forked from bwa-mem2/mm2-fast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
map.c
770 lines (714 loc) · 29.4 KB
/
map.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
/* The MIT License
Copyright (c) 2018- Dana-Farber Cancer Institute
2017-2018 Broad Institute, Inc.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Modified Copyright (C) 2021 Intel Corporation
Contacts: Saurabh Kalikar <[email protected]>;
Vasimuddin Md <[email protected]>; Sanchit Misra <[email protected]>;
Chirag Jain <[email protected]>; Heng Li <[email protected]>
*/
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include "kthread.h"
#include "kvec.h"
#include "kalloc.h"
#include "sdust.h"
#include "mmpriv.h"
#include "bseq.h"
#include "khash.h"
#include <x86intrin.h>
#ifdef MANUAL_PROFILING
extern uint64_t minimizer_lookup_time;
extern uint64_t rmq_time;
#endif
struct mm_tbuf_s {
void *km;
int rep_len, frag_gap;
};
mm_tbuf_t *mm_tbuf_init(void)
{
mm_tbuf_t *b;
b = (mm_tbuf_t*)calloc(1, sizeof(mm_tbuf_t));
if (!(mm_dbg_flag & 1)) b->km = km_init();
return b;
}
void mm_tbuf_destroy(mm_tbuf_t *b)
{
if (b == 0) return;
km_destroy(b->km);
free(b);
}
void *mm_tbuf_get_km(mm_tbuf_t *b)
{
return b->km;
}
static int mm_dust_minier(void *km, int n, mm128_t *a, int l_seq, const char *seq, int sdust_thres)
{
int n_dreg, j, k, u = 0;
const uint64_t *dreg;
sdust_buf_t *sdb;
if (sdust_thres <= 0) return n;
sdb = sdust_buf_init(km);
dreg = sdust_core((const uint8_t*)seq, l_seq, sdust_thres, 64, &n_dreg, sdb);
for (j = k = 0; j < n; ++j) { // squeeze out minimizers that significantly overlap with LCRs
int32_t qpos = (uint32_t)a[j].y>>1, span = a[j].x&0xff;
int32_t s = qpos - (span - 1), e = s + span;
while (u < n_dreg && (int32_t)dreg[u] <= s) ++u;
if (u < n_dreg && (int32_t)(dreg[u]>>32) < e) {
int v, l = 0;
for (v = u; v < n_dreg && (int32_t)(dreg[v]>>32) < e; ++v) { // iterate over LCRs overlapping this minimizer
int ss = s > (int32_t)(dreg[v]>>32)? s : dreg[v]>>32;
int ee = e < (int32_t)dreg[v]? e : (uint32_t)dreg[v];
l += ee - ss;
}
if (l <= span>>1) a[k++] = a[j]; // keep the minimizer if less than half of it falls in masked region
} else a[k++] = a[j];
}
sdust_buf_destroy(sdb);
return k; // the new size
}
static void collect_minimizers(void *km, const mm_mapopt_t *opt, const mm_idx_t *mi, int n_segs, const int *qlens, const char **seqs, mm128_v *mv)
{
int i, n, sum = 0;
mv->n = 0;
for (i = n = 0; i < n_segs; ++i) {
size_t j;
mm_sketch(km, seqs[i], qlens[i], mi->w, mi->k, i, mi->flag&MM_I_HPC, mv);
for (j = n; j < mv->n; ++j)
mv->a[j].y += sum << 1;
if (opt->sdust_thres > 0) // mask low-complexity minimizers
mv->n = n + mm_dust_minier(km, mv->n - n, mv->a + n, qlens[i], seqs[i], opt->sdust_thres);
sum += qlens[i], n = mv->n;
}
}
#include "ksort.h"
#define heap_lt(a, b) ((a).x > (b).x)
KSORT_INIT(heap, mm128_t, heap_lt)
static inline int skip_seed(int flag, uint64_t r, const mm_seed_t *q, const char *qname, int qlen, const mm_idx_t *mi, int *is_self)
{
*is_self = 0;
if (qname && (flag & (MM_F_NO_DIAG|MM_F_NO_DUAL))) {
const mm_idx_seq_t *s = &mi->seq[r>>32];
int cmp;
cmp = strcmp(qname, s->name);
if ((flag&MM_F_NO_DIAG) && cmp == 0 && (int)s->len == qlen) {
if ((uint32_t)r>>1 == (q->q_pos>>1)) return 1; // avoid the diagnonal anchors
if ((r&1) == (q->q_pos&1)) *is_self = 1; // this flag is used to avoid spurious extension on self chain
}
if ((flag&MM_F_NO_DUAL) && cmp > 0) // all-vs-all mode: map once
return 1;
}
