forked from bwa-mem2/mm2-fast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
seed.c
206 lines (188 loc) · 6.46 KB
/
seed.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/* The MIT License
Copyright (c) 2018- Dana-Farber Cancer Institute
2017-2018 Broad Institute, Inc.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Modified Copyright (C) 2021 Intel Corporation
Contacts: Saurabh Kalikar <[email protected]>;
Vasimuddin Md <[email protected]>; Sanchit Misra <[email protected]>;
Chirag Jain <[email protected]>; Heng Li <[email protected]>
*/
#include "mmpriv.h"
#include "kalloc.h"
#include "ksort.h"
#include <stdlib.h>
#include<algorithm>
#include <x86intrin.h>
#ifdef LISA_HASH
#include "lisa_hash.h"
extern lisa_hash<uint64_t, uint64_t> *lh;
#endif
extern uint64_t minimizer_lookup_time;
void mm_seed_mz_flt(void *km, mm128_v *mv, int32_t q_occ_max, float q_occ_frac)
{
mm128_t *a;
size_t i, j, st;
if (mv->n <= q_occ_max || q_occ_frac <= 0.0f || q_occ_max <= 0) return;
KMALLOC(km, a, mv->n);
for (i = 0; i < mv->n; ++i)
a[i].x = mv->a[i].x, a[i].y = i;
radix_sort_128x(a, a + mv->n);
for (st = 0, i = 1; i <= mv->n; ++i) {
if (i == mv->n || a[i].x != a[st].x) {
int32_t cnt = i - st;
if (cnt > q_occ_max && cnt > mv->n * q_occ_frac)
for (j = st; j < i; ++j)
mv->a[a[j].y].x = 0;
st = i;
}
}
kfree(km, a);
for (i = j = 0; i < mv->n; ++i)
if (mv->a[i].x != 0)
mv->a[j++] = mv->a[i];
mv->n = j;
}
mm_seed_t *mm_seed_collect_all(void *km, const mm_idx_t *mi, const mm128_v *mv, int32_t *n_m_)
{
//#ifdef MANUAL_PROFILING
// uint64_t lookup_start = __rdtsc();
//#endif
#ifdef LISA_HASH
//-----------------------------------
uint64_t** cr_batch = (uint64_t**) malloc((mv->n)*sizeof(uint64_t*));
int* t_batch = (int*)malloc((mv->n)*sizeof(int));
uint64_t* minimizers = (uint64_t*) malloc((mv->n)*sizeof(uint64_t));
int64_t* lisa_pos = (int64_t*) malloc((max(32, (int)mv->n))* sizeof(int64_t));
for (size_t i = 0; i < mv->n; i++) {
mm128_t *p = &mv->a[i];
minimizers[i] = p->x>>8;
}
lh->mm_idx_get_batched(minimizers, mv->n, lisa_pos, cr_batch, t_batch);
//-----------------------------------
#endif
mm_seed_t *m;
size_t i;
int32_t k;
m = (mm_seed_t*)kmalloc(km, mv->n * sizeof(mm_seed_t));
for (i = k = 0; i < mv->n; ++i) {
const uint64_t *cr;
mm_seed_t *q;
mm128_t *p = &mv->a[i];
uint32_t q_pos = (uint32_t)p->y, q_span = p->x & 0xff;
int t;
#ifdef LISA_HASH
t = t_batch[i];
cr = cr_batch[i];
#else
cr = mm_idx_get(mi, p->x>>8, &t);
#endif
if (t == 0) continue;
q = &m[k++];
q->q_pos = q_pos, q->q_span = q_span, q->cr = cr, q->n = t, q->seg_id = p->y >> 32;
q->is_tandem = q->flt = 0;
if (i > 0 && p->x>>8 == mv->a[i - 1].x>>8) q->is_tandem = 1;
if (i < mv->n - 1 && p->x>>8 == mv->a[i + 1].x>>8) q->is_tandem = 1;
