Skip to content

Latest commit

 

History

History
68 lines (54 loc) · 2.66 KB

README.md

File metadata and controls

68 lines (54 loc) · 2.66 KB

Indic-HTR

Handwriting recognition for various Indic scripts using deep learning(STN, CNN, LSTM)

For more info about the pipeline, please refer to IIIT-INDIC-HW-WORDS: A Dataset for Indic Handwritten Text Recognition

[Paper]| [Dataset] | [Teaser]

Training and Evaluation:

Dataset preparation:

  • Create LMDB files for train, validation and test splits.
python tools/create_dataset.py --root_dir <dataset_dir> --save <lmdb_dst_path>

The dataset folder should follow the same structure as IIIT-INDIC-HW-WORDS structure.

  • Generate a file containing Unicode symbols/characters to be used for prediction. Move this file to alphabet/ folder. This repo already contains the sorted alphabet list for Indic scripts in the alphabet/ folder.

Training:

To train model(TPS-ResNet-BiLSTM-CTC) from scratch:

python lang_train.py --mode train --lang <lang_code> --trainRoot <train_lmdb_path> --valRoot <val_lmdb_path> --cuda

Refer to lang_train.py and config.py for default settings and additional parameter settings.

Language codes for Indic scripts:

Bengali Gujarati Gurumukhi Odia Kannada Malayalam Tamil Urdu
bn gu pn od kn ma ta ur

Evaluation and testing:

To generate predictions for a file, try:

python lang_train.py --lang <lang_code> --mode test --val_dir <test-lmdb-path> --output <save-predictions-path>

To evaluate the generated predictions, try the following:

python tools/score.py --preds <save-predictions-path>

or

python tools/oov_score.py --preds <save-predictions-path> --vocab <path-to-train-vocab>

to get WER and CER for OOV words only.

Please check the code for more config options.

Pretrained Models:

Will be released soon.

Acknowledgment:

We thank these repositories crnn.pytorch, deep-text-recognition-benchmark for releasing their codes. Code structure is inspired from aster.pytorch.

Citation:

Please consider citing this work in your publications if it helps your research.

@InProceedings{10.1007/978-3-030-86337-1_30,
author="Gongidi, Santhoshini
and Jawahar, C. V.",
title="iiit-indic-hw-words: A Dataset for Indic Handwritten Text Recognition",
booktitle="Document Analysis and Recognition -- ICDAR 2021",
year="2021",
}