diff --git a/src/NeuralPDE.jl b/src/NeuralPDE.jl index 920387340a..1122afc838 100644 --- a/src/NeuralPDE.jl +++ b/src/NeuralPDE.jl @@ -54,7 +54,6 @@ include("advancedHMC_MCMC.jl") include("BPINN_ode.jl") include("PDE_BPINN.jl") include("dgm.jl") -include("collocated_estim.jl") export NNODE, NNDAE, PhysicsInformedNN, discretize, diff --git a/test/BPINN_pde_experimental.jl b/test/BPINN_pde_experimental.jl deleted file mode 100644 index a8f4a0341e..0000000000 --- a/test/BPINN_pde_experimental.jl +++ /dev/null @@ -1,1669 +0,0 @@ -using Test, MCMCChains, Lux, ModelingToolkit -import ModelingToolkit: Interval, infimum, supremum -using ForwardDiff, Distributions, OrdinaryDiffEq -using AdvancedHMC, Statistics, Random, Functors -using NeuralPDE, MonteCarloMeasurements -using ComponentArrays, ModelingToolkit - -Random.seed!(100) - -# function required to use the new loss, creates a dicitonary of differntial operator terms -function recur_expression(exp, Dict_differentials) - for in_exp in exp.args - if !(in_exp isa Expr) - # skip +,== symbols, characters etc - continue - - elseif in_exp.args[1] isa ModelingToolkit.Differential - # first symbol of differential term - # Dict_differentials for masking differential terms - # and resubstituting differentials in equations after putting in interpolations - # temp = in_exp.args[end] - Dict_differentials[eval(in_exp)] = Symbolics.variable("diff_$(length(Dict_differentials) + 1)") - return - else - recur_expression(in_exp, Dict_differentials) - end - end -end - -# experiments are here -println("Example 3: Lotka Volterra with New parameter estimation") -@parameters t α β γ δ -@variables x(..) y(..) - -Dt = Differential(t) -eqs = [Dt(x(t)) * α ~ x(t) - β * x(t) * y(t), Dt(y(t)) * δ ~ x(t) * y(t) - y(t) * γ] -bcs = [x(0) ~ 1.0, y(0) ~ 1.0] -domains = [t ∈ Interval(0.0, 7.0)] - -# Define the parameters' values -# α, β, γ, δ = p - -# regular equations -# dx = (1.5 - y) * x # prey -# dy = (x - 3.0) * y # predator -# p = [1.5, 1.0, 3.0, 1.0] non transformed values - -# transformed equations -# dx*0.666 = (1 - 0.666 * y) * x # prey -# dy*1.0 = (x - 3.0) * y # predator -# p = [0.666, 0.666, 3.0, 1.0] transformed values (change is scale also ensured!) - -chainl = [ - Lux.Chain(Lux.Dense(1, 5, sin), Lux.Dense(5, 5, sin), Lux.Dense(5, 1)), - Lux.Chain(Lux.Dense(1, 5, sin), Lux.Dense(5, 5, sin), Lux.Dense(5, 1)) -] - -initl, st = Lux.setup(Random.default_rng(), chainl[1]) -initl1, st1 = Lux.setup(Random.default_rng(), chainl[2]) - -using NeuralPDE, Lux, OrdinaryDiffEq, Distributions, Random - -function lotka_volterra(u, p, t) - # Model parameters. - α, β, γ, δ = p - # Current state. - x, y = u - - # Evaluate differential equations. - dx = (α - β * y) * x # prey - dy = (δ * x - γ) * y # predator - - return [dx, dy] -end -# initial-value problem. -u0 = [1.0, 1.0] -# p = [2/3, 2/3, 1/3.0, 1/3.0] -p = [1.5, 1.0, 3.0, 1.0] -tspan = (0.0, 7.0) -prob = ODEProblem(lotka_volterra, u0, tspan, p) -dt = 0.01 -solution = solve(prob, Tsit5(); saveat = dt) -solution1 = solve(prob, Tsit5(); saveat = 0.02) - -function calculate_errors(approx_sol, solution_points) - # Check vector lengths match - if length(approx_sol) != length(solution_points) - error("Vectors must have the same length") - end - - # Calculate errors - n = length(approx_sol) - errors = randn(n) - for i in 1:n - errors[i] = solution_points[i] - approx_sol[i] - end - - # Calculate RMSE - rmse = sqrt(mean(errors .^ 2)) - - # Calculate MAE - mae = mean(abs.(errors)) - - # Calculate maximum absolute error - max_error = maximum(abs.(errors)) - - # Return dictionary with errors - return Dict( - "RMSE" => rmse, - "MAE" => mae, - "Max Abs Error" => max_error - ) -end -u = hcat(solution1.u...) - -a1 = calculate_errors(pmean(sol6_1.ensemblesol[1]), u1[1, :]) -b1 = calculate_errors(pmean(sol6_1.ensemblesol[2]), u1[2, :]) - -a = calculate_errors(pmean(sol6_2.ensemblesol[1]), u[1, :]) -b = calculate_errors(pmean(sol6_2.ensemblesol[2]), u[2, :]) - -c = calculate_errors(pmean(sol6_L2_2.ensemblesol[1]), u[1, :]) -d = calculate_errors(pmean(sol6_L2_2.ensemblesol[2]), u[2, :]) - -e = calculate_errors(pmean(sol6_L2_1.ensemblesol[1]), u[1, :]) -f = calculate_errors(pmean(sol6_L2_1.ensemblesol[2]), u[2, :]) - -g = calculate_errors(pmean(sol6_L2.ensemblesol[1]), u[1, :]) -h = calculate_errors(pmean(sol6_L2.ensemblesol[2]), u[2, :]) - -# function moving_average_smoothing(data::Vector{T}, window_size::Int) where {T} -# smoothed_data = similar(data, T, length(data)) - -# for i in 1:length(data) -# start_idx = max(1, i - window_size) -# end_idx = min(length(data), i + window_size) -# smoothed_data[i] = mean(data[start_idx:end_idx]) -# end - -# return smoothed_data' -# end - -# Extract solution -time = solution.t -u = hcat(solution.u...) -time1 = solution.t -u_noisy = u .+ u .* (0.2 .* randn(size(u))) -u_noisy0 = u .+ (3.0 .* rand(size(u)[1], size(u)[2]) .- 1.5) -u_noisy1 = u .+ (0.8 .* randn(size(Array(solution)))) -u_noisy2 = u .+ (0.5 .