forked from MCG-NJU/MeMOTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
124 lines (100 loc) · 4.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# @Author : Ruopeng Gao
# @Date : 2022/7/5
# @Description : Main Function.
import os
import argparse
import torch.distributed
import torch.backends.cuda
import torch.backends.cudnn
from utils.utils import distributed_rank
from utils.utils import yaml_to_dict
from configs.utils import update_config
def parse_option():
parser = argparse.ArgumentParser("Network training and evaluation script.", add_help=True)
parser.add_argument("--git-version", type=str)
# About system, Like GPUs:
parser.add_argument("--available-gpus", type=str, help="Available GPUs, like '0,1,2,3'.")
parser.add_argument("--use-distributed", action="store_true", help="Use distributed training.")
parser.add_argument("--use-checkpoint", action="store_true", help="Use gradient checkpoint to save GPU memory.")
parser.add_argument("--checkpoint-level", type=int)
# Running mode, Training? Evaluation? or ?
parser.add_argument("--mode", type=str, help="Running mode.")
# Only For **Result Submit Process**:
parser.add_argument("--submit-dir", type=str)
parser.add_argument("--submit-model", type=str)
parser.add_argument("--submit-data-split", type=str)
# Only For **Model Eval Process**:
parser.add_argument("--eval-dir", type=str)
parser.add_argument("--eval-mode", type=str)
parser.add_argument("--eval-model", type=str)
parser.add_argument("--eval-threads", type=int)
parser.add_argument("--eval-port", type=int)
parser.add_argument("--eval-data-split", type=str)
# Pretrained Model Load:
parser.add_argument("--pretrained-model", type=str, help="Pretrained model path.")
# Resume
parser.add_argument("--resume", type=str, help="Resume checkpoint path.")
parser.add_argument("--resume-scheduler", type=str, help="Whether resume the training scheduler.")
# About Paths:
# Config file:
parser.add_argument("--config-path", type=str, help="Config file path.",
default="./configs/train_dancetrack.yaml")
# Data Path:
parser.add_argument("--data-root", type=str, help="Dataset root dir.")
parser.add_argument("--dataset", type=str)
parser.add_argument("--data-path", type=str)
# Log outputs:
parser.add_argument("--outputs-dir", type=str, help="Outputs dir path.")
# Data:
parser.add_argument("--accumulation-steps", type=int, help="Gradient accumulation steps.")
parser.add_argument("--batch-size", type=int, help="Batch size for training.")
parser.add_argument("--coco-size", type=str)
parser.add_argument("--overflow-bbox", type=str)
parser.add_argument("--reverse-clip", type=float)
parser.add_argument("--use-motsynth", type=str)
parser.add_argument("--use-crowdhuman", type=str)
parser.add_argument("--motsynth-rate", type=float)
parser.add_argument("--sample-steps", type=int, nargs="*")
parser.add_argument("--sample-lengths", type=int, nargs="*")
# Training setting:
parser.add_argument("--weight-decay", type=float)
parser.add_argument("--lr", type=float)
parser.add_argument("--lr-points", type=float)
parser.add_argument("--lr-backbone", type=float)
parser.add_argument("--epochs", type=int)
parser.add_argument("--lr-drop-milestones", type=int, nargs="*")
# Submit setting:
parser.add_argument("--miss-tolerance", type=float)
# Model setting:
parser.add_argument("--num-det-queries", type=int)
parser.add_argument("--merge-det-track-layer", type=int)
# Training augmentation:
parser.add_argument("--tp-drop-rate", type=float)
parser.add_argument("--fp-insert-rate", type=float)
return parser.parse_args()
def main(config: dict):
os.environ["CUDA_VISIBLE_DEVICES"] = config["AVAILABLE_GPUS"]
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
if config["USE_DISTRIBUTED"]:
torch.distributed.init_process_group("nccl")
torch.cuda.set_device(distributed_rank())
from train_engine import train
from submit_engine import submit
from eval_engine import evaluate
if config["MODE"] == "train":
train(config=config)
elif config["MODE"] == "submit":
submit(config=config)
elif config["MODE"] == "eval":
evaluate(config=config)
else:
raise ValueError(f"Unsupported mode '{config['MODE']}'")
return
if __name__ == '__main__':
opt = parse_option() # runtime options
cfg = yaml_to_dict(opt.config_path) # configs
# Merge parser option and .yaml config, then run main function.
merged_config = update_config(config=cfg, option=opt)
merged_config["CONFIG_PATH"] = opt.config_path
main(config=merged_config)