if (flag & (MM_F_FOR_ONLY|MM_F_REV_ONLY)) {
if ((r&1) == (q->q_pos&1)) { // forward strand
if (flag & MM_F_REV_ONLY) return 1;
} else {
if (flag & MM_F_FOR_ONLY) return 1;
}
}
return 0;
}
static mm128_t *collect_seed_hits_heap(void *km, const mm_mapopt_t *opt, int max_occ, const mm_idx_t *mi, const char *qname, const mm128_v *mv, int qlen, int64_t *n_a, int *rep_len,
int *n_mini_pos, uint64_t **mini_pos)
{
int i, n_m, heap_size = 0;
int64_t j, n_for = 0, n_rev = 0;
mm_seed_t *m;
mm128_t *a, *heap;
m = mm_collect_matches(km, &n_m, qlen, max_occ, opt->max_max_occ, opt->occ_dist, mi, mv, n_a, rep_len, n_mini_pos, mini_pos);
heap = (mm128_t*)kmalloc(km, n_m * sizeof(mm128_t));
//klocwork fix
memset(heap, 0, n_m * sizeof(mm128_t));
a = (mm128_t*)kmalloc(km, *n_a * sizeof(mm128_t));
for (i = 0, heap_size = 0; i < n_m; ++i) {
if (m[i].n > 0) {
heap[heap_size].x = m[i].cr[0];
heap[heap_size].y = (uint64_t)i<<32;
++heap_size;
}
}
ks_heapmake_heap(heap_size, heap);
while (heap_size > 0) {
mm_seed_t *q = &m[heap->y>>32];
mm128_t *p;
uint64_t r = heap->x;
int32_t is_self, rpos = (uint32_t)r >> 1;
if (!skip_seed(opt->flag, r, q, qname, qlen, mi, &is_self)) {
if ((r&1) == (q->q_pos&1)) { // forward strand
p = &a[n_for++];
p->x = (r&0xffffffff00000000ULL) | rpos;
p->y = (uint64_t)q->q_span << 32 | q->q_pos >> 1;
} else { // reverse strand
p = &a[(*n_a) - (++n_rev)];
p->x = 1ULL<<63 | (r&0xffffffff00000000ULL) | rpos;
p->y = (uint64_t)q->q_span << 32 | (qlen - ((q->q_pos>>1) + 1 - q->q_span) - 1);
}
p->y |= (uint64_t)q->seg_id << MM_SEED_SEG_SHIFT;
if (q->is_tandem) p->y |= MM_SEED_TANDEM;
if (is_self) p->y |= MM_SEED_SELF;
}
// update the heap
if ((uint32_t)heap->y < q->n - 1) {
++heap[0].y;
heap[0].x = m[heap[0].y>>32].cr[(uint32_t)heap[0].y];
} else {
heap[0] = heap[heap_size - 1];
--heap_size;
}
ks_heapdown_heap(0, heap_size, heap);
}
kfree(km, m);
kfree(km, heap);
// reverse anchors on the reverse strand, as they are in the descending order
for (j = 0; j < n_rev>>1; ++j) {
mm128_t t = a[(*n_a) - 1 - j];
a[(*n_a) - 1 - j] = a[(*n_a) - (n_rev - j)];
a[(*n_a) - (n_rev - j)] = t;
}
if (*n_a > n_for + n_rev) {
memmove(a + n_for, a + (*n_a) - n_rev, n_rev * sizeof(mm128_t));
*n_a = n_for + n_rev;
}
return a;
}
static mm128_t *collect_seed_hits(void *km, const mm_mapopt_t *opt, int max_occ, const mm_idx_t *mi, const char *qname, const mm128_v *mv, int qlen, int64_t *n_a, int *rep_len,
int *n_mini_pos, uint64_t **mini_pos)
{
#ifdef MANUAL_PROFILING
uint64_t lookup_start = __rdtsc();
#endif
int i, n_m;
mm_seed_t *m;
mm128_t *a;
m = mm_collect_matches(km, &n_m, qlen, max_occ, opt->max_max_occ, opt->occ_dist, mi, mv, n_a, rep_len, n_mini_pos, mini_pos);
a = (mm128_t*)kmalloc(km, *n_a * sizeof(mm128_t));
for (i = 0, *n_a = 0; i < n_m; ++i) {
mm_seed_t *q = &m[i];
const uint64_t *r = q->cr;
uint32_t k;
for (k = 0; k < q->n; ++k) {
int32_t is_self, rpos = (uint32_t)r[k] >> 1;
mm128_t *p;
if (skip_seed(opt->flag, r[k], q, qname, qlen, mi, &is_self)) continue;
p = &a[(*n_a)++];
if ((r[k]&1) == (q->q_pos&1)) { // forward strand
p->x = (r[k]&0xffffffff00000000ULL) | rpos;
p->y = (uint64_t)q->q_span << 32 | q->q_pos >> 1;
} else if (!(opt->flag & MM_F_QSTRAND)) { // reverse strand and not in the query-strand mode
p->x = 1ULL<<63 | (r[k]&0xffffffff00000000ULL) | rpos;
p->y = (uint64_t)q->q_span << 32 | (qlen - ((q->q_pos>>1) + 1 - q->q_span) - 1);
} else { // reverse strand; query-strand
int32_t len = mi->seq[r[k]>>32].len;
