-
Notifications
You must be signed in to change notification settings - Fork 14
/
featurebooster.py
200 lines (165 loc) · 6.69 KB
/
featurebooster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F
def MLP(channels: List[int], do_bn: bool = False) -> nn.Module:
""" Multi-layer perceptron """
n = len(channels)
layers = []
for i in range(1, n):
layers.append(nn.Linear(channels[i - 1], channels[i]))
if i < (n-1):
if do_bn:
layers.append(nn.BatchNorm1d(channels[i]))
layers.append(nn.ReLU())
return nn.Sequential(*layers)
class KeypointEncoder(nn.Module):
""" Encoding of geometric properties using MLP """
def __init__(self, keypoint_dim: int, feature_dim: int, layers: List[int], dropout: bool = False, p: float = 0.1) -> None:
super().__init__()
self.encoder = MLP([keypoint_dim] + layers + [feature_dim])
self.use_dropout = dropout
self.dropout = nn.Dropout(p=p)
def forward(self, kpts):
if self.use_dropout:
return self.dropout(self.encoder(kpts))
return self.encoder(kpts)
class DescriptorEncoder(nn.Module):
""" Encoding of visual descriptor using MLP """
def __init__(self, feature_dim: int, layers: List[int], dropout: bool = False, p: float = 0.1) -> None:
super().__init__()
self.encoder = MLP([feature_dim] + layers + [feature_dim])
self.use_dropout = dropout
self.dropout = nn.Dropout(p=p)
def forward(self, descs):
residual = descs
if self.use_dropout:
return residual + self.dropout(self.encoder(descs))
return residual + self.encoder(descs)
class AFTAttention(nn.Module):
""" Attention-free attention """
def __init__(self, d_model: int, dropout: bool = False, p: float = 0.1) -> None:
super().__init__()
self.dim = d_model
self.query = nn.Linear(d_model, d_model)
self.key = nn.Linear(d_model, d_model)
self.value = nn.Linear(d_model, d_model)
self.proj = nn.Linear(d_model, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
self.use_dropout = dropout
self.dropout = nn.Dropout(p=p)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
q = self.query(x)
k = self.key(x)
v = self.value(x)
q = torch.sigmoid(q)
k = k.T
k = torch.softmax(k, dim=-1)
k = k.T
kv = (k * v).sum(dim=-2, keepdim=True)
x = q * kv
x = self.proj(x)
if self.use_dropout:
x = self.dropout(x)
x += residual
x = self.layer_norm(x)
return x
class PositionwiseFeedForward(nn.Module):
def __init__(self, feature_dim: int, dropout: bool = False, p: float = 0.1) -> None:
super().__init__()
self.mlp = MLP([feature_dim, feature_dim*2, feature_dim])
self.layer_norm = nn.LayerNorm(feature_dim, eps=1e-6)
self.use_dropout = dropout
self.dropout = nn.Dropout(p=p)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
x = self.mlp(x)
if self.use_dropout:
x = self.dropout(x)
x += residual
x = self.layer_norm(x)
return x
class AttentionalLayer(nn.Module):
def __init__(self, feature_dim: int, dropout: bool = False, p: float = 0.1):
super().__init__()
self.attn = AFTAttention(feature_dim, dropout=dropout, p=p)
self.ffn = PositionwiseFeedForward(feature_dim, dropout=dropout, p=p)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.attn(x)
x = self.ffn(x)
return x
class AttentionalNN(nn.Module):
def __init__(self, feature_dim: int, layer_num: int, dropout: bool = False, p: float = 0.1) -> None:
super().__init__()
self.layers = nn.ModuleList([
AttentionalLayer(feature_dim, dropout=dropout, p=p)
for _ in range(layer_num)])
def forward(self, desc: torch.Tensor) -> torch.Tensor:
for layer in self.layers:
desc = layer(desc)
return desc
class FeatureBooster(nn.Module):
default_config = {
'descriptor_dim': 128,
'keypoint_encoder': [32, 64, 128],
'Attentional_layers': 3,
'last_activation': 'relu',
'l2_normalization': True,
'output_dim': 128
}
def __init__(self, config, dropout=False, p=0.1, use_kenc=True, use_cross=True):
super().__init__()
self.config = {**self.default_config, **config}
self.use_kenc = use_kenc
self.use_cross = use_cross
if use_kenc:
self.kenc = KeypointEncoder(
self.config['keypoint_dim'], self.config['descriptor_dim'], self.config['keypoint_encoder'], dropout=dropout)
if self.config.get('descriptor_encoder', False):
self.denc = DescriptorEncoder(
self.config['descriptor_dim'], self.config['descriptor_encoder'], dropout=dropout)
else:
self.denc = None
if self.use_cross:
self.attn_proj = AttentionalNN(
feature_dim=self.config['descriptor_dim'], layer_num=self.config['Attentional_layers'], dropout=dropout)
self.final_proj = nn.Linear(
self.config['descriptor_dim'], self.config['output_dim'])
self.use_dropout = dropout
self.dropout = nn.Dropout(p=p)
self.layer_norm = nn.LayerNorm(self.config['descriptor_dim'], eps=1e-6)
if self.config.get('last_activation', False):
if self.config['last_activation'].lower() == 'relu':
self.last_activation = nn.ReLU()
elif self.config['last_activation'].lower() == 'sigmoid':
self.last_activation = nn.Sigmoid()
elif self.config['last_activation'].lower() == 'tanh':
self.last_activation = nn.Tanh()
else:
raise Exception('Not supported activation "%s".' % self.config['last_activation'])
else:
self.last_activation = None
def forward(self, desc, kpts):
## Self boosting
# Descriptor MLP encoder
if self.denc is not None:
desc = self.denc(desc)
# Geometric MLP encoder
if self.use_kenc:
desc = desc + self.kenc(kpts)
if self.use_dropout:
desc = self.dropout(desc)
## Cross boosting
# Multi-layer Transformer network.
if self.use_cross:
desc = self.attn_proj(self.layer_norm(desc))
## Post processing
# Final MLP projection
desc = self.final_proj(desc)
if self.last_activation is not None:
desc = self.last_activation(desc)
# L2 normalization
if self.config['l2_normalization']:
desc = F.normalize(desc, dim=-1)
return desc