}
#ifdef LISA_HASH
free(cr_batch);
free(t_batch);
free(minimizers);
free(lisa_pos);
#endif
*n_m_ = k;
//#ifdef MANUAL_PROFILING
// minimizer_lookup_time += __rdtsc() - lookup_start;
//#endif
return m;
}
#define MAX_MAX_HIGH_OCC 128
void mm_seed_select(int32_t n, mm_seed_t *a, int len, int max_occ, int max_max_occ, int dist)
{ // for high-occ minimizers, choose up to max_high_occ in each high-occ streak
extern void ks_heapdown_uint64_t(size_t i, size_t n, uint64_t*);
extern void ks_heapmake_uint64_t(size_t n, uint64_t*);
int32_t i, last0, m;
uint64_t b[MAX_MAX_HIGH_OCC]; // this is to avoid a heap allocation
if (n == 0 || n == 1) return;
for (i = m = 0; i < n; ++i)
if (a[i].n > max_occ) ++m;
if (m == 0) return; // no high-frequency k-mers; do nothing
for (i = 0, last0 = -1; i <= n; ++i) {
if (i == n || a[i].n <= max_occ) {
if (i - last0 > 1) {
int32_t ps = last0 < 0? 0 : (uint32_t)a[last0].q_pos>>1;
int32_t pe = i == n? len : (uint32_t)a[i].q_pos>>1;
int32_t j, k, st = last0 + 1, en = i;
int32_t max_high_occ = (int32_t)((double)(pe - ps) / dist + .499);
if (max_high_occ > 0) {
if (max_high_occ > MAX_MAX_HIGH_OCC)
max_high_occ = MAX_MAX_HIGH_OCC;
for (j = st, k = 0; j < en && k < max_high_occ; ++j, ++k)
b[k] = (uint64_t)a[j].n<<32 | j;
ks_heapmake_uint64_t(k, b); // initialize the binomial heap
for (; j < en; ++j) { // if there are more, choose top max_high_occ
if (a[j].n < (int32_t)(b[0]>>32)) { // then update the heap
b[0] = (uint64_t)a[j].n<<32 | j;
ks_heapdown_uint64_t(0, k, b);
}
}
for (j = 0; j < k; ++j) a[(uint32_t)b[j]].flt = 1;
}
for (j = st; j < en; ++j) a[j].flt ^= 1;
for (j = st; j < en; ++j)
if (a[j].n > max_max_occ)
a[j].flt = 1;
}
last0 = i;
}
}
}
mm_seed_t *mm_collect_matches(void *km, int *_n_m, int qlen, int max_occ, int max_max_occ, int dist, const mm_idx_t *mi, const mm128_v *mv, int64_t *n_a, int *rep_len, int *n_mini_pos, uint64_t **mini_pos)
{
int rep_st = 0, rep_en = 0, n_m, n_m0;
size_t i;
mm_seed_t *m;
*n_mini_pos = 0;
*mini_pos = (uint64_t*)kmalloc(km, mv->n * sizeof(uint64_t));
m = mm_seed_collect_all(km, mi, mv, &n_m0);
if (dist > 0 && max_max_occ > max_occ) {
mm_seed_select(n_m0, m, qlen, max_occ, max_max_occ, dist);
} else {
for (i = 0; i < n_m0; ++i)
if (m[i].n > max_occ)
m[i].flt = 1;
}
for (i = 0, n_m = 0, *rep_len = 0, *n_a = 0; i < n_m0; ++i) {
mm_seed_t *q = &m[i];
//fprintf(stderr, "X\t%d\t%d\t%d\n", q->q_pos>>1, q->n, q->flt);
if (q->flt) {
int en = (q->q_pos >> 1) + 1, st = en - q->q_span;
if (st > rep_en) {
*rep_len += rep_en - rep_st;
rep_st = st, rep_en = en;
} else rep_en = en;
} else {
*n_a += q->n;
(*mini_pos)[(*n_mini_pos)++] = (uint64_t)q->q_span<<32 | q->q_pos>>1;
m[n_m++] = *q;
}
}
*rep_len += rep_en - rep_st;
*_n_m = n_m;
return m;
}