p->x = 1ULL<<63 | (r[k]&0xffffffff00000000ULL) | (len - (rpos + 1 - q->q_span) - 1); // coordinate only accurate for non-HPC seeds
p->y = (uint64_t)q->q_span << 32 | q->q_pos >> 1;
}
p->y |= (uint64_t)q->seg_id << MM_SEED_SEG_SHIFT;
if (q->is_tandem) p->y |= MM_SEED_TANDEM;
if (is_self) p->y |= MM_SEED_SELF;
}
}
kfree(km, m);
radix_sort_128x(a, a + (*n_a));
#ifdef MANUAL_PROFILING
minimizer_lookup_time += __rdtsc() - lookup_start;
#endif
return a;
}
static void chain_post(const mm_mapopt_t *opt, int max_chain_gap_ref, const mm_idx_t *mi, void *km, int qlen, int n_segs, const int *qlens, int *n_regs, mm_reg1_t *regs, mm128_t *a)
{
if (!(opt->flag & MM_F_ALL_CHAINS)) { // don't choose primary mapping(s)
mm_set_parent(km, opt->mask_level, opt->mask_len, *n_regs, regs, opt->a * 2 + opt->b, opt->flag&MM_F_HARD_MLEVEL, opt->alt_drop);
if (n_segs <= 1) mm_select_sub(km, opt->pri_ratio, mi->k*2, opt->best_n, 1, opt->max_gap * 0.8, n_regs, regs);
else mm_select_sub_multi(km, opt->pri_ratio, 0.2f, 0.7f, max_chain_gap_ref, mi->k*2, opt->best_n, n_segs, qlens, n_regs, regs);
}
}
static mm_reg1_t *align_regs(const mm_mapopt_t *opt, const mm_idx_t *mi, void *km, int qlen, const char *seq, int *n_regs, mm_reg1_t *regs, mm128_t *a)
{
if (!(opt->flag & MM_F_CIGAR)) return regs;
regs = mm_align_skeleton(km, opt, mi, qlen, seq, n_regs, regs, a); // this calls mm_filter_regs()
if (!(opt->flag & MM_F_ALL_CHAINS)) { // don't choose primary mapping(s)
mm_set_parent(km, opt->mask_level, opt->mask_len, *n_regs, regs, opt->a * 2 + opt->b, opt->flag&MM_F_HARD_MLEVEL, opt->alt_drop);
mm_select_sub(km, opt->pri_ratio, mi->k*2, opt->best_n, 0, opt->max_gap * 0.8, n_regs, regs);
mm_set_sam_pri(*n_regs, regs);
}
return regs;
}
void mm_map_frag(const mm_idx_t *mi, int n_segs, const int *qlens, const char **seqs, int *n_regs, mm_reg1_t **regs, mm_tbuf_t *b, const mm_mapopt_t *opt, const char *qname)
{
int i, j, rep_len, qlen_sum, n_regs0, n_mini_pos;
int max_chain_gap_qry, max_chain_gap_ref, is_splice = !!(opt->flag & MM_F_SPLICE), is_sr = !!(opt->flag & MM_F_SR);
uint32_t hash;
int64_t n_a;
uint64_t *u, *mini_pos;
mm128_t *a;
mm128_v mv = {0,0,0};
mm_reg1_t *regs0;
km_stat_t kmst;
float chn_pen_gap, chn_pen_skip;
for (i = 0, qlen_sum = 0; i < n_segs; ++i)
qlen_sum += qlens[i], n_regs[i] = 0, regs[i] = 0;
if (qlen_sum == 0 || n_segs <= 0 || n_segs > MM_MAX_SEG) return;
if (opt->max_qlen > 0 && qlen_sum > opt->max_qlen) return;
hash = qname && !(opt->flag & MM_F_NO_HASH_NAME)? __ac_X31_hash_string(qname) : 0;
hash ^= __ac_Wang_hash(qlen_sum) + __ac_Wang_hash(opt->seed);
hash = __ac_Wang_hash(hash);
collect_minimizers(b->km, opt, mi, n_segs, qlens, seqs, &mv);
if (opt->q_occ_frac > 0.0f) mm_seed_mz_flt(b->km, &mv, opt->mid_occ, opt->q_occ_frac);
if (opt->flag & MM_F_HEAP_SORT) a = collect_seed_hits_heap(b->km, opt, opt->mid_occ, mi, qname, &mv, qlen_sum, &n_a, &rep_len, &n_mini_pos, &mini_pos);
else a = collect_seed_hits(b->km, opt, opt->mid_occ, mi, qname, &mv, qlen_sum, &n_a, &rep_len, &n_mini_pos, &mini_pos);
if (mm_dbg_flag & MM_DBG_PRINT_SEED) {
fprintf(stderr, "RS\t%d\n", rep_len);
for (i = 0; i < n_a; ++i)
fprintf(stderr, "SD\t%s\t%d\t%c\t%d\t%d\t%d\n", mi->seq[a[i].x<<1>>33].name, (int32_t)a[i].x, "+-"[a[i].x>>63], (int32_t)a[i].y, (int32_t)(a[i].y>>32&0xff),
i == 0? 0 : ((int32_t)a[i].y - (int32_t)a[i-1].y) - ((int32_t)a[i].x - (int32_t)a[i-1].x));
}
// set max chaining gap on the query and the reference sequence
if (is_sr)
