forked from federicovergallo/SUMO-changing-lane-agent
-
Notifications
You must be signed in to change notification settings - Fork 1
/
dqn.py
214 lines (191 loc) · 9.54 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import tensorflow as tf
import tensorflow.keras.losses as kls
import tensorflow.keras.optimizers as ko
import tensorflow.keras.layers as kl
import numpy as np
import logging
import datetime
import os
import random
import math
from replayMemory import ReplayMemory
def CarModel(num_actions, input_len):
input = kl.Input(shape=(input_len))
hidden1 = kl.Dense(128, activation='relu')(input)
hidden2 = kl.Dense(256, activation='relu')(hidden1)
hidden3 = kl.Dense(128, activation='relu')(hidden2)
state_value = kl.Dense(1)(hidden3)
state_value = kl.Lambda(lambda s: tf.keras.backend.expand_dims(s[:, 0], -1), output_shape=(num_actions,))(state_value)
action_advantage = kl.Dense(num_actions)(hidden3)
action_advantage = kl.Lambda(lambda a: a[:, :] - tf.keras.backend.mean(a[:, :], keepdims=True), output_shape=(num_actions,))(
action_advantage)
X = kl.Add()([state_value, action_advantage])
model = tf.keras.models.Model(input, X, name='CarModel')
return model
class DQModel(tf.keras.Model):
def __init__(self, hidden_size=128, num_actions=3):
super(DQModel, self).__init__()
self.dense1 = kl.Dense(hidden_size, activation='relu')
self.dense2 = kl.Dense(hidden_size, activation='relu')
self.adv_dense = kl.Dense(hidden_size, activation='relu')
self.adv_out = kl.Dense(num_actions)
self.v_dense = kl.Dense(hidden_size, activation='relu')
self.v_out = kl.Dense(1)
self.lambda_layer = kl.Lambda(lambda x: x - tf.reduce_mean(x))
self.combine = kl.Add()
def call(self, input):
x = self.dense1(input)
x = self.dense2(x)
adv = self.adv_dense(x)
adv = self.adv_out(adv)
v = self.v_dense(x)
v = self.v_out(v)
norm_adv = self.lambda_layer(adv)
combined = self.combine([v, norm_adv])
return combined
class DQNAgent:
def __init__(self, fn=None, lr=0.001, gamma=0.95, batch_size=32):
# Coefficients are used for the loss terms.
self.gamma = gamma
self.lr = lr
self.current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.checkpoint_dir = 'checkpoints/'
self.model_name = 'DQN'
self.model_dir = self.checkpoint_dir + self.model_name
self.log_dir = 'logs/'
self.train_log_dir = self.log_dir + self.model_name
self.create_log_dir()
self.train_summary_writer = tf.summary.create_file_writer(self.train_log_dir)
self.fn = fn
self.EPS_START = 0.9
self.EPS_END = 0.5
self.steps_done = 0
self.EPS_DECAY = 100
self.steps_done = 0
self.batch_size = batch_size
self.TAU = 0.08
# Parameter updates
self.loss = tf.keras.losses.Huber()
self.optimizer = tf.optimizers.Adam(learning_rate=self.lr)
self.main_network = CarModel(num_actions=3, input_len=37)
self.target_network = CarModel(num_actions=3, input_len=37)
def create_log_dir(self):
if not os.path.exists(self.log_dir):
os.mkdir(self.log_dir)
if not os.path.exists(self.train_log_dir):
os.mkdir(self.train_log_dir)
if not os.path.exists(self.checkpoint_dir):
os.mkdir(self.checkpoint_dir)
if not os.path.exists(self.model_dir):
os.mkdir(self.model_dir)
def act(self, state, main_network):
# we need to do exploration vs exploitation
eps_threshold = self.EPS_END + (self.EPS_START - self.EPS_END) * \
math.exp(-1. * self.steps_done / self.EPS_DECAY)
if np.random.rand() < eps_threshold:
action = random.randint(0, 2)
else:
action = main_network.predict(np.expand_dims(state, axis=0))
action = np.argmax(action)
return action
def train_step_(self, replay_memory):
states, actions, rewards, new_states, terminal_flags = replay_memory.get_minibatch()
q_vals = self.main_network(new_states)
actions = np.argmax(q_vals, axis=1)
