-
Notifications
You must be signed in to change notification settings - Fork 16
/
process_data.py
190 lines (160 loc) · 6.02 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# -*- coding: utf-8 -*-
import numpy as np
import os
import time
import pdb
from multiprocessing import Pool
import linecache
import argparse
from scipy import sparse
"""
python process_data.py -p 4 -b 1000000 a.txt b.txt c.txt
"""
parser = argparse.ArgumentParser(description="python process_data.py -p 4 -b 1000000 a.txt b.txt c.txt")
parser.add_argument("--process","-p",type=int,default=2)
parser.add_argument("--block_size","-b",type=int,default=100000)
parser.add_argument("--num_features","-n",type=int,default=1000000)
parser.add_argument("--format","-f",type=str,default="fm")
parser.add_argument("--array",action="store_true",help="store data as np.array")
parser.add_argument("filenames",nargs="+",type=str)
results = {}
def parse_line_fm(line):
line = line.strip().split()
if len(line) <= 1:
return None,None,None,None
label = np.float32(line[0])
line_data = np.array([l.split(":") for l in line[1:]])
feat_idx = line_data[:,0].astype(np.int32)
vals = line_data[:,1].astype(np.float32)
return None,feat_idx,vals,label
def parse_line_ffm(line):
line = line.strip().split()
if len(line) <= 1:
return None,None,None,None
label = np.float32(line[0])
line_data = np.array([l.split(":") for l in line[1:]])
field_idx = line_data[:,0].astype(np.int32)
feat_idx = line_data[:,1].astype(np.int32)
vals = line_data[:,2].astype(np.float32)
return field_idx,feat_idx,vals,label
def work(parse_func,data,num_features,part_name,use_array=False):
"""Subprocess works.
Args:
parse_func: function to parse lines, support "ffm" and "fm" formats.
data: raw data wait to be processed.
parts_name: the total raw data is split into several parts, ranked by their index.
"""
print("task {} starts.".format(part_name))
rows = []
cols = []
values = []
labels = []
row_offset = 0
# parse lines
for row,line in enumerate(data):
if row % 10000 == 0:
print("processing {} in {}".format(row, part_name))
_,col,val,label = parse_func(line)
if label is None:
row_offset += 1
continue
rows.extend([row - row_offset]*len(col))
values.extend(val)
cols.extend(col)
labels.append(label)
data = sparse.csc_matrix((values,(rows,cols)),shape=(len(data)-row_offset,num_features))
if use_array:
data = data.toarray()
print("task {} ends.".format(part_name))
return part_name, data, labels
def process_res_list(res_list):
for res in res_list:
part_name, sp_data, labels = res.get()
print("Part name", part_name)
results[part_name] = {}
results[part_name]["data"] = sp_data
results[part_name]["label"] = np.array(labels).flatten().astype(int)
def post_process(filenames,use_array=False):
"""Merge each files parts together.
"""
start_time = time.time()
print("Postprocessing..")
for file in filenames:
data_list = []
index_list = []
for k,v in results.items():
base_name, index = k.split("::")
if base_name == file:
index_list.append(int(index))
data_list.append(v)
total_data = None
sorted_index = np.argsort(index_list)
for i in sorted_index:
if total_data is None:
total_data = {}
total_data["data"] = data_list[i]["data"]
total_data["label"] = data_list[i]["label"]
else:
if not use_array:
total_data["data"] = sparse.vstack([total_data["data"],data_list[i]["data"]])
else:
total_data["data"] = np.r_[total_data["data"],data_list[i]["data"]]
total_data["label"] = np.r_[total_data["label"],data_list[i]["label"]]
filename = "{}.npy".format(file)
duration = time.time() - start_time
print("Save {}, cost {:.1f} sec.".format(filename,duration))
np.save(filename,total_data)
return
if __name__ == '__main__':
args = parser.parse_args()
filenames = args.filenames
num_processes = args.process
block_size = args.block_size
num_features = args.num_features
data_format = args.format
use_array = args.array
# unit test
assert block_size > 0
assert num_features > 0
assert num_processes > 0
assert data_format in ["fm","ffm"]
if data_format == "fm":
parse_func = parse_line_fm
elif data_format == "ffm":
parse_func = parse_line_ffm
start_time = time.time()
for file in filenames:
try:
raw_data = linecache.getlines(file)
except:
print("[Warning] cannot find {}".format(file))
continue
# multiprocess
if num_processes > 1:
p = Pool(processes = num_processes)
num_samples = len(raw_data)
num_blocks = int(np.ceil(num_samples / block_size))
res_list = []
for i in range(num_blocks):
block_data = raw_data[i * block_size : (i+1) * block_size]
part_name = "{}::{}".format(file,i)
res = p.apply_async(work,args=(parse_func,block_data,num_features,part_name,use_array,),
callback=None)
res_list.append(res)
p.close()
p.join()
# cope with res_list
process_res_list(res_list)
# single process
else:
_, sp_data, label = work(parse_func,raw_data,num_features,"{}::0".format(file),use_array)
results["{}::0".format(file)] = {}
results["{}::0".format(file)]["data"] = sp_data
results["{}::0".format(file)]["label"] = np.array(label)
print("{} done.".format(file))
duration = time.time() - start_time
print("Total {} processes cost {:.1f} sec".format(num_processes, duration))
# process dictionary and save sparse matrix in *.npy
post_process(filenames,use_array)
print("Results are saved.")
pass