max_chain_gap_qry = qlen_sum > opt->max_gap? qlen_sum : opt->max_gap;
else max_chain_gap_qry = opt->max_gap;
if (opt->max_gap_ref > 0) {
max_chain_gap_ref = opt->max_gap_ref; // always honor mm_mapopt_t::max_gap_ref if set
} else if (opt->max_frag_len > 0) {
max_chain_gap_ref = opt->max_frag_len - qlen_sum;
if (max_chain_gap_ref < opt->max_gap) max_chain_gap_ref = opt->max_gap;
} else max_chain_gap_ref = opt->max_gap;
chn_pen_gap = opt->chain_gap_scale * 0.01 * mi->k;
chn_pen_skip = opt->chain_skip_scale * 0.01 * mi->k;
if (opt->flag & MM_F_RMQ) {
a = mg_lchain_rmq(opt->max_gap, opt->rmq_inner_dist, opt->bw, opt->max_chain_skip, opt->rmq_size_cap, opt->min_cnt, opt->min_chain_score,
chn_pen_gap, chn_pen_skip, n_a, a, &n_regs0, &u, b->km);
} else {
a = mg_lchain_dp(max_chain_gap_ref, max_chain_gap_qry, opt->bw, opt->max_chain_skip, opt->max_chain_iter, opt->min_cnt, opt->min_chain_score,
chn_pen_gap, chn_pen_skip, is_splice, n_segs, n_a, a, &n_regs0, &u, b->km);
}
if (opt->bw_long > opt->bw && (opt->flag & (MM_F_SPLICE|MM_F_SR|MM_F_NO_LJOIN)) == 0 && n_segs == 1 && n_regs0 > 1) { // re-chain/long-join for long sequences
int32_t st = (int32_t)a[0].y, en = (int32_t)a[(int32_t)u[0] - 1].y;
if (qlen_sum - (en - st) > opt->rmq_rescue_size || en - st > qlen_sum * opt->rmq_rescue_ratio) {
int32_t i;
for (i = 0, n_a = 0; i < n_regs0; ++i) n_a += (int32_t)u[i];
kfree(b->km, u);
radix_sort_128x(a, a + n_a);
a = mg_lchain_rmq(opt->max_gap, opt->rmq_inner_dist, opt->bw_long, opt->max_chain_skip, opt->rmq_size_cap, opt->min_cnt, opt->min_chain_score,
chn_pen_gap, chn_pen_skip, n_a, a, &n_regs0, &u, b->km);
}
} else if (opt->max_occ > opt->mid_occ && rep_len > 0 && !(opt->flag & MM_F_RMQ)) { // re-chain, mostly for short reads
int rechain = 0;
if (n_regs0 > 0) { // test if the best chain has all the segments
int n_chained_segs = 1, max = 0, max_i = -1, max_off = -1, off = 0;
for (i = 0; i < n_regs0; ++i) { // find the best chain
if (max < (int)(u[i]>>32)) max = u[i]>>32, max_i = i, max_off = off;
off += (uint32_t)u[i];
}
for (i = 1; i < (int32_t)u[max_i]; ++i) // count the number of segments in the best chain
if ((a[max_off+i].y&MM_SEED_SEG_MASK) != (a[max_off+i-1].y&MM_SEED_SEG_MASK))
++n_chained_segs;
if (n_chained_segs < n_segs)
rechain = 1;
} else rechain = 1;
if (rechain) { // redo chaining with a higher max_occ threshold
kfree(b->km, a);
kfree(b->km, u);
kfree(b->km, mini_pos);
if (opt->flag & MM_F_HEAP_SORT) a = collect_seed_hits_heap(b->km, opt, opt->max_occ, mi, qname, &mv, qlen_sum, &n_a, &rep_len, &n_mini_pos, &mini_pos);
else a = collect_seed_hits(b->km, opt, opt->max_occ, mi, qname, &mv, qlen_sum, &n_a, &rep_len, &n_mini_pos, &mini_pos);
a = mg_lchain_dp(max_chain_gap_ref, max_chain_gap_qry, opt->bw, opt->max_chain_skip, opt->max_chain_iter, opt->min_cnt, opt->min_chain_score,
chn_pen_gap, chn_pen_skip, is_splice, n_segs, n_a, a, &n_regs0, &u, b->km);
}
}
b->frag_gap = max_chain_gap_ref;
b->rep_len = rep_len;
regs0 = mm_gen_regs(b->km, hash, qlen_sum, n_regs0, u, a, !!(opt->flag&MM_F_QSTRAND));
if (mi->n_alt) {
mm_mark_alt(mi, n_regs0, regs0);
mm_hit_sort(b->km, &n_regs0, regs0, opt->alt_drop); // this step can be merged into mm_gen_regs(); will do if this shows up in profile
}
if (mm_dbg_flag & (MM_DBG_PRINT_SEED|MM_DBG_PRINT_CHAIN))
for (j = 0; j < n_regs0; ++j)
for (i = regs0[j].as; i < regs0[j].as + regs0[j].cnt; ++i)
fprintf(stderr, "CN\t%d\t%s\t%d\t%c\t%d\t%d\t%d\n", j, mi->seq[a[i].x<<1>>33].name, (int32_t)a[i].x, "+-"[a[i].x>>63], (int32_t)a[i].y, (int32_t)(a[i].y>>32&0xff),
