = detail::get_array(yerr); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyDict_SetItemString(kwargs, "yerr", yerrarray); + + PyObject *plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_errorbar, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + + if (res) + Py_DECREF(res); + else + throw std::runtime_error("Call to errorbar() failed."); + + return res; +} + +template +bool named_plot(const std::string& name, const std::vector& y, const std::string& format = "") +{ + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(2); + + PyTuple_SetItem(plot_args, 0, yarray); + PyTuple_SetItem(plot_args, 1, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template +bool named_plot(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") +{ + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template +bool named_semilogx(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") +{ + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogx, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template +bool named_semilogy(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") +{ + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogy, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template +bool named_loglog(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") +{ + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_loglog, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + if (res) Py_DECREF(res); + + return res; +} + +template +bool plot(const std::vector& y, const std::string& format = "") +{ + std::vector x(y.size()); + for(size_t i=0; i +bool plot(const std::vector& y, const std::map& keywords) +{ + std::vector x(y.size()); + for(size_t i=0; i +bool stem(const std::vector& y, const std::string& format = "") +{ + std::vector x(y.size()); + for (size_t i = 0; i < x.size(); ++i) x.at(i) = i; + return stem(x, y, format); +} + +template +void text(Numeric x, Numeric y, const std::string& s = "") +{ + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(x)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(y)); + PyTuple_SetItem(args, 2, PyString_FromString(s.c_str())); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_text, args); + if(!res) throw std::runtime_error("Call to text() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void colorbar(PyObject* mappable = NULL, const std::map& keywords = {}) +{ + if (mappable == NULL) + throw std::runtime_error("Must call colorbar with PyObject* returned from an image, contour, surface, etc."); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, mappable); + + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyFloat_FromDouble(it->second)); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_colorbar, args, kwargs); + if(!res) throw std::runtime_error("Call to colorbar() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + + +inline long figure(long number = -1) +{ + PyObject *res; + if (number == -1) + res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, detail::_interpreter::get().s_python_empty_tuple); + else { + assert(number > 0); + + // Make sure interpreter is initialised + detail::_interpreter::get(); + + PyObject *args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyLong_FromLong(number)); + res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, args); + Py_DECREF(args); + } + + if(!res) throw std::runtime_error("Call to figure() failed."); + + PyObject* num = PyObject_GetAttrString(res, "number"); + if (!num) throw std::runtime_error("Could not get number attribute of figure object"); + const long figureNumber = PyLong_AsLong(num); + + Py_DECREF(num); + Py_DECREF(res); + + return figureNumber; +} + +inline bool fignum_exists(long number) +{ + // Make sure interpreter is initialised + detail::_interpreter::get(); + + PyObject *args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyLong_FromLong(number)); + PyObject *res = PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, args); + if(!res) throw std::runtime_error("Call to fignum_exists() failed."); + + bool ret = PyObject_IsTrue(res); + Py_DECREF(res); + Py_DECREF(args); + + return ret; +} + +inline void figure_size(size_t w, size_t h) +{ + // Make sure interpreter is initialised + detail::_interpreter::get(); + + const size_t dpi = 100; + PyObject* size = PyTuple_New(2); + PyTuple_SetItem(size, 0, PyFloat_FromDouble((double)w / dpi)); + PyTuple_SetItem(size, 1, PyFloat_FromDouble((double)h / dpi)); + + PyObject* kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "figsize", size); + PyDict_SetItemString(kwargs, "dpi", PyLong_FromSize_t(dpi)); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_figure, + detail::_interpreter::get().s_python_empty_tuple, kwargs); + + Py_DECREF(kwargs); + + if(!res) throw