# The target network estimates the Q-values (in the next state s', new_states is passed!)
# for every transition in the minibatch
q_vals = self.target_network(new_states)
# Bellman equation. Multiplication with (1-terminal_flags) makes sure that
# if the game is over, targetQ=rewards
q_vals = np.array([q_vals[num, action] for num, action in enumerate(actions)])
target_q = rewards + (self.gamma * q_vals * (1 - terminal_flags))
loss = self.main_network.train_on_batch(states, target_q)
return loss
def update_network(self):
# update target network parameters slowly from primary network
for t, e in zip(self.main_network.trainable_variables, self.target_network.trainable_variables):
t.assign(t * (1 - self.TAU) + e * self.TAU)
def train(self, env, steps_per_epoch=128, epochs=10000):
# Every four actions a gradient descend step is performed
UPDATE_FREQ = 4
# Number of chosen actions between updating the target network.
NETW_UPDATE_FREQ = 10000
# Replay mem
REPLAY_MEMORY_START_SIZE = 33
# Create network model
self.main_network.compile(optimizer=tf.keras.optimizers.Adam(), loss='mse')
# Replay memory
my_replay_memory = ReplayMemory()
# Metrics
loss_avg = tf.keras.metrics.Mean()
train_reward_tot = tf.keras.metrics.Sum()
train_rew_comf_tot = tf.keras.metrics.Sum()
train_rew_eff_tot = tf.keras.metrics.Sum()
train_rew_safe_tot = tf.keras.metrics.Sum()
train_coll_rate = tf.keras.metrics.Mean()
train_speed_rate = tf.keras.metrics.Mean()
# Training loop: collect samples, send to optimizer, repeat updates times.
next_obs = env.reset(gui=False, numVehicles=40)
first_epoch = 0
try:
for epoch in range(first_epoch, epochs):
ep_rewards = 0
for step in range(steps_per_epoch):
# curr state
state = next_obs.copy()
# get action
action = self.act(state, self.main_network)
# do step
next_obs, rewards_info, done, collision = env.step(action)
# process obs and get rewards
avg_speed_perc = env.speed / env.target_speed
rewards_tot, R_comf, R_eff, R_safe = rewards_info
# Add experience
my_replay_memory.add_experience(action=action,
frame=next_obs,
reward=rewards_tot,
terminal=done)
# Update metrics
train_reward_tot.update_state(rewards_tot)
train_rew_comf_tot.update_state(R_comf)
train_rew_eff_tot.update_state(R_eff)
train_rew_safe_tot.update_state(R_safe)
train_coll_rate.update_state(collision)
train_speed_rate.update_state(avg_speed_perc)
# Train every UPDATE_FREQ times
if self.steps_done > REPLAY_MEMORY_START_SIZE:
loss_value = self.train_step_(my_replay_memory)
loss_avg.update_state(loss_value)
self.update_network()
else:
loss_avg.update_state(-1)
# Copy network from main to target every NETW_UPDATE_FREQ
if step % NETW_UPDATE_FREQ == 0 and step > REPLAY_MEMORY_START_SIZE:
self.target_network.set_weights(self.main_network.get_weights())
self.steps_done += 1
# Write
with self.train_summary_writer.as_default():
tf.summary.scalar('loss', loss_avg.result(), step=epoch)
tf.summary.scalar('reward_tot', train_reward_tot.result(), step=epoch)
tf.summary.scalar('rewards_comf', train_rew_comf_tot.result(), step=epoch)
tf.summary.scalar('rewards_eff', train_rew_eff_tot.result(), step=epoch)
tf.summary.scalar('rewards_safe', train_rew_safe_tot.result(), step=epoch)
tf.summary.scalar('collission_rate', train_coll_rate.result(), step=epoch)
tf.summary.scalar('avg speed wrt maximum', train_speed_rate.result(), step=epoch)
# Reset
train_reward_tot.reset_states()
train_rew_comf_tot.reset_states()
train_rew_eff_tot.reset_states()
train_rew_safe_tot.reset_states()
train_coll_rate.reset_states()
train_speed_rate.reset_states()
# Save model
if epoch % 1000 == 0:
tf.keras.models.save_model(self.main_network, self.model_dir + "/" + str(epoch) + "_main_network.hp5", save_format="h5")
tf.keras.models.save_model(self.target_network, self.model_dir + "/" + str(epoch) + "_target_network.hp5", save_format="h5")
except KeyboardInterrupt:
# self.model.save_weights(self.model_dir+"/model.ckpt")
tf.keras.models.save_model(self.main_network, self.model_dir + "/" + str(epoch) + "_main_network.hp5", save_format="h5")
tf.keras.models.save_model(self.target_network, self.model_dir + "/" + str(epoch) + "_target_network.hp5", save_format="h5")
env.close()
return 0