* randn(size(Array(solution)))) - -plot(time, u[1, :]) -plot!(time, u[2, :]) -scatter!(time1, u_noisy0[1, :]) -scatter!(time1, u_noisy0[2, :]) -scatter!(discretization_08_gaussian.dataset[1][1][:, 2], - discretization_08_gaussian.dataset[1][1][:, 1]) -scatter!(discretization_08_gaussian.dataset[1][2][:, 2], - discretization_08_gaussian.dataset[1][2][:, 1]) - -scatter!(discretization_05_gaussian.dataset[1][1][:, 2], - discretization_05_gaussian.dataset[1][1][:, 1]) -scatter!(discretization_05_gaussian.dataset[1][2][:, 2], - discretization_05_gaussian.dataset[1][2][:, 1]) -# discretization_05_gaussian.dataset[1][1][:,2] -# window_size = 5 -# smoothed_datasets = [moving_average_smoothing(u1[i, :], window_size) -# for i in 1:length(solution.u[1])] -# u2 = vcat(smoothed_datasets[1], smoothed_datasets[2]) - -# Randomly select some points from the solution -num_points = 100 # Number of points to select -selected_indices = rand(1:size(u_noisy1, 2), num_points) -upoints = [u_noisy1[:, i] for i in selected_indices] -timepoints = [time[i] for i in selected_indices] -temp = hcat(upoints...) -dataset = [hcat(temp[i, :], timepoints) for i in 1:2] - -discretization_uniform = BayesianPINN(chainl, GridTraining([0.01]), param_estim = true, - dataset = [dataset, nothing]) -discretization_08_gaussian = BayesianPINN(chainl, GridTraining([0.01]), param_estim = true, - dataset = [dataset, nothing]) -discretization_05_gaussian = BayesianPINN(chainl, GridTraining([0.01]), param_estim = true, - dataset = [dataset, nothing]) - -discretization1 = BayesianPINN(chainl, GridTraining([0.01]), param_estim = true, - dataset = [dataset, nothing]) - -scatter!(discretization.dataset[1][1][:, 2], discretization.dataset[1][1][:, 1]) -scatter!(discretization.dataset[1][2][:, 2], discretization.dataset[1][2][:, 1]) - -sol = solve(prob, Tsit5(); saveat = 0.1) -odedata = Array(sol) + 0.8 * randn(size(Array(sol))) - -@named pde_system = PDESystem(eqs, - bcs, - domains, - [t], - [x(t), y(t)], - [α, β, γ, δ], - defaults = Dict([α => 2, β => 2, γ => 2, δ => 2])) - -# creating dictionary for masking equations -eqs = pde_system.eqs -Dict_differentials = Dict() -exps = toexpr.(eqs) -nullobj = [recur_expression(exp, Dict_differentials) for exp in exps] - -sol3 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -sol3_100_uniform = ahmc_bayesian_pinn_pde(pde_system, - discretization_uniform; - draw_samples = 700, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -sol3_100_08_gaussian = ahmc_bayesian_pinn_pde(pde_system, - discretization_08_gaussian; - draw_samples = 700, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -sol3_100_05_gaussian = ahmc_bayesian_pinn_pde(pde_system, - discretization_05_gaussian; - draw_samples = 700, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -# more iterations for above -sol3_100_uniform_1000 = ahmc_bayesian_pinn_pde(pde_system, - discretization_uniform; - draw_samples = 1000, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -sol3_100_08_gaussian_1000 = ahmc_bayesian_pinn_pde(pde_system, - discretization_08_gaussian; - draw_samples = 1000, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -sol3_100_05_gaussian_1000 = ahmc_bayesian_pinn_pde(pde_system, - discretization_05_gaussian; - draw_samples = 1000, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -# more iterations for above + strict BC -sol3_100_uniform_1000_bc = ahmc_bayesian_pinn_pde(pde_system, - discretization_uniform; - draw_samples = 1000, - bcstd = [0.1, 0.1], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -sol3_100_08_gaussian_1000_bc = ahmc_bayesian_pinn_pde(pde_system, - discretization_08_gaussian; - draw_samples = 1000, - bcstd = [0.1, 0.1], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -sol3_100_08_gaussian_1000_bc_hard = ahmc_bayesian_pinn_pde(pde_system, - discretization_08_gaussian; - draw_samples = 1000, - bcstd = [0.05, 0.05], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -sol3_100_05_gaussian_1000_bc = ahmc_bayesian_pinn_pde(pde_system, - discretization_05_gaussian; - draw_samples = 1000, - bcstd = [0.1, 0.1], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -sol3_100_08_gaussian_new = ahmc_bayesian_pinn_pde(pde_system, - discretization_08_gaussian; - draw_samples = 700, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - phystdnew = [0.3, 0.3], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], Dict_differentials = Dict_differentials, progress = true -) - -sol3_100_05_gaussian_new = ahmc_bayesian_pinn_pde(pde_system, - discretization_05_gaussian; - draw_samples = 700, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - phystdnew = [0.3, 0.3], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], Dict_differentials = Dict_differentials, progress = true -) - -sol4 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true -) - -sol4_0 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true -) - -sol5_00 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - phystdnew = [0.3, 0.3], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], Dict_differentials = Dict_differentials, progress = true -) - -sol5_0 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - phystdnew = [0.2, 0.2], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], Dict_differentials = Dict_differentials, progress = true -) - -sol5 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - phystdnew = [0.3, 0.3], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], Dict_differentials = Dict_differentials, progress = true -) - -# 70 points in dataset -sol6 = ahmc_bayesian_pinn_pde(pde_system, - discretization1; - draw_samples = 700, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - phystdnew = [0.2, 0.2], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], Dict_differentials = Dict_differentials, progress = true -) - -# SOL6_1 VS SOL6_L2 -sol6_1 = ahmc_bayesian_pinn_pde(pde_system, - discretization1; - draw_samples = 700, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - phystdnew = [0.3, 0.3], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], Dict_differentials = Dict_differentials, progress = true -) - -sol6_2 = ahmc_bayesian_pinn_pde(pde_system, - discretization1; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - phystdnew = [0.3, 0.3], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], Dict_differentials = Dict_differentials, progress = true -) - -sol6_2_L2 = ahmc_bayesian_pinn_pde(pde_system, - discretization1; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -sol6_3 = ahmc_bayesian_pinn_pde(pde_system, - discretization1; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - phystdnew = [0.3, 0.3], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], Dict_differentials = Dict_differentials, progress = true -) - -sol6_4 = ahmc_bayesian_pinn_pde(pde_system, - discretization1; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - phystdnew = [0.2, 0.2], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], Dict_differentials = Dict_differentials, progress = true -) - -sol6_L2 = ahmc_bayesian_pinn_pde(pde_system, - discretization1; - draw_samples = 700, - bcstd = [0.2, 0.2], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -sol6_L2_1 = ahmc_bayesian_pinn_pde(pde_system, - discretization1; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -sol6_L2_2 = ahmc_bayesian_pinn_pde(pde_system, - discretization1; - draw_samples = 700, - bcstd = [0.05, 0.05], - phystd = [0.2, 0.2], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 2), - Normal(2, 2), - Normal(2, 2) - ], progress = true) - -# 50 datapoint 0-5 sol5 vs sol4 -# julia> sol4.estimated_de_params -# 4-element Vector{Particles{Float64, 234}}: -# 0.549 ± 0.0058 -# 0.71 ± 0.0042 -# 0.408 ± 0.0063 -# 0.355 ± 0.0015 - -# julia> sol5.estimated_de_params -# 4-element Vector{Particles{Float64, 234}}: -# 0.604 ± 0.0052 -# 0.702 ± 0.0034 -# 0.346 ± 0.0037 -# 0.335 ± 0.0013 - -# 100 datapoint 0-5 sol5_2 vs sol3 -# julia> sol3.estimated_de_params -# 4-element Vector{Particles{Float64, 234}}: -# 0.598 ± 0.0037 -# 0.711 ± 0.0027 -# 0.399 ± 0.0032 -# 0.333 ± 0.0011 - -# julia> sol5_2.estimated_de_params -# 4-element Vector{Particles{Float64, 234}}: -# 0.604 ± 0.0035 -# 0.686 ± 0.0026 -# 0.395 ± 0.0029 -# 0.328 ± 0.00095 - -# timespan for full dataset (0-8) -sol6 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(1, 2), - Normal(1, 1), - Normal(1, 2), - Normal(1, 1) - ], progress = true) - -sol5_3 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - phystdnew = [0.3, 0.3], - saveats = [1 / 50.0], - param = [ - Normal(1, 2), - Normal(1, 1), - Normal(1, 2), - Normal(1, 1) - ], Dict_differentials = Dict_differentials, progress = true -) - -sol5_4 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - phystdnew = [0.2, 0.2], - saveats = [1 / 50.0], - param = [ - Normal(1, 2), - Normal(1, 1), - Normal(1, 2), - Normal(1, 1) - ], Dict_differentials = Dict_differentials, progress = true -) - -sol5_5 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(1, 2), - Normal(1, 1), - Normal(1, 2), - Normal(1, 1) - ], progress = true -) - -sol7 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - phystdnew = [0.3, 0.3], - saveats = [1 / 50.0], - param = [ - Normal(1, 2), - Normal(1, 1), - Normal(1, 2), - Normal(1, 1) - ], Dict_differentials = Dict_differentials, progress = true) - -sol5_5_1 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 1), - Normal(2, 2), - Normal(2, 1) - ], progress = true -) - -sol7_1 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.05, 0.05], - priorsNNw = (0.0, 5.0), - phystdnew = [0.3, 0.3], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 1), - Normal(2, 2), - Normal(2, 1) - ], Dict_differentials = Dict_differentials, progress = true) - -sol7_2 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - phystdnew = [0.1, 0.1], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 1), - Normal(2, 2), - Normal(2, 1) - ], Dict_differentials = Dict_differentials, progress = true) - -sol7_3 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - phystdnew = [0.2, 0.2], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 1), - Normal(2, 2), - Normal(2, 1) - ], Dict_differentials = Dict_differentials, progress = true) - -sol7_4 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 700, - bcstd = [0.1, 0.1], - phystd = [0.1, 0.1], l2std = [0.1, 0.1], - priorsNNw = (0.0, 5.0), - phystdnew = [0.3, 0.3], - saveats = [1 / 50.0], - param = [ - Normal(2, 2), - Normal(2, 1), - Normal(2, 2), - Normal(2, 1) - ], Dict_differentials = Dict_differentials, progress = true) - -using Plots, StatsPlots -plotly() -plot(time, u[1, :]) -plot!