std::runtime_error("Call to figure_size() failed."); + Py_DECREF(res); +} + +inline void legend() +{ + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple); + if(!res) throw std::runtime_error("Call to legend() failed."); + + Py_DECREF(res); +} + +template +void ylim(Numeric left, Numeric right) +{ + PyObject* list = PyList_New(2); + PyList_SetItem(list, 0, PyFloat_FromDouble(left)); + PyList_SetItem(list, 1, PyFloat_FromDouble(right)); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, list); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args); + if(!res) throw std::runtime_error("Call to ylim() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +template +void xlim(Numeric left, Numeric right) +{ + PyObject* list = PyList_New(2); + PyList_SetItem(list, 0, PyFloat_FromDouble(left)); + PyList_SetItem(list, 1, PyFloat_FromDouble(right)); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, list); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args); + if(!res) throw std::runtime_error("Call to xlim() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + + +inline double* xlim() +{ + PyObject* args = PyTuple_New(0); + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args); + PyObject* left = PyTuple_GetItem(res,0); + PyObject* right = PyTuple_GetItem(res,1); + + double* arr = new double[2]; + arr[0] = PyFloat_AsDouble(left); + arr[1] = PyFloat_AsDouble(right); + + if(!res) throw std::runtime_error("Call to xlim() failed."); + + Py_DECREF(res); + return arr; +} + + +inline double* ylim() +{ + PyObject* args = PyTuple_New(0); + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args); + PyObject* left = PyTuple_GetItem(res,0); + PyObject* right = PyTuple_GetItem(res,1); + + double* arr = new double[2]; + arr[0] = PyFloat_AsDouble(left); + arr[1] = PyFloat_AsDouble(right); + + if(!res) throw std::runtime_error("Call to ylim() failed."); + + Py_DECREF(res); + return arr; +} + +template +inline void xticks(const std::vector &ticks, const std::vector &labels = {}, const std::map& keywords = {}) +{ + assert(labels.size() == 0 || ticks.size() == labels.size()); + + // using numpy array + PyObject* ticksarray = detail::get_array(ticks); + + PyObject* args; + if(labels.size() == 0) { + // construct positional args + args = PyTuple_New(1); + PyTuple_SetItem(args, 0, ticksarray); + } else { + // make tuple of tick labels + PyObject* labelstuple = PyTuple_New(labels.size()); + for (size_t i = 0; i < labels.size(); i++) + PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str())); + + // construct positional args + args = PyTuple_New(2); + PyTuple_SetItem(args, 0, ticksarray); + PyTuple_SetItem(args, 1, labelstuple); + } + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xticks, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if(!res) throw std::runtime_error("Call to xticks() failed"); + + Py_DECREF(res); +} + +template +inline void xticks(const std::vector &ticks, const std::map& keywords) +{ + xticks(ticks, {}, keywords); +} + +template +inline void yticks(const std::vector &ticks, const std::vector &labels = {}, const std::map& keywords = {}) +{ + assert(labels.size() == 0 || ticks.size() == labels.size()); + + // using numpy array + PyObject* ticksarray = detail::get_array(ticks); + + PyObject* args; + if(labels.size() == 0) { + // construct positional args + args = PyTuple_New(1); + PyTuple_SetItem(args, 0, ticksarray); + } else { + // make tuple of tick labels + PyObject* labelstuple = PyTuple_New(labels.size()); + for (size_t i = 0; i < labels.size(); i++) + PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str())); + + // construct positional args + args = PyTuple_New(2); + PyTuple_SetItem(args, 0, ticksarray); + PyTuple_SetItem(args, 1, labelstuple); + } + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_yticks, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if(!res) throw std::runtime_error("Call to yticks() failed"); + + Py_DECREF(res); +} + +template +inline void yticks(const std::vector &ticks, const std::map& keywords) +{ + yticks(ticks, {}, keywords); +} + +inline void tick_params(const std::map& keywords, const std::string axis = "both") +{ + // construct positional args + PyObject* args; + args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyString_FromString(axis.c_str())); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for (std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_tick_params, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + if (!res) throw std::runtime_error("Call to tick_params() failed"); + + Py_DECREF(res); +} + +inline void subplot(long nrows, long ncols, long plot_number) +{ + // construct positional args + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(nrows)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(ncols)); + PyTuple_SetItem(args, 2, PyFloat_FromDouble(plot_number)); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot, args); + if(!res) throw std::runtime_error("Call to subplot() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void subplot2grid(long nrows, long ncols, long rowid=0, long colid=0, long rowspan=1, long colspan=1) +{ + PyObject* shape = PyTuple_New(2); + PyTuple_SetItem(shape, 0, PyLong_FromLong(nrows)); + PyTuple_SetItem(shape, 1, PyLong_FromLong(ncols)); + + PyObject* loc = PyTuple_New(2); + PyTuple_SetItem(loc, 0, PyLong_FromLong(rowid)); + PyTuple_SetItem(loc, 1, PyLong_FromLong(colid)); + + PyObject* args = PyTuple_New(4); + PyTuple_SetItem(args, 0, shape); + PyTuple_SetItem(args, 1, loc); + PyTuple_SetItem(args, 2, PyLong_FromLong(rowspan)); + PyTuple_SetItem(args, 3, PyLong_FromLong(colspan)); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot2grid, args); + if(!res) throw std::runtime_error("Call to subplot2grid() failed."); + + Py_DECREF(shape); + Py_DECREF(loc); + Py_DECREF(args); + Py_DECREF(res); +} + +inline void title(const std::string &titlestr, const std::map &keywords = {}) +{ + PyObject* pytitlestr = PyString_FromString(titlestr.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pytitlestr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_title, args, kwargs); + if(!res) throw std::runtime_error("Call to title() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void suptitle(const std::string &suptitlestr, const std::map &keywords = {}) +{ + PyObject* pysuptitlestr = PyString_FromString(suptitlestr.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pysuptitlestr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_suptitle, args, kwargs); + if(!res) throw std::runtime_error("Call to suptitle() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void axis(const std::string &axisstr) +{ + PyObject* str = PyString_FromString(axisstr.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, str); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_axis, args); + if(!res) throw std::runtime_error("Call to title() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void axvline(double x, double ymin = 0., double ymax = 1., const std::map& keywords = std::map()) +{ + // construct positional args + PyObject* args = PyTuple_New(3); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(x)); + PyTuple_SetItem(args, 1, PyFloat_FromDouble(ymin)); + PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymax)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvline, args, kwargs); + + Py_DECREF(args); + Py_DECREF(kwargs); + + if(res) Py_DECREF(res); +} + +inline void xlabel(const std::string &str, const std::map &keywords = {}) +{ + PyObject* pystr = PyString_FromString(str.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pystr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xlabel, args, kwargs); + if(!res) throw std::runtime_error("Call to xlabel() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void ylabel(const std::string &str, const std::map& keywords = {}) +{ + PyObject* pystr = PyString_FromString(str.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pystr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_ylabel, args, kwargs); + if(!res) throw std::runtime_error("Call to ylabel() failed."); + + Py_DECREF(args); + Py_DECREF(kwargs); + Py_DECREF(res); +} + +inline void set_zlabel(const std::string &str, const std::map& keywords = {}) { + // Same as with plot_surface: We lazily load the modules here the first time + // this function is called because I'm not sure that we can assume "matplotlib + // installed" implies "mpl_toolkits installed" on all platforms, and we don't + // want to require it for people who don't need 3d plots. + static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr; + if (!mpl_toolkitsmod) { + detail::_interpreter::get(); + + PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits"); + PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d"); + if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); } + + mpl_toolkitsmod = PyImport_Import(mpl_toolkits); + Py_DECREF(mpl_toolkits); + if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); } + + axis3dmod = PyImport_Import(axis3d); + Py_DECREF(axis3d); + if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); } + } + + PyObject* pystr = PyString_FromString(str.c_str()); + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pystr); + + PyObject* kwargs = PyDict_New(); + for (auto it = keywords.begin(); it != keywords.end(); ++it) { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject *ax = + PyObject_CallObject(detail::_interpreter::get().s_python_function_gca, + detail::_interpreter::get().s_python_empty_tuple); + if (!ax) throw std::runtime_error("Call to gca() failed."); + Py_INCREF(ax); + + PyObject *zlabel = PyObject_GetAttrString(ax, "set_zlabel"); + if (!zlabel) throw std::runtime_error("Attribute set_zlabel not found."); + Py_INCREF(zlabel); + + PyObject *res = PyObject_Call(zlabel, args, kwargs); + if (!res) throw std::runtime_error("Call to set_zlabel() failed."); + Py_DECREF(zlabel); + + Py_DECREF(ax); + Py_DECREF(args); + Py_DECREF(kwargs); + if (res) Py_DECREF(res); +} + +inline void grid(bool flag) +{ + PyObject* pyflag = flag ? Py_True : Py_False; + Py_INCREF(pyflag); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pyflag); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_grid, args); + if(!res) throw std::runtime_error("Call to grid() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void show(const bool block = true) +{ + PyObject* res; + if(block) + { + res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_show, + detail::_interpreter::get().s_python_empty_tuple); + } + else + { + PyObject *kwargs = PyDict_New(); + PyDict_SetItemString(kwargs, "block", Py_False); + res = PyObject_Call( detail::_interpreter::get().s_python_function_show, detail::_interpreter::get().s_python_empty_tuple, kwargs); + Py_DECREF(kwargs); + } + + + if (!res) throw std::runtime_error("Call to show() failed."); + + Py_DECREF(res); +} + +inline void close() +{ + PyObject* res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_close, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to close() failed."); + + Py_DECREF(res); +} + +inline void xkcd() { + PyObject* res; + PyObject *kwargs = PyDict_New(); + + res = PyObject_Call(detail::_interpreter::get().s_python_function_xkcd, + detail::_interpreter::get().s_python_empty_tuple, kwargs); + + Py_DECREF(kwargs); + + if (!res) + throw std::runtime_error("Call to show() failed."); + + Py_DECREF(res); +} + +inline void draw() +{ + PyObject* res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_draw, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to draw() failed."); + + Py_DECREF(res); +} + +template +inline void pause(Numeric interval) +{ + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyFloat_FromDouble(interval)); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_pause, args); + if(!res) throw std::runtime_error("Call to pause() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void save(const std::string& filename) +{ + PyObject* pyfilename = PyString_FromString(filename.c_str()); + + PyObject* args = PyTuple_New(1); + PyTuple_SetItem(args, 0, pyfilename); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_save, args); + if (!res) throw std::runtime_error("Call to save() failed."); + + Py_DECREF(args); + Py_DECREF(res); +} + +inline void clf() { + PyObject *res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_clf, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to clf() failed."); + + Py_DECREF(res); +} + + inline void ion() { + PyObject *res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_ion, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to ion() failed."); + + Py_DECREF(res); +} + +inline std::vector> ginput(const int numClicks = 1, const std::map& keywords = {}) +{ + PyObject *args = PyTuple_New(1); + PyTuple_SetItem(args, 0, PyLong_FromLong(numClicks)); + + // construct keyword args + PyObject* kwargs = PyDict_New(); + for(std::map::const_iterator it = keywords.begin(); it != keywords.end(); ++it) + { + PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str())); + } + + PyObject* res = PyObject_Call( + detail::_interpreter::get().s_python_function_ginput, args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(args); + if (!res) throw std::runtime_error("Call to ginput() failed."); + + const size_t len = PyList_Size(res); + std::vector> out; + out.reserve(len); + for (size_t i = 0; i < len; i++) { + PyObject *current = PyList_GetItem(res, i); + std::array position; + position[0] = PyFloat_AsDouble(PyTuple_GetItem(current, 0)); + position[1] = PyFloat_AsDouble(PyTuple_GetItem(current, 1)); + out.push_back(position); + } + Py_DECREF(res); + + return out; +} + +// Actually, is there any reason not to call this automatically for every plot? +inline void tight_layout() { + PyObject *res = PyObject_CallObject( + detail::_interpreter::get().s_python_function_tight_layout, + detail::_interpreter::get().s_python_empty_tuple); + + if (!res) throw std::runtime_error("Call to tight_layout() failed."); + + Py_DECREF(res); +} + +// Support for variadic