i == regs0[j].as? 0 : ((int32_t)a[i].y - (int32_t)a[i-1].y) - ((int32_t)a[i].x - (int32_t)a[i-1].x));
chain_post(opt, max_chain_gap_ref, mi, b->km, qlen_sum, n_segs, qlens, &n_regs0, regs0, a);
if (!is_sr && !(opt->flag&MM_F_QSTRAND)) {
mm_est_err(mi, qlen_sum, n_regs0, regs0, a, n_mini_pos, mini_pos);
n_regs0 = mm_filter_strand_retained(n_regs0, regs0);
}
if (n_segs == 1) { // uni-segment
regs0 = align_regs(opt, mi, b->km, qlens[0], seqs[0], &n_regs0, regs0, a);
regs0 = (mm_reg1_t*)realloc(regs0, sizeof(*regs0) * n_regs0);
mm_set_mapq(b->km, n_regs0, regs0, opt->min_chain_score, opt->a, rep_len, is_sr);
n_regs[0] = n_regs0, regs[0] = regs0;
} else { // multi-segment
mm_seg_t *seg;
seg = mm_seg_gen(b->km, hash, n_segs, qlens, n_regs0, regs0, n_regs, regs, a); // split fragment chain to separate segment chains
free(regs0);
for (i = 0; i < n_segs; ++i) {
mm_set_parent(b->km, opt->mask_level, opt->mask_len, n_regs[i], regs[i], opt->a * 2 + opt->b, opt->flag&MM_F_HARD_MLEVEL, opt->alt_drop); // update mm_reg1_t::parent
regs[i] = align_regs(opt, mi, b->km, qlens[i], seqs[i], &n_regs[i], regs[i], seg[i].a);
mm_set_mapq(b->km, n_regs[i], regs[i], opt->min_chain_score, opt->a, rep_len, is_sr);
}
mm_seg_free(b->km, n_segs, seg);
if (n_segs == 2 && opt->pe_ori >= 0 && (opt->flag&MM_F_CIGAR))
mm_pair(b->km, max_chain_gap_ref, opt->pe_bonus, opt->a * 2 + opt->b, opt->a, qlens, n_regs, regs); // pairing
}
kfree(b->km, mv.a);
kfree(b->km, a);
kfree(b->km, u);
kfree(b->km, mini_pos);
if (b->km) {
km_stat(b->km, &kmst);
if (mm_dbg_flag & MM_DBG_PRINT_QNAME)
fprintf(stderr, "QM\t%s\t%d\tcap=%ld,nCore=%ld,largest=%ld\n", qname, qlen_sum, kmst.capacity, kmst.n_cores, kmst.largest);
assert(kmst.n_blocks == kmst.n_cores); // otherwise, there is a memory leak
if (kmst.largest > 1U<<28 || (opt->cap_kalloc > 0 && kmst.capacity > opt->cap_kalloc)) {
if (mm_dbg_flag & MM_DBG_PRINT_QNAME)
fprintf(stderr, "[W::%s] reset thread-local memory after read %s\n", __func__, qname);
km_destroy(b->km);
b->km = km_init();
}
}
}
mm_reg1_t *mm_map(const mm_idx_t *mi, int qlen, const char *seq, int *n_regs, mm_tbuf_t *b, const mm_mapopt_t *opt, const char *qname)
{
mm_reg1_t *regs;
mm_map_frag(mi, 1, &qlen, &seq, n_regs, ®s, b, opt, qname);
return regs;
}
/**************************
* Multi-threaded mapping *
**************************/
typedef struct {
int n_processed, n_threads, n_fp;
int64_t mini_batch_size;
const mm_mapopt_t *opt;
mm_bseq_file_t **fp;
const mm_idx_t *mi;
kstring_t str;
int n_parts;
uint32_t *rid_shift;
FILE *fp_split, **fp_parts;
} pipeline_t;
typedef struct {
const pipeline_t *p;
int n_seq, n_frag;
mm_bseq1_t *seq;
int *n_reg, *seg_off, *n_seg, *rep_len, *frag_gap;
mm_reg1_t **reg;
mm_tbuf_t **buf;
} step_t;
static void worker_for(void *_data, long i, int tid) // kt_for() callback
{
step_t *s = (step_t*)_data;
int qlens[MM_MAX_SEG], j, off = s->seg_off[i], pe_ori = s->p->opt->pe_ori;
const char *qseqs[MM_MAX_SEG];
double t = 0.0;
mm_tbuf_t *b = s->buf[tid];
assert(s->n_seg[i] <= MM_MAX_SEG);
//klocwork fix
memset(&qlens[0], 0, MM_MAX_SEG*sizeof(int));
if (mm_dbg_flag & MM_DBG_PRINT_QNAME) {
fprintf(stderr, "QR\t%s\t%d\t%d\n", s->seq[off].name, tid, s->seq[off].l_seq);
t = realtime();
}
for (j = 0; j < s->n_seg[i]; ++j) {
if (s->n_seg[i] == 2 && ((j == 0 && (pe_ori>>1&1)) || (j == 1 && (pe_ori&1))))
mm_revcomp_bseq(&s->seq[off + j]);
qlens[j] = s->seq[off + j].l_seq;