(time, u[2, :]) -scatter!(time, u_noisy[1, :]) -scatter!(time, u_noisy[2, :]) -scatter!(discretization.dataset[1][1][:, 2], discretization.dataset[1][1][:, 1]) -scatter!(discretization.dataset[1][2][:, 2], discretization.dataset[1][2][:, 1]) - -scatter!(discretization1.dataset[1][1][:, 2], - discretization1.dataset[1][1][:, 1], legend = nothing) -scatter!(discretization1.dataset[1][2][:, 2], discretization1.dataset[1][2][:, 1]) - -# plot28(sol4 seems better vs sol3 plots, params seems similar) -plot!(sol3.timepoints[1]', sol3.ensemblesol[1]) -plot!(sol3.timepoints[2]', sol3.ensemblesol[2]) -plot!(sol3_0.timepoints[1]', sol3_0.ensemblesol[1]) -plot!(sol3_0.timepoints[2]', sol3_0.ensemblesol[2]) - -plot!(sol4.timepoints[1]', sol4.ensemblesol[1]) -plot!(sol4.timepoints[2]', sol4.ensemblesol[2]) -plot!(sol4_0.timepoints[1]', sol4_0.ensemblesol[1]) -plot!(sol4_0.timepoints[2]', sol4_0.ensemblesol[2]) - -plot!(sol4_2.timepoints[1]', sol4_2.ensemblesol[1], legend = nothing) -plot!(sol4_2.timepoints[2]', sol4_2.ensemblesol[2]) -plot!(sol5_2.timepoints[1]', sol5_2.ensemblesol[1], legend = nothing) -plot!(sol5_2.timepoints[2]', sol5_2.ensemblesol[2]) - -plot!(sol4_3.timepoints[1]', sol4_3.ensemblesol[1], legend = nothing) -plot!(sol4_3.timepoints[2]', sol4_3.ensemblesol[2]) -plot!(sol5_3.timepoints[1]', sol5_3.ensemblesol[1]) -plot!(sol5_3.timepoints[2]', sol5_3.ensemblesol[2]) -plot!(sol5_4.timepoints[1]', sol5_4.ensemblesol[1], legend = nothing) -plot!(sol5_4.timepoints[2]', sol5_4.ensemblesol[2]) - -# plot 36 sol4 vs sol5(params sol4 better, but plots sol5 "looks" better),plot 44(sol5 better than sol6 overall) -plot!(sol5.timepoints[1]', sol5.ensemblesol[1], legend = nothing) -plot!(sol5.timepoints[2]', sol5.ensemblesol[2]) - -plot!(sol5_0.timepoints[1]', sol5_0.ensemblesol[1], legend = nothing) -plot!(sol5_0.timepoints[2]', sol5_0.ensemblesol[2]) - -plot!(sol5_00.timepoints[1]', sol5_00.ensemblesol[1], legend = nothing) -plot!(sol5_00.timepoints[2]', sol5_00.ensemblesol[2]) - -plot!(sol6.timepoints[1]', sol6.ensemblesol[1]) -plot!(sol6.timepoints[2]', sol6.ensemblesol[2]) -plot!(sol6_L2.timepoints[1]', sol6_L2.ensemblesol[1]) -plot!(sol6_L2.timepoints[2]', sol6_L2.ensemblesol[2]) - -plot!(sol6_L2_1.timepoints[1]', sol6_L2_1.ensemblesol[1]) -plot!(sol6_L2_1.timepoints[2]', sol6_L2_1.ensemblesol[2]) - -plot!(sol6_L2_2.timepoints[1]', sol6_L2_2.ensemblesol[1]) -plot!(sol6_L2_2.timepoints[2]', sol6_L2_2.ensemblesol[2]) - -plot!(sol6_1.timepoints[1]', sol6_1.ensemblesol[1]) -plot!(sol6_1.timepoints[2]', sol6_1.ensemblesol[2]) -plot!(sol6_2.timepoints[1]', sol6_2.ensemblesol[1]) -plot!(sol6_2.timepoints[2]', sol6_2.ensemblesol[2], legend = nothing) -plot!(sol6_2_L2.timepoints[1]', sol6_2_L2.ensemblesol[1]) -plot!(sol6_2_L2.timepoints[2]', sol6_2_L2.ensemblesol[2], legend = nothing) - -# plot52 sol7 vs sol5(sol5 overall better plots, params?) -plot!(sol7.timepoints[1]', sol7.ensemblesol[1]) -plot!(sol7.timepoints[2]', sol7.ensemblesol[2]) - -# sol8,sol8_2,sol9,sol9_2 bad -plot!(sol8.timepoints[1]', sol8.ensemblesol[1]) -plot!(sol8.timepoints[2]', sol8.ensemblesol[2]) -plot!(sol8_2.timepoints[1]', sol8_2.ensemblesol[1]) -plot!(sol8_2.timepoints[2]', sol8_2.ensemblesol[2]) - -plot!(sol9.timepoints[1]', sol9.ensemblesol[1]) -plot!(sol9.timepoints[2]', sol9.ensemblesol[2]) -plot!(sol9_2.timepoints[1]', sol9_2.ensemblesol[1]) -plot!(sol9_2.timepoints[2]', sol9_2.ensemblesol[2]) - -plot!(sol5_5.timepoints[1]', sol5_5.ensemblesol[1]) -plot!(sol5_5.timepoints[2]', sol5_5.ensemblesol[2], legend = nothing) - -plot!(sol5_5_1.timepoints[1]', sol5_5_1.ensemblesol[1]) -plot!(sol5_5_1.timepoints[2]', sol5_5_1.ensemblesol[2], legend = nothing) -plot!(sol7_1.timepoints[1]', sol7_1.ensemblesol[1]) -plot!(sol7_1.timepoints[2]', sol7_1.ensemblesol[2]) - -plot!(sol7_4.timepoints[1]', sol7_4.ensemblesol[1]) -plot!(sol7_4.timepoints[2]', sol7_4.ensemblesol[2]) - -plot!(sol5_2_1.timepoints[1]', sol5_2_1.ensemblesol[1], legend = nothing) -plot!(sol5_2_1.timepoints[2]', sol5_2_1.ensemblesol[2]) -plot!(sol5_2_2.timepoints[1]', sol5_2_2.ensemblesol[1], legend = nothing) -plot!(sol5_2_2.timepoints[2]', sol5_2_2.ensemblesol[2]) - -plot!(sol5_0.timepoints[1]', sol5_0.ensemblesol[1]) -plot!(sol5_0.timepoints[2]', sol5_0.ensemblesol[2], legend = nothing) - -plot!(sol5_00.timepoints[1]', sol5_00.ensemblesol[1], legend = nothing) -plot!(sol5_00.timepoints[2]', sol5_00.ensemblesol[2]) - -plot!