plot() and initializer lists: + +namespace detail { + +template +using is_function = typename std::is_function>>::type; + +template +struct is_callable_impl; + +template +struct is_callable_impl +{ + typedef is_function type; +}; // a non-object is callable iff it is a function + +template +struct is_callable_impl +{ + struct Fallback { void operator()(); }; + struct Derived : T, Fallback { }; + + template struct Check; + + template + static std::true_type test( ... ); // use a variadic function to make sure (1) it accepts everything and (2) its always the worst match + + template + static std::false_type test( Check* ); + +public: + typedef decltype(test(nullptr)) type; + typedef decltype(&Fallback::operator()) dtype; + static constexpr bool value = type::value; +}; // an object is callable iff it defines operator() + +template +struct is_callable +{ + // dispatch to is_callable_impl or is_callable_impl depending on whether T is of class type or not + typedef typename is_callable_impl::value, T>::type type; +}; + +template +struct plot_impl { }; + +template<> +struct plot_impl +{ + template + bool operator()(const IterableX& x, const IterableY& y, const std::string& format) + { + // 2-phase lookup for distance, begin, end + using std::distance; + using std::begin; + using std::end; + + auto xs = distance(begin(x), end(x)); + auto ys = distance(begin(y), end(y)); + assert(xs == ys && "x and y data must have the same number of elements!"); + + PyObject* xlist = PyList_New(xs); + PyObject* ylist = PyList_New(ys); + PyObject* pystring = PyString_FromString(format.c_str()); + + auto itx = begin(x), ity = begin(y); + for(size_t i = 0; i < xs; ++i) { + PyList_SetItem(xlist, i, PyFloat_FromDouble(*itx++)); + PyList_SetItem(ylist, i, PyFloat_FromDouble(*ity++)); + } + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xlist); + PyTuple_SetItem(plot_args, 1, ylist); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args); + + Py_DECREF(plot_args); + if(res) Py_DECREF(res); + + return res; + } +}; + +template<> +struct plot_impl +{ + template + bool operator()(const Iterable& ticks, const Callable& f, const std::string& format) + { + if(begin(ticks) == end(ticks)) return true; + + // We could use additional meta-programming to deduce the correct element type of y, + // but all values have to be convertible to double anyways + std::vector y; + for(auto x : ticks) y.push_back(f(x)); + return plot_impl()(ticks,y,format); + } +}; + +} // end namespace detail + +// recursion stop for the above +template +bool plot() { return true; } + +template +bool plot(const A& a, const B& b, const std::string& format, Args... args) +{ + return detail::plot_impl::type>()(a,b,format) && plot(args...); +} + +/* + * This group of plot() functions is needed to support initializer lists, i.e. calling + * plot( {1,2,3,4} ) + */ +inline bool plot(const std::vector& x, const std::vector& y, const std::string& format = "") { + return plot(x,y,format); +} + +inline bool plot(const std::vector& y, const std::string& format = "") { + return plot(y,format); +} + +inline bool plot(const std::vector& x, const std::vector& y, const std::map& keywords) { + return plot(x,y,keywords); +} + +/* + * This class allows dynamic plots, ie changing the plotted data without clearing and re-plotting + */ +class Plot +{ +public: + // default initialization with plot label, some data and format + template + Plot(const std::string& name, const std::vector& x, const std::vector& y, const std::string& format = "") { + + assert(x.size() == y.size()); + + PyObject* kwargs = PyDict_New(); + if(name != "") + PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str())); + + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* pystring = PyString_FromString(format.c_str()); + + PyObject* plot_args = PyTuple_New(3); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + PyTuple_SetItem(plot_args, 2, pystring); + + PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs); + + Py_DECREF(kwargs); + Py_DECREF(plot_args); + + if(res) + { + line= PyList_GetItem(res, 0); + + if(line) + set_data_fct = PyObject_GetAttrString(line,"set_data"); + else + Py_DECREF(line); + Py_DECREF(res); + } + } + + // shorter initialization with name or format only + // basically calls line, = plot([], []) + Plot(const std::string& name = "", const std::string& format = "") + : Plot(name, std::vector(), std::vector(), format) {} + + template + bool update(const std::vector& x, const std::vector& y) { + assert(x.size() == y.size()); + if(set_data_fct) + { + PyObject* xarray = detail::get_array(x); + PyObject* yarray = detail::get_array(y); + + PyObject* plot_args = PyTuple_New(2); + PyTuple_SetItem(plot_args, 