diff --git a/src/PDE_BPINN.jl b/src/PDE_BPINN.jl index 652cfe1952..501b08de04 100644 --- a/src/PDE_BPINN.jl +++ b/src/PDE_BPINN.jl @@ -1,6 +1,6 @@ mutable struct PDELogTargetDensity{ ST <: AbstractTrainingStrategy, - D <: Union{Vector{Nothing}, Vector{<:Vector{<:AbstractFloat}}}, + D <: Union{Vector{Nothing}, Vector{<:Matrix{<:Real}}}, P <: Vector{<:Distribution}, I, F, @@ -12,7 +12,7 @@ mutable struct PDELogTargetDensity{ priors::P allstd::Vector{Vector{Float64}} names::Tuple - physdt::Float64 + physdt::Vector{Float64} extraparams::Int init_params::I full_loglikelihood::F @@ -42,7 +42,8 @@ mutable struct PDELogTargetDensity{ end function PDELogTargetDensity(dim, strategy, dataset, priors, allstd, names, physdt, extraparams, - init_params::NamedTuple, full_loglikelihood, Phi) + init_params::Union{NamedTuple, ComponentArrays.ComponentVector}, + full_loglikelihood, Phi) new{ typeof(strategy), typeof(dataset), @@ -126,22 +127,48 @@ end function L2loss2(Tar::PDELogTargetDensity, θ) return logpdf(MvNormal(pde(phi, Tar.dataset[end], θ)), zeros(length(pde_eqs))) end + # L2 losses loglikelihood(needed mainly for ODE parameter estimation) function L2LossData(Tar::PDELogTargetDensity, θ) + Phi = Tar.Phi + init_params = Tar.init_params + dataset = Tar.dataset + sumt = 0 + L2stds = Tar.allstd[3] + # each dep var has a diff dataset depending on its indep var and thier domains + # these datasets are matrices of first col-dep var and remaining cols-all indep var + # Tar.init_params is needed to contruct a vector of parameters into a ComponentVector + + # dataset of form Vector[matrix_x, matrix_y, matrix_z] + # matrix_i is of form [i,indvar1,indvar2,..] (needed in case if heterogenous domains) + + # Phi is the trial solution for each NN in chain array + # Creating logpdf( MvNormal(Phi(t,θ),std), dataset[i] ) + # dataset[i][:, 2:end] -> indepvar cols of a particular depvar's dataset + # dataset[i][:, 1] -> depvar col of depvar's dataset + if Tar.extraparams > 0 if Tar.init_params isa ComponentArrays.ComponentVector - return sum([logpdf(MvNormal(Tar.Phi[i](Tar.dataset[end]', - vector_to_parameters(θ[1:(end - Tar.extraparams)], - Tar.init_params)[Tar.names[i]])[1, - :], ones(length(Tar.dataset[end])) .* Tar.allstd[3][i]), Tar.dataset[i]) - for i in eachindex(Tar.Phi)]) + for i in eachindex(Phi) + sumt += logpdf(MvNormal(Phi[i](dataset[i][:, 2:end]', + vector_to_parameters(θ[1:(end - Tar.extraparams)], + init_params)[Tar.names[i]])[1, + :], + ones(size(dataset[i])[1]) .* L2stds[i]), + dataset[i][:, 1]) + end + sumt else # Flux case needs subindexing wrt Tar.names indices(hence stored in Tar.names) - return sum([logpdf(MvNormal(Tar.Phi[i](Tar.dataset[end]', - vector_to_parameters(θ[1:(end - Tar.extraparams)], - Tar.init_params)[Tar.names[2][i]])[1, - :], ones(length(Tar.dataset[end])) .* Tar.allstd[3][i]), Tar.dataset[i]) - for i in eachindex(Tar.Phi)]) + for i in eachindex(Phi) + sumt += logpdf(MvNormal(Phi[i](dataset[i][:, 2:end]', + vector_to_parameters(θ[1:(end - Tar.extraparams)], + init_params)[Tar.names[2][i]])[1, + :], + ones(size(dataset[i])[1]) .* L2stds[i]), + dataset[i][:, 1]) + end + sumt end else return 0 @@ -204,21 +231,58 @@ function adaptorchoice(Adaptor, mma, ssa) end end -# dataset would be (x̂,t) +# function inference(samples, discretization, saveat, numensemble, ℓπ) +# ranges = [] +# for i in eachindex(domains) +# push!(ranges, [infimum(domains[i].domain), supremum(infimum(domains[i].domain))]) +# end +# ranges = map(ranges) do x +# collect(x[1]:saveat:x[2]) +# end +# samples = samples[(end - numensemble):end] +# chain = discretization.chain + +# if discretization.multioutput && chain[1] isa Lux.AbstractExplicitLayer +# temp = [setparameters(ℓπ, samples[i]) for i in eachindex(samples)] + +# luxar = map(temp) do x +# chain(t', x, st[i]) +# end + +# elseif discretization.multioutput && chain[1] isa Flux.chain + +# elseif chain isa Flux.Chain +# re = Flux.destructure(chain)[2] +# out1 = re.([sample for sample in samples]) +# luxar = [collect(out1[i](t') for t in ranges)] +# fluxmean = map(luxar) do x +# mean(vcat(x...)