(sol3_0.timepoints[1]', sol3_0.ensemblesol[1]) -plot!(sol3_0.timepoints[2]', sol3_0.ensemblesol[2], legend = nothing) -plot!(sol4_0.timepoints[1]', sol4_0.ensemblesol[1]) -plot!(sol4_0.timepoints[2]', sol4_0.ensemblesol[2], legend = nothing) - -plot!(sol3_100_05_gaussian.timepoints[1]', sol3_100_05_gaussian.ensemblesol[1]) -plot!(sol3_100_05_gaussian.timepoints[2]', - sol3_100_05_gaussian.ensemblesol[2], legend = nothing) - -plot!(sol3_100_05_gaussian_new.timepoints[1]', sol3_100_05_gaussian_new.ensemblesol[1]) -plot!(sol3_100_05_gaussian_new.timepoints[2]', sol3_100_05_gaussian_new.ensemblesol[2]) - -plot!(sol3_100_08_gaussian.timepoints[1]', sol3_100_08_gaussian.ensemblesol[1]) -plot!(sol3_100_08_gaussian.timepoints[2]', sol3_100_08_gaussian.ensemblesol[2]) - -plot!(sol3_100_08_gaussian_new.timepoints[1]', sol3_100_08_gaussian_new.ensemblesol[1]) -plot!(sol3_100_08_gaussian_new.timepoints[2]', - sol3_100_08_gaussian_new.ensemblesol[2], legend = nothing) - -plot!(sol3_100_uniform.timepoints[1]', sol3_100_uniform.ensemblesol[1]) -plot!(sol3_100_uniform.timepoints[2]', sol3_100_uniform.ensemblesol[2]) - -plot!(sol3_100_08_gaussian_1000.timepoints[1]', sol3_100_08_gaussian_1000.ensemblesol[1]) -plot!(sol3_100_08_gaussian_1000.timepoints[2]', sol3_100_08_gaussian_1000.ensemblesol[2]) - -plot!(sol3_100_05_gaussian_1000.timepoints[1]', sol3_100_05_gaussian_1000.ensemblesol[1]) -plot!(sol3_100_05_gaussian_1000.timepoints[2]', sol3_100_05_gaussian_1000.ensemblesol[2]) - -plot!(sol3_100_uniform_1000.timepoints[1]', sol3_100_uniform_1000.ensemblesol[1]) -plot!(sol3_100_uniform_1000.timepoints[2]', sol3_100_uniform_1000.ensemblesol[2]) - -plot!(sol3_100_08_gaussian_1000_bc.timepoints[1]', - sol3_100_08_gaussian_1000_bc.ensemblesol[1]) -plot!(sol3_100_08_gaussian_1000_bc.timepoints[2]', - sol3_100_08_gaussian_1000_bc.ensemblesol[2]) - -# test with lower number of points -# consider full range dataset case -# combination of all above - -# run 1 100 iters -sol5.estimated_de_params -sol6.estimated_de_params - -# run 2 200 iters -sol5.estimated_de_params -sol6.estimated_de_params - -# run 2 200 iters -sol3.estimated_de_params -sol4.estimated_de_params - -# p = [2/3, 2/3, 1/3, 1/3] -sol3.estimated_de_params -sol4.estimated_de_params - -@parameters t, p -@variables u(..) - -Dt = Differential(t) -eqs = Dt(u(t)) - cos(p * t) ~ 0 -bcs = [u(0) ~ 0.0] -domains = [t ∈ Interval(0.0, 2.0)] - -chainl = Lux.Chain(Lux.Dense(1, 6, tanh), Lux.Dense(6, 1)) -initl, st = Lux.setup(Random.default_rng(), chainl) - -@named pde_system = PDESystem(eqs, - bcs, - domains, - [t], - [u(t)], - [p], - defaults = Dict([p => 4.0])) - -analytic_sol_func1(u0, t) = u0 + sin(2 * π * t) / (2 * π) -timepoints = collect(0.0:(1 / 100.0):2.0) -u1 = [analytic_sol_func1(0.0, timepoint) for timepoint in timepoints] -u1 = u1 .+ (u1 .* 0.2) .* randn(size(u1)) -dataset = [hcat(u1, timepoints)] - -discretization = BayesianPINN([chainl], GridTraining([0.02]), param_estim = true, - dataset = [dataset, nothing]) - -sol1 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 1500, - bcstd = [0.05], - phystd = [0.01], l2std = [0.01], - priorsNNw = (0.0, 1.0), - saveats = [1 / 50.0], - param = [LogNormal(4.0, 2)], progress = true) - -param = 2 * π -ts = vec(sol1.timepoints[1]) -u_real = [analytic_sol_func1(0.0, t) for t in ts] -u_predict = pmean(sol1.ensemblesol[1]) - -@test u_predict≈u_real atol=0.1 -@test mean(u_predict .- u_real) < 0.01 -@test sol1.estimated_de_params[1]≈param atol=0.1 -sol1.estimated_de_params[1] - -eqs = pde_system.eqs -Dict_differentials = Dict() -exps = toexpr.(eqs) -nullobj = [recur_expression(exp, Dict_differentials) for exp in exps] - -sol2 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 1500, - bcstd = [0.05], - phystd = [0.01], l2std = [0.02], phystdnew = [0.02], - priorsNNw = (0.0, 1.0), - saveats = [1 / 50.0], - param = [LogNormal(4.0, 2)], - Dict_differentials = Dict_differentials, - progress = true) - -param = 2 * π -ts_2 = vec(sol2.timepoints[1]) -u_real_2 = [analytic_sol_func1(0.0, t) for t in ts] -u_predict_2 = pmean(sol2.ensemblesol[1]) - -@test u_predict_2≈u_real_2 atol=0.1 -@test mean(u_predict_2 .- u_real_2) < 0.01 -@test sol2.estimated_de_params[1]≈param atol=0.1 -sol2.estimated_de_params[1] - -plot(ts_2, u_predict_2) -plot!(ts_2, u_real_2) - -@parameters t, σ_ -@variables x(..), y(..), z(..) -Dt = Differential(t) -eqs = [Dt(x(t)) ~ σ_ * (y(t) - x(t)), - Dt(y(t)) ~ x(t) * (28.0 - z(t)) - y(t), - Dt(z(t)) ~ x(t) * y(t) - 8 / 3 * z(t)] - -bcs = [x(0) ~ 1.0, y(0) ~ 0.0, z(0) ~ 0.0] -domains = [t ∈ Interval(0.0, 1.0)] - -input_ = length(domains) -n = 7 -chain = [ - Lux.Chain(Lux.Dense(input_, n, Lux.tanh), Lux.Dense(n, n, Lux.tanh), - Lux.Dense(n, 1)), - Lux.Chain(Lux.Dense(input_, n, Lux.tanh), Lux.Dense(n, n, Lux.tanh), - Lux.Dense(n, 1)), - Lux.Chain(Lux.Dense(input_, n, Lux.tanh), Lux.Dense(n, n, Lux.tanh), - Lux.Dense(n, 1)) -] - -#Generate Data -function lorenz!(du, u, p, t) - du[1] = 10.0 * (u[2] - u[1]) - du[2] = u[1] * (28.0 - u[3]) - u[2] - du[3] = u[1] * u[2] - (8 / 3) * u[3] -end - -u0 = [1.0; 0.0; 0.0] -tspan = (0.0, 1.0) -prob = ODEProblem(lorenz!, u0, tspan) -sol = solve(prob, Tsit5(), dt = 0.01, saveat = 0.05) -ts = sol.t -us = hcat(sol.u...) -us = us .+ ((0.05 .* randn(size(us))) .* us) -ts_ = hcat(sol(ts).t...)[1, :] -dataset = [hcat(us[i, :], ts_) for i in 1:3] - -discretization = BayesianPINN(chain, GridTraining([0.01]); param_estim = true, - dataset = [dataset, nothing]) - -@named pde_system = PDESystem(eqs, bcs, domains, - [t], [x(t), y(t), z(t)], [σ_], defaults = Dict([p => 1.0 for p in [σ_]])) - -sol1 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 100, - bcstd = [0.3, 0.3, 0.3], - phystd = [0.1, 0.1, 0.1], - l2std = [1, 1, 1], - priorsNNw = (0.0, 1.0), - saveats = [0.01], - param = [Normal(14.0, 2)], progress = true) - -idealp = 10.0 -p_ = sol1.estimated_de_params[1] -@test sum(abs, pmean(p_) - 10.00) < 0.3 * idealp[1] -# @test sum(abs, pmean(p_[2]) - (8 / 3)) < 0.3 * idealp[2] - -@parameters x y -@variables u(..) -Dxx = Differential(x)^2 -Dyy = Differential(y)^2 - -# 2D PDE -eq = Dxx(u(x, y)) + Dyy(u(x, y)) ~ -sin(pi * x) * sin(pi * y) - -# Boundary conditions -bcs = [u(0, y) ~ 0.0, u(1, y) ~ 0.0, - u(x, 0) ~ 0.0, u(x, 1) ~ 0.0] - -# Space and time domains -domains = [x ∈ Interval(0.0, 1.0), - y ∈ Interval(0.0, 1.0)] - -# Neural network -dim = 2 # number of dimensions -chain = Lux.Chain(Lux.Dense(dim, 9, Lux.σ), Lux.Dense(9, 9, Lux.σ), Lux.Dense(9, 1)) - -# Discretization -dx = 0.04 -discretization = BayesianPINN([chain], GridTraining(dx), dataset = [[dataset], nothing]) - -@named pde_system = PDESystem(eq, bcs, domains, [x, y], [u(x, y)]) - -eqs = pde_system.eqs -Dict_differentials = Dict() -exps = toexpr.(eqs) -nullobj = [recur_expression(exp, Dict_differentials) for exp in exps] - -sol1 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 5, - bcstd = [0.01, 0.01, 0.01, 0.01], - phystd = [0.005], - priorsNNw = (0.0, 2.0), - saveats = [1 / 100.0, 1 / 100.0], - Dict_differentials = Dict_differentials, - progress = true) - -xs = sol1.timepoints[1] -sol1.ensemblesol[1] -analytic_sol_func(x, y) = (sin(pi * x) * sin(pi * y)) / (2pi^2) - -dataset = hcat(u_real, xs') -u_predict = pmean(sol1.ensemblesol[1]) -u_real = [analytic_sol_func(xs[:, i][1], xs[:, i][2]) for i in 1:length(xs[1, :])] -@test u_predict≈u_real atol=0.8 - -# KS EQUATION -using NeuralPDE, Flux, Lux, ModelingToolkit, LinearAlgebra, AdvancedHMC -import ModelingToolkit: Interval, infimum, supremum, Distributions -using Plots, MonteCarloMeasurements, StatsPlots -# plotly() - -@parameters x, t, α -@variables u(..) -Dt = Differential(t) -Dx = Differential(x) -Dx2 = Differential(x)^2 -Dx3 = Differential(x)^3 -Dx4 = Differential(x)^4 - -# α = 1 -β = 4 -γ = 1 -eq = Dt(u(x, t)) + u(x, t) * Dx(u(x, t)) + α * Dx2(u(x, t)) + β * Dx3(u(x, t)) + γ * Dx4(u(x, t)) ~ 0 - -u_analytic(x, t; z = -x / 2 + t) = 11 + 15 * tanh(z) - 15 * tanh(z)^2 - 15 * tanh(z)^3 -du(x, t; z = -x / 2 + t) = 15 / 2 * (tanh(z) + 1) * (3 * tanh(z) - 1) * sech(z)^2 - -bcs = [u(x, 0) ~ u_analytic(x, 0), - u(-10, t) ~ u_analytic(-10, t), - u(10, t) ~ u_analytic(10, t), - Dx(u(-10, t)) ~ du(-10, t), - Dx(u(10, t)) ~ du(10, t)] - -# Space and time domains -domains = [x ∈ Interval(-10.0, 10.0), - t ∈ Interval(0.0, 1.0)] - -# Discretization -dx = 0.4; -dt = 0.2; - -# Function to compute analytical solution at a specific point (x, t) -function u_analytic_point(x, t) - z = -x / 2 + t - return 11 + 15 * tanh(z) - 15 * tanh(z)^2 - 15 * tanh(z)^3 -end - -# Function to generate the dataset matrix -function generate_dataset_matrix(domains, dx, dt, xlim, tlim) - x_values = xlim[1]:dx:xlim[2] - t_values = tlim[1]:dt:tlim[2] - - dataset = [] - - for t in t_values - for x in x_values - u_value = u_analytic_point(x, t) - push!(dataset, [u_value, x, t]) - end - end - - return vcat([data' for data in dataset]...) -end - -datasetpde = [generate_dataset_matrix(domains, dx, dt, [-10, 10], [0.0, 1.0])] -datasetpde_new = [generate_dataset_matrix(domains, dx, dt, [-10, 0], [0.0, 1.0])] - -# noise to dataset -noisydataset = deepcopy(datasetpde) -noisydataset[1][:, 1] = noisydataset[1][:, 1] .+ (randn(size(noisydataset[1][:, 1])) .* 0.8) - -noisydataset_new = deepcopy(datasetpde_new) -noisydataset_new[1][:, 1] = noisydataset_new[1][:, 1] .+ - (randn(size(noisydataset_new[1][:, 1])) .* 0.8) - -plot(datasetpde[1][:, 2], datasetpde[1][:, 1], title = "Dataset from Analytical Solution") -scatter!(noisydataset[1][:, 2], noisydataset[1][:, 1]) - -plot(datasetpde[1][:, 2], datasetpde[1][:, 3], datasetpde[1][:, 1], - title = "Dataset from Analytical Solution") -scatter!(noisydataset[1][:, 2], noisydataset[1][:, 3], noisydataset[1][:, 1]) - -plot(datasetpde_new[1][:, 2], datasetpde_new[1][:, 1], - title = "Dataset from Analytical Solution") -scatter!(noisydataset_new[1][:, 2], noisydataset_new[1][:, 1]) - -plot(datasetpde_new[1][:, 2], datasetpde_new[1][:, 3], - datasetpde_new[1][:, 1], title = "Dataset from Analytical Solution") -scatter!