0, xarray); + PyTuple_SetItem(plot_args, 1, yarray); + + PyObject* res = PyObject_CallObject(set_data_fct, plot_args); + if (res) Py_DECREF(res); + return res; + } + return false; + } + + // clears the plot but keep it available + bool clear() { + return update(std::vector(), std::vector()); + } + + // definitely remove this line + void remove() { + if(line) + { + auto remove_fct = PyObject_GetAttrString(line,"remove"); + PyObject* args = PyTuple_New(0); + PyObject* res = PyObject_CallObject(remove_fct, args); + if (res) Py_DECREF(res); + } + decref(); + } + + ~Plot() { + decref(); + } +private: + + void decref() { + if(line) + Py_DECREF(line); + if(set_data_fct) + Py_DECREF(set_data_fct); + } + + + PyObject* line = nullptr; + PyObject* set_data_fct = nullptr; +}; + +} // end namespace matplotlibcpp diff --git a/Avoidance_Gaussian_Potential_Field/petcat-obstacle-avoidance- b/Avoidance_Gaussian_Potential_Field/petcat-obstacle-avoidance- new file mode 160000 index 0000000..6404eb7 --- /dev/null +++ b/Avoidance_Gaussian_Potential_Field/petcat-obstacle-avoidance- @@ -0,0 +1 @@ +Subproject commit 6404eb768a1b1b1293514cf4549bd11fdb7f5e33 diff --git a/Avoidance_Gaussian_Potential_Field/random_explorer.cpp b/Avoidance_Gaussian_Potential_Field/random_explorer.cpp new file mode 100644 index 0000000..ab8fdc8 --- /dev/null +++ b/Avoidance_Gaussian_Potential_Field/random_explorer.cpp @@ -0,0 +1,56 @@ +#include +#include +#include +#include +#include +#include +#include +#include "GaussianPF_PathPlanning.cpp" + +using namespace std; + +vector lidar_data(360); +const float MAX_VEL = 2; +const float MAX_OMEGA = 0.2; + +float get_steering_msg(vector lidar_dat, float goal_angle){ + // std::reverse(lidar_dat.begin(), lidar_dat.end()); + vector ranges; + ranges.insert(ranges.end(), lidar_dat.begin()+180,lidar_dat.end()); + ranges.insert(ranges.end(), lidar_dat.begin(), lidar_dat.begin()+180); + assert(ranges.size() ==360); + + float h_theta = get_header_rad(ranges, goal_angle, false); + cout << h_theta << endl; + return -1*mapx(0, h_theta, MAX_OMEGA); +} + +void lidarCallback(const sensor_msgs::LaserScan::ConstPtr& scan){ // Returns the lidar data + lidar_data = scan->ranges; + assert(lidar_data.size() == 360); // Ensuring that the lidar data has been successfully recvd. Replace 360 with 360/(Angular least count for lidar) + cout << "Lidar data recvd:\n"; +} + +int main(int argc, char** argv){ + ros::init(argc, argv, "lidar_subscriber"); + ros::NodeHandle sub_node; + + ros::Subscriber lid_sub = sub_node.subscribe("/husky/laser/scan", 1000, lidarCallback); + + ros::NodeHandle pub_node; + + ros::Publisher lid_pub = pub_node.advertise("/husky_velocity_controller/cmd_vel", 100); + + ros::Rate rate(10); // sets the loop to publish at a rate of 10Hz + float goal_angle = 0; + while(ros::ok()){ + geometry_msgs::Twist msg; + msg.linear.x = 0.5; + msg.angular.z = get_steering_msg(lidar_data, goal_angle); + lid_pub.publish(msg); + ros::spinOnce(); + rate.sleep(); + } + + return 0; +} \ No newline at end of file From d55a0e223b71e31905773536706eb50bf4fb3943 Mon Sep 17 00:00:00 2001 From: stellarator-x Date: Sat, 25 Jul 2020 23:29:31 +0530 Subject: [PATCH 3/4] avd m --- ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance- | 1 - 1 file changed, 1 deletion(-) delete mode 160000 ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance- diff --git a/ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance- b/ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance- deleted file mode 160000 index 6404eb7..0000000 --- a/ObstacleAvoidance_ODGPF/petcat-obstacle-avoidance- +++ /dev/null @@ -1 +0,0 @@ -Subproject commit 6404eb768a1b1b1293514cf4549bd11fdb7f5e33 From 9d55c680864814fc6077292a070145234212c8f1 Mon Sep 17 00:00:00 2001 From: Abhay Dayal Mathur <55692090+Stellarator-X@users.noreply.github.com> Date: Sat, 25 Jul 2020 23:30:29 +0530 Subject: [PATCH 4/4] Update README.md --- Avoidance_Gaussian_Potential_Field/README.md | 2 -- 1 file changed, 2 deletions(-) diff --git a/Avoidance_Gaussian_Potential_Field/README.md b/Avoidance_Gaussian_Potential_Field/README.md index 95eb06f..fbc4c7b 100644 --- a/Avoidance_Gaussian_Potential_Field/README.md +++ b/Avoidance_Gaussian_Potential_Field/README.md @@ -11,8 +11,6 @@ The main idea behind this method is to 5. Calculate the attractive field from the yaw angle information from an inertial measurement unit (IMU). 6. The total field is made of these two fields. Choose the angle with the minimum total field value. -Work on the algorithm can be found [here](petcat-obstacle-avoidance-). - The algorithm has been tested on a husky, the node for which can be found [here](random_explorer.cpp). ## Modules