qseqs[j] = s->seq[off + j].seq;
}
if (s->p->opt->flag & MM_F_INDEPEND_SEG) {
for (j = 0; j < s->n_seg[i]; ++j) {
mm_map_frag(s->p->mi, 1, &qlens[j], &qseqs[j], &s->n_reg[off+j], &s->reg[off+j], b, s->p->opt, s->seq[off+j].name);
s->rep_len[off + j] = b->rep_len;
s->frag_gap[off + j] = b->frag_gap;
}
} else {
mm_map_frag(s->p->mi, s->n_seg[i], qlens, qseqs, &s->n_reg[off], &s->reg[off], b, s->p->opt, s->seq[off].name);
for (j = 0; j < s->n_seg[i]; ++j) {
s->rep_len[off + j] = b->rep_len;
s->frag_gap[off + j] = b->frag_gap;
}
}
for (j = 0; j < s->n_seg[i]; ++j) // flip the query strand and coordinate to the original read strand
if (s->n_seg[i] == 2 && ((j == 0 && (pe_ori>>1&1)) || (j == 1 && (pe_ori&1)))) {
int k, t;
mm_revcomp_bseq(&s->seq[off + j]);
for (k = 0; k < s->n_reg[off + j]; ++k) {
mm_reg1_t *r = &s->reg[off + j][k];
t = r->qs;
r->qs = qlens[j] - r->qe;
r->qe = qlens[j] - t;
r->rev = !r->rev;
}
}
if (mm_dbg_flag & MM_DBG_PRINT_QNAME)
fprintf(stderr, "QT\t%s\t%d\t%.6f\n", s->seq[off].name, tid, realtime() - t);
}
static void merge_hits(step_t *s)
{
int f, i, k0, k, max_seg = 0, *n_reg_part, *rep_len_part, *frag_gap_part, *qlens;
void *km;
FILE **fp = s->p->fp_parts;
const mm_mapopt_t *opt = s->p->opt;
km = km_init();
for (f = 0; f < s->n_frag; ++f)
max_seg = max_seg > s->n_seg[f]? max_seg : s->n_seg[f];
qlens = CALLOC(int, max_seg + s->p->n_parts * 3);
n_reg_part = qlens + max_seg;
rep_len_part = n_reg_part + s->p->n_parts;
frag_gap_part = rep_len_part + s->p->n_parts;
for (f = 0, k = k0 = 0; f < s->n_frag; ++f) {
k0 = k;
for (i = 0; i < s->n_seg[f]; ++i, ++k) {
int j, l, t, rep_len = 0;
qlens[i] = s->seq[k].l_seq;
for (j = 0, s->n_reg[k] = 0; j < s->p->n_parts; ++j) {
mm_err_fread(&n_reg_part[j], sizeof(int), 1, fp[j]);
mm_err_fread(&rep_len_part[j], sizeof(int), 1, fp[j]);
mm_err_fread(&frag_gap_part[j], sizeof(int), 1, fp[j]);
s->n_reg[k] += n_reg_part[j];
if (rep_len < rep_len_part[j])
rep_len = rep_len_part[j];
}
s->reg[k] = CALLOC(mm_reg1_t, s->n_reg[k]);
for (j = 0, l = 0; j < s->p->n_parts; ++j) {
for (t = 0; t < n_reg_part[j]; ++t, ++l) {
mm_reg1_t *r = &s->reg[k][l];
uint32_t capacity;
mm_err_fread(r, sizeof(mm_reg1_t), 1, fp[j]);
//klocwork fix
assert(INT_MIN <= r->rid && r->rid <= INT_MAX);
r->rid += s->p->rid_shift[j];
if (opt->flag & MM_F_CIGAR) {
mm_err_fread(&capacity, 4, 1, fp[j]);
//klocwork fix
assert(0 <= capacity && capacity <= UINT_MAX);
r->p = (mm_extra_t*)calloc(capacity, 4);
r->p->capacity = capacity;
mm_err_fread(r->p, r->p->capacity, 4, fp[j]);
}
}
}
if (!(opt->flag&MM_F_SR) && s->seq[k].l_seq >= opt->rank_min_len)
mm_update_dp_max(s->seq[k].l_seq, s->n_reg[k], s->reg[k], opt->rank_frac, opt->a, opt->b);
for (j = 0; j < s->n_reg[k]; ++j) {
mm_reg1_t *r = &s->reg[k][j];
if (r->p) r->p->dp_max2 = 0; // reset ->dp_max2 as mm_set_parent() doesn't clear it; necessary with mm_update_dp_max()
r->subsc = 0; // this may not be necessary
r->n_sub = 0; // n_sub will be an underestimate as we don't see all the chains now, but it can't be accurate anyway
}
mm_hit_sort(km, &s->n_reg[k], s->reg[k], opt->alt_drop);
mm_set_parent(km, opt->mask_level, opt->mask_len, s->n_reg[k], s->reg[k], opt->a * 2 + opt->b, opt->flag&MM_F_HARD_MLEVEL, opt->alt_drop);
if (!(opt->flag & MM_F_ALL_CHAINS)) {
mm_select_sub(km, opt->pri_ratio, s->p->mi->k*2, opt->best_n, 0, opt->max_gap * 0.8, &s->n_reg[k], s->reg[k]);
mm_set_sam_pri(s->n_reg[k], s->reg[k]);
}
mm_set_mapq(km, s->n_reg[k], s->reg[k], opt->min_chain_score, opt->a, rep_len, !!(opt->flag & MM_F_SR));
}
if (s->n_seg[f] == 2 && opt->pe_ori >= 0 && (opt->flag&MM_F_CIGAR))
mm_pair(km, frag_gap_part[0], opt->pe_bonus, opt->a * 2 + opt->b, opt->a, qlens, &s->n_reg[k0], &s->reg[k0]);
}
free(qlens);
km_destroy(km);
}
static void *worker_pipeline(void *shared, int step, void *in)
{
int i, j, k;
pipeline_t *p = (pipeline_t*)shared;
if (step == 0) { // step 0: read sequences
int with_qual = (!!(p->opt->flag & MM_F_OUT_SAM) && !(p->opt->flag & MM_F_NO_QUAL));
int with_comment = !!(p->opt->flag & MM_F_COPY_COMMENT);
int frag_mode = (p->n_fp > 1 || !!(p->opt->flag & MM_F_FRAG_MODE));
step_t *s;
s = (step_t*)calloc(1, sizeof(step_t));
if (p->n_fp > 1) s->seq = mm_bseq_read_frag2(p->n_fp, p->fp, p->mini_batch_size, with_qual, with_comment, &s->n_seq);
else s->seq = mm_bseq_read3(p->fp[0], p->mini_batch_size, with_qual, with_comment, frag_mode, &s->n_seq);
if (s->seq) {
s->p = p;
for (i = 0; i < s->n_seq; ++i)
s->seq[i].rid = p->n_processed++;
s->buf = (mm_tbuf_t**)calloc(p->n_threads, sizeof(mm_tbuf_t*));
for (i = 0; i < p->n_threads; ++i)
s->buf[i] = mm_tbuf_init();
s->n_reg = (int*)calloc(5 * s->n_seq, sizeof(int));
s->seg_off = s->n_reg + s->n_seq; // seg_off, n_seg, rep_len and frag_gap are allocated together with n_reg
s->n_seg = s->seg_off + s->n_seq;
s->rep_len = s->n_seg + s->n_seq;
s->frag_gap = s->rep_len + s->n_seq;
s->reg = (mm_reg1_t**)calloc(s->n_seq, sizeof(mm_reg1_t*));
for (i = 1, j = 0; i <= s->n_seq; ++i)
if (i == s->n_seq || !frag_mode || !mm_qname_same(s->seq[i-1].name, s->seq[i].name)) {
s->n_seg[s->n_frag] = i - j;
s->seg_off[s->n_frag++] = j;
j = i;
}
return s;
} else free(s);
} else if (step == 1) { // step 1: map
if (p->n_parts > 0) merge_hits((step_t*)in);
else kt_for(p->n_threads, worker_for, in, ((step_t*)in)->n_frag);
return in;
} else if (step == 2) { // step 2: output
void *km = 0;
step_t *s = (step_t*)in;
const mm_idx_t *mi = p->mi;
for (i = 0; i < p->n_threads; ++i) mm_tbuf_destroy(s->buf[i]);
free(s->buf);
if ((p->opt->flag & MM_F_OUT_CS) && !(mm_dbg_flag & MM_DBG_NO_KALLOC)) km = km_init();
for (k = 0; k < s->n_frag; ++k) {
int seg_st = s->seg_off[k], seg_en = s->seg_off[k] + s->n_seg[k];
#ifndef DISABLE_OUTPUT
for (i = seg_st; i < seg_en; ++i) {
mm_bseq1_t *t = &s->seq[i];
if (p->opt->split_prefix && p->n_parts == 0) { // then write to temporary files
mm_err_fwrite(&s->n_reg[i], sizeof(int), 1, p->fp_split);
mm_err_fwrite(&s->rep_len[i], sizeof(int), 1, p->fp_split);
mm_err_fwrite(&s->frag_gap[i], sizeof(int), 1, p->fp_split);
for (j = 0; j < s->n_reg[i]; ++j) {
mm_reg1_t *r = &s->reg[i][j];
mm_err_fwrite(r, sizeof(mm_reg1_t), 1, p->fp_split);
if (p->opt->flag & MM_F_CIGAR) {
mm_err_fwrite(&r->p->capacity, 4, 1, p->fp_split);
mm_err_fwrite(r->p, r->p->capacity, 4, p->fp_split);
}
}
} else if (s->n_reg[i] > 0) { // the query has at least one hit
for (j = 0; j < s->n_reg[i]; ++j) {
mm_reg1_t *r = &s->reg[i][j];
assert(!r->sam_pri || r->id == r->parent);
if ((p->opt->flag & MM_F_NO_PRINT_2ND) && r->id != r->parent)
continue;
if (p->opt->flag & MM_F_OUT_SAM)
mm_write_sam3(&p->str, mi, t, i - seg_st, j, s->n_seg[k], &s->n_reg[seg_st], (const mm_reg1_t*const*)&s->reg[seg_st], km, p->opt->flag, s->rep_len[i]);
else
mm_write_paf3(&p->str, mi, t, r, km, p->opt->flag, s->rep_len[i]);
mm_err_puts(p->str.s);
}
} else if ((p->opt->flag & MM_F_PAF_NO_HIT) || ((p->opt->flag & MM_F_OUT_SAM) && !(p->opt->flag & MM_F_SAM_HIT_ONLY))) { // output an empty hit, if requested
if (p->opt->flag & MM_F_OUT_SAM)
mm_write_sam3(&p->str, mi, t, i - seg_st, -1, s->n_seg[k], &s->n_reg[seg_st], (const mm_reg1_t*const*)&s->reg[seg_st], km, p->opt->flag, s->rep_len[i]);
else
mm_write_paf3(&p->str, mi, t, 0, 0, p->opt->flag, s->rep_len[i]);
mm_err_puts(p->str.s);
}
}
#endif
for (i = seg_st; i < seg_en; ++i) {
for (j = 0; j < s->n_reg[i]; ++j) free(s->reg[i][j].p);
free(s->reg[i]);
free(s->seq[i].seq); free(s->seq[i].name);
if (s->seq[i].qual) free(s->seq[i].qual);
if (s->seq[i].comment) free(s->seq[i].comment);
}
}
free(s->reg); free(s->n_reg); free(s->seq); // seg_off, n_seg, rep_len and frag_gap were allocated with reg; no memory leak here
km_destroy(km);
if (mm_verbose >= 3)
fprintf(stderr, "[M::%s::%.3f*%.2f] mapped %d sequences\n", __func__, realtime() - mm_realtime0, cputime() / (realtime() - mm_realtime0), s->n_seq);
free(s);
}
return 0;
}
static mm_bseq_file_t **open_bseqs(int n, const char **fn)
{
mm_bseq_file_t **fp;
int i, j;
fp = (mm_bseq_file_t**)calloc(n, sizeof(mm_bseq_file_t*));
for (i = 0; i < n; ++i) {
if ((fp[i] = mm_bseq_open(fn[i])) == 0) {
if (mm_verbose >= 1)
fprintf(stderr, "ERROR: failed to open file '%s': %s\n", fn[i], strerror(errno));
for (j = 0; j < i; ++j)
mm_bseq_close(fp[j]);
free(fp);
return 0;
}
}
return fp;
}
int mm_map_file_frag(const mm_idx_t *idx, int n_segs, const char **fn, const mm_mapopt_t *opt, int n_threads)
{
int i, pl_threads;
pipeline_t pl;
if (n_segs < 1) return -1;
memset(&pl, 0, sizeof(pipeline_t));
pl.n_fp = n_segs;
pl.fp = open_bseqs(pl.n_fp, fn);
if (pl.fp == 0) return -1;
pl.opt = opt, pl.mi = idx;
pl.n_threads = n_threads > 1? n_threads : 1;
pl.mini_batch_size = opt->mini_batch_size;
if (opt->split_prefix)
pl.fp_split = mm_split_init(opt->split_prefix, idx);
pl_threads = n_threads == 1? 1 : (opt->flag&MM_F_2_IO_THREADS)? 3 : 2;
kt_pipeline(pl_threads, worker_pipeline, &pl, 3);
free(pl.str.s);
if (pl.fp_split) fclose(pl.fp_split);
for (i = 0; i < pl.n_fp; ++i)
mm_bseq_close(pl.fp[i]);
free(pl.fp);
return 0;
}
int mm_map_file(const mm_idx_t *idx, const char *fn, const mm_mapopt_t *opt, int n_threads)
{
return mm_map_file_frag(idx, 1, &fn, opt, n_threads);
}
int mm_split_merge(int n_segs, const char **fn, const mm_mapopt_t *opt, int n_split_idx)
{
int i;
pipeline_t pl;
mm_idx_t *mi;
if (n_segs < 1 || n_split_idx < 1) return -1;
memset(&pl, 0, sizeof(pipeline_t));
pl.n_fp = n_segs;
pl.fp = open_bseqs(pl.n_fp, fn);
if (pl.fp == 0) return -1;
pl.opt = opt;
pl.mini_batch_size = opt->mini_batch_size;
pl.n_parts = n_split_idx;
pl.fp_parts = CALLOC(FILE*, pl.n_parts);
pl.rid_shift = CALLOC(uint32_t, pl.n_parts);
pl.mi = mi = mm_split_merge_prep(opt->split_prefix, n_split_idx, pl.fp_parts, pl.rid_shift);
if (pl.mi == 0) {
free(pl.fp_parts);
free(pl.rid_shift);
//klocwork fix : doubtful
free(pl.fp);
return -1;
}
for (i = n_split_idx - 1; i > 0; --i)
pl.rid_shift[i] = pl.rid_shift[i - 1];
for (pl.rid_shift[0] = 0, i = 1; i < n_split_idx; ++i)
pl.rid_shift[i] += pl.rid_shift[i - 1];
if (opt->flag & MM_F_OUT_SAM)
for (i = 0; i < (int32_t)pl.mi->n_seq; ++i)
printf("@SQ\tSN:%s\tLN:%d\n", pl.mi->seq[i].name, pl.mi->seq[i].len);
kt_pipeline(2, worker_pipeline, &pl, 3);
free(pl.str.s);
mm_idx_destroy(mi);
free(pl.rid_shift);
for (i = 0; i < n_split_idx; ++i)
fclose(pl.fp_parts[i]);
free(pl.fp_parts);
for (i = 0; i < pl.n_fp; ++i)
mm_bseq_close(pl.fp[i]);
free(pl.fp);
mm_split_rm_tmp(opt->split_prefix, n_split_idx);
return 0;
}