(noisydataset_new[1][:, 2], noisydataset_new[1][:, 3], noisydataset_new[1][:, 1]) - -noise_std = 1.4 -original_data = datasetpde[1][:, 1] -original_std = std(original_data) -ratio = noise_std / original_std - -# Neural network -chain = Lux.Chain(Lux.Dense(2, 8, Lux.tanh), - Lux.Dense(8, 8, Lux.tanh), - Lux.Dense(8, 1)) - -discretization = NeuralPDE.BayesianPINN([chain], - GridTraining([dx, dt]), param_estim = true, dataset = [noisydataset, nothing]) - -discretization_new = NeuralPDE.BayesianPINN([chain], - GridTraining([dx, dt]), param_estim = true, dataset = [noisydataset_new, nothing]) - -@named pde_system = PDESystem(eq, - bcs, - domains, - [x, t], - [u(x, t)], - [α], - defaults = Dict([α => 2.0])) - -eqs = pde_system.eqs -Dict_differentials = Dict() -exps = toexpr.(eqs) -nullobj = [recur_expression(exp, Dict_differentials) for exp in exps] - -sol1 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 80, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], phystdnew = [0.5], - phystd = [0.5], l2std = [0.2], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 1.0), - saveats = [1 / 100.0, 1 / 100.0], - Dict_differentials = Dict_differentials, - progress = true) - -sol1_1 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 90, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], phystdnew = [0.7], - phystd = [0.7], l2std = [0.2], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 1.0), - saveats = [1 / 100.0, 1 / 100.0], - Dict_differentials = Dict_differentials, - progress = true) - -sol2 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 80, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], - phystd = [0.5], l2std = [0.2], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 1.0), - saveats = [1 / 100.0, 1 / 100.0], - progress = true) - -sol3 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 100, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], - phystd = [0.7], l2std = [0.15], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 3.0), - saveats = [1 / 100.0, 1 / 100.0], - progress = true) - -sol4 = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 80, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], - phystd = [0.7], l2std = [0.2], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 1.0), - saveats = [1 / 100.0, 1 / 100.0], - progress = true) - -phi = discretization.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol1.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - first(pmean(phi([x, t], sol1.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol1_1.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - first(pmean(phi([x, t], sol1_1.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol2.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - first(pmean(phi([x, t], sol2.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol3.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - first(pmean(phi([x, t], sol3.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol4.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - first(pmean(phi([x, t], sol4.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -sol0_new = ahmc_bayesian_pinn_pde(pde_system, - discretization_new; - draw_samples = 110, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], phystdnew = [0.2], - phystd = [0.2], l2std = [0.2], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 1.0), - saveats = [1 / 100.0, 1 / 100.0], - Dict_differentials = Dict_differentials, - progress = true) - -julia > sol5_new = ahmc_bayesian_pinn_pde(pde_system, - discretization_new; - draw_samples = 170, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], - phystd = [0.2], l2std = [0.1], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 1.0), - saveats = [1 / 100.0, 1 / 100.0], - progress = true) - -sol1_new = ahmc_bayesian_pinn_pde(pde_system, - discretization_new; - draw_samples = 110, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], phystdnew = [0.2], - phystd = [0.5], l2std = [0.2], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 1.0), - saveats = [1 / 100.0, 1 / 100.0], - Dict_differentials = Dict_differentials, - progress = true) - -sol1_1_new = ahmc_bayesian_pinn_pde(pde_system, - discretization_new; - draw_samples = 110, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], phystdnew = [0.5], - phystd = [0.5], l2std = [0.2], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 1.0), - saveats = [1 / 100.0, 1 / 100.0], - Dict_differentials = Dict_differentials, - progress = true) - -sol1_2_new = ahmc_bayesian_pinn_pde(pde_system, - discretization_new; - draw_samples = 150, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], phystdnew = [0.1], - phystd = [0.2], l2std = [0.1], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 3.0), - saveats = [1 / 100.0, 1 / 100.0], - Dict_differentials = Dict_differentials, - progress = true) - -sol1_3_new = ahmc_bayesian_pinn_pde(pde_system, - discretization_new; - draw_samples = 150, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], phystdnew = [0.2], - phystd = [0.3], l2std = [0.2], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 3.0), - saveats = [1 / 100.0, 1 / 100.0], - Dict_differentials = Dict_differentials, - progress = true) - -sol2_new = ahmc_bayesian_pinn_pde(pde_system, - discretization_new; - draw_samples = 140, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], - phystd = [0.2], l2std = [0.2], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 1.0), - saveats = [1 / 100.0, 1 / 100.0], - progress = true) - -sol3_new = ahmc_bayesian_pinn_pde(pde_system, - discretization_new; - draw_samples = 140, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], - phystd = [0.2], l2std = [0.1], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 1.0), - saveats = [1 / 100.0, 1 / 100.0], - progress = true) - -sol4_new = ahmc_bayesian_pinn_pde(pde_system, - discretization_new; - draw_samples = 160, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], - phystd = [0.2], l2std = [0.1], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 1.0), - saveats = [1 / 100.0, 1 / 100.0], - progress = true) - -sol5_new = ahmc_bayesian_pinn_pde(pde_system, - discretization_new; - draw_samples = 170, Kernel = AdvancedHMC.NUTS(0.8), - bcstd = [0.1, 0.1, 0.1, 0.1, 0.1], - phystd = [0.2], l2std = [0.1], param = [Distributions.Normal(2.0, 2)], - priorsNNw = (0.0, 1.0), - saveats = [1 / 100.0, 1 / 100.0], - progress = true) - -phi = discretization_new.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol0_new.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - - first(pmean(phi([x, t], sol0_new.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization_new.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol1_new.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - - first(pmean(phi([x, t], sol1_new.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization_new.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol1_1_new.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - - first(pmean(phi([x, t], sol1_1_new.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization_new.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol1_2_new.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - - first(pmean(phi([x, t], sol1_2_new.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization_new.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol1_3_new.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - - first(pmean(phi([x, t], sol1_3_new.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization_new.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol2_new.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - - first(pmean(phi([x, t], sol2_new.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization_new.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol3_new.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - - first(pmean(phi([x, t], sol3_new.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization_new.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol4_new.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - - first(pmean(phi([x, t], sol4_new.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization_new.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol5_new.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - - first(pmean(phi([x, t], sol5_new.estimated_nn_params[1])))) - for x in xs] - for t in ts] - -p1 = plot(xs, u_predict, title = "predict") -p2 = plot(xs, u_real, title = "analytic") -p3 = plot(xs, diff_u, title = "error") -plot(p1, p2, p3) - -phi = discretization_new.phi[1] -xs, ts = [infimum(d.domain):dx:supremum(d.domain) - for (d, dx) in zip(domains, [dx / 10, dt])] - -u_predict = [[first(pmean(phi([x, t], sol5_new.estimated_nn_params[1]))) for x in xs] - for t in ts] -u_real = [[u_analytic(x, t) for x in xs] for t in ts] -diff_u = [[abs(u_analytic(x, t) - - first(pmean(phi([x, t], sol5_new.estimated_nn_params[1])))) - for x in xs] - for t in ts] -p1 = plot(ts, xs, u_predict, title = "predict") -p2 = plot(ts, xs, u_real, title = "analytic") -p3 = plot(ts, xs, diff_u, title = "error") -plot(p1, p2, p3) - -# MCMC chain analysis -plot(sol1.original.mcmc_chain) -plot(sol2.original.mcmc_chain) - -plot(sol0_new.original.mcmc_chain) -plot(sol2_new.original.mcmc_chain) - -plot(sol1.original.mcmc_chain) -meanplot(sol1.original.mcmc_chain) -autocorplot(sol1.original.mcmc_chain) -traceplot(sol1.original.mcmc_chain) - -plot(sol2.original.mcmc_chain) -meanplot(sol2.original.mcmc_chain) -autocorplot(sol2.original.mcmc_chain) -traceplot(sol2.original.mcmc_chain) - -plot(sol0_new.original.mcmc_chain) -meanplot(sol0_new.original.mcmc_chain) -autocorplot(sol0_new.original.mcmc_chain) - -plot(sol2_new.original.mcmc_chain) -meanplot(sol2_new.original.mcmc_chain) -autocorplot(sol2_new.original.mcmc_chain) - -plot(sol3_new.original.mcmc_chain) -meanplot(sol3_new.original.mcmc_chain) -autocorplot(sol3_new.original.mcmc_chain) \ No newline at end of file