[:, i]) for i in eachindex(x) +# end +# else +# transsamples = [vector_to_parameters(sample, initl) for sample in samples] +# luxar2 = [chainl(t1', transsamples[i], st)[1] for i in 800:1000] +# luxmean = [mean(vcat(luxar2...)[:, i]) for i in eachindex(t1)] +# end +# end + # priors: pdf for W,b + pdf for ODE params -# lotka specific kwargs here function ahmc_bayesian_pinn_pde(pde_system, discretization; strategy = GridTraining, dataset = [nothing], - init_params = nothing, draw_samples = 1000, - physdt = 1 / 20.0, bcstd = [0.01], l2std = [0.05], + draw_samples = 1000, physdt = [1 / 20.0], + bcstd = [0.01], l2std = [0.05], phystd = [0.05], priorsNNw = (0.0, 2.0), param = [], nchains = 1, Kernel = HMC, Adaptorkwargs = (Adaptor = StanHMCAdaptor, Metric = DiagEuclideanMetric, targetacceptancerate = 0.8), Integratorkwargs = (Integrator = Leapfrog,), - MCMCkwargs = (n_leapfrog = 30,), + MCMCkwargs = (n_leapfrog = 30,), saveat = 1 / 50.0, + numensemble = 100, + # floor(Int, alg.draw_samples / 3), progress = false, verbose = false) - pinnrep = symbolic_discretize(pde_system, discretization, bayesian = true) + pinnrep = symbolic_discretize(pde_system, + discretization, + bayesian = true, + dataset_given = dataset) # for physics loglikelihood full_weighted_loglikelihood = pinnrep.loss_functions.full_loss_function @@ -245,7 +309,7 @@ function ahmc_bayesian_pinn_pde(pde_system, discretization; # converting vector of parameters to ComponentArray for runtimegenerated functions names = ntuple(i -> pinnrep.depvars[i], length(chain)) else - # this case is for Flux multioutput + # Flux multioutput i = 0 temp = [] for j in eachindex(initial_nnθ) @@ -270,7 +334,8 @@ function ahmc_bayesian_pinn_pde(pde_system, discretization; nparameters += ninv end - strategy = strategy(physdt) + # physdt vector in case of N-dimensional domains + strategy = discretization.strategy # dimensions would be total no of params,initial_nnθ for Lux namedTuples ℓπ = PDELogTargetDensity(nparameters, @@ -318,10 +383,13 @@ function ahmc_bayesian_pinn_pde(pde_system, discretization; Kernel = AdvancedHMC.make_kernel(MCMC_alg, integrator) samples, stats = sample(hamiltonian, Kernel, initial_θ, draw_samples, adaptor; progress = progress, verbose = verbose) + mcmc_chain = Chains(hcat(samples...)') + + fullsolution = BPINNstats(mcmcchain, samples, statistics) + estimsol = inference(samples, discretization, saveat, numensemble, ℓπ) samplesc[i] = samples statsc[i] = stats - mcmc_chain = Chains(hcat(samples...)') chains[i] = mcmc_chain end @@ -348,7 +416,7 @@ function ahmc_bayesian_pinn_pde(pde_system, discretization; println("Current Prior Log-likelihood : ", priorlogpdf(ℓπ, samples[end])) println("Current MSE against dataset Log-likelihood : ", L2LossData(ℓπ, samples[end])) - + fullsolution = BPINNstats(mcmc_chain, samples, stats) return mcmc_chain, samples, stats end end \ No newline at end of file diff --git a/src/discretize.jl b/src/discretize.jl index f9fb86d5eb..809e9f3327 100644 --- a/src/discretize.jl +++ b/src/discretize.jl @@ -401,7 +401,7 @@ to the PDE. For more information, see `discretize` and `PINNRepresentation`. """ function SciMLBase.symbolic_discretize(pde_system::PDESystem, - discretization::PhysicsInformedNN; bayesian::Bool = false) + discretization::PhysicsInformedNN; bayesian::Bool = false,dataset_given=[nothing]) eqs = pde_system.eqs bcs = pde_system.bcs chain = discretization.chain @@ -567,7 +567,6 @@ function SciMLBase.symbolic_discretize(pde_system::PDESystem, strategy, datafree_pde_loss_functions, datafree_bc_loss_functions) - # setup for all adaptive losses num_pde_losses = length(pde_loss_functions) num_bc_losses = length(bc_loss_functions) @@ -587,14 +586,34 @@ function SciMLBase.symbolic_discretize(pde_system::PDESystem, bc_loss_functions) if bayesian + # required as Physics loss also needed on dataset domain points + pde_loss_functions1, bc_loss_functions1 = if !(dataset_given[1] isa Nothing) + if !(strategy isa GridTraining) + println("only GridTraining strategