Skip to content

Commit

Permalink
fix typo
Browse files Browse the repository at this point in the history
  • Loading branch information
KirillZubov committed Mar 19, 2024
1 parent 2c87492 commit 3905b14
Show file tree
Hide file tree
Showing 2 changed files with 16 additions and 15 deletions.
29 changes: 15 additions & 14 deletions src/NeuralPDE.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,14 +24,15 @@ using Symbolics: wrap, unwrap, arguments, operation
using SymbolicUtils
using AdvancedHMC, LogDensityProblems, LinearAlgebra, Functors, MCMCChains
using MonteCarloMeasurements: Particles
using ModelingToolkit: value, nameof, toexpr, build_expr, expand_derivatives, Interval, infimum, supremum
using ModelingToolkit: value, nameof, toexpr, build_expr, expand_derivatives, Interval,
infimum, supremum
import DomainSets
using DomainSets: Domain, ClosedInterval, AbstractInterval, leftendpoint, rightendpoint, ProductDomain
using DomainSets: Domain, ClosedInterval, AbstractInterval, leftendpoint, rightendpoint,
ProductDomain
using SciMLBase: @add_kwonly, parameterless_type
using UnPack: @unpack
import ChainRulesCore, Lux, ComponentArrays
using ChainRulesCore: @non_differentiable
using NeuralOperators

RuntimeGeneratedFunctions.init(@__MODULE__)

Expand All @@ -56,16 +57,16 @@ include("PDE_BPINN.jl")
include("dgm.jl")

export NNODE, NNDAE, PINOODE, TRAINSET
PhysicsInformedNN, discretize,
GridTraining, StochasticTraining, QuadratureTraining, QuasiRandomTraining,
WeightedIntervalTraining,
build_loss_function, get_loss_function,
generate_training_sets, get_variables, get_argument, get_bounds,
get_numeric_integral, symbolic_discretize,
AbstractAdaptiveLoss, NonAdaptiveLoss, GradientScaleAdaptiveLoss,
MiniMaxAdaptiveLoss, LogOptions,
ahmc_bayesian_pinn_ode, BNNODE, ahmc_bayesian_pinn_pde, vector_to_parameters,
BPINNsolution, BayesianPINN,
DeepGalerkin
PhysicsInformedNN, discretize,
GridTraining, StochasticTraining, QuadratureTraining, QuasiRandomTraining,
WeightedIntervalTraining,
build_loss_function, get_loss_function,
generate_training_sets, get_variables, get_argument, get_bounds,
get_numeric_integral, symbolic_discretize,
AbstractAdaptiveLoss, NonAdaptiveLoss, GradientScaleAdaptiveLoss,
MiniMaxAdaptiveLoss, LogOptions,
ahmc_bayesian_pinn_ode, BNNODE, ahmc_bayesian_pinn_pde, vector_to_parameters,
BPINNsolution, BayesianPINN,
DeepGalerkin

end # module
2 changes: 1 addition & 1 deletion test/PINO_ode_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ begin
* output data: set of solutions u(t){u0} corresponding initial conditions 'u0'.
"""
train_set = TRAINSET(prob_set, u_output_; isu0 = true)
#TODO we argument u0 but dont actualy use u0 because we use only set of u0 for generate train set from prob_set
#TODO we argument u0 but dont actually use u0 because we use only set of u0 for generate train set from prob_set
prob = ODEProblem(linear, 0.0f0, tspan, p)
fno = FourierNeuralOperator(ch = (2, 16, 16, 16, 16, 16, 32, 1), modes = (16,), σ = gelu)
opt = OptimizationOptimisers.Adam(0.001)
Expand Down

0 comments on commit 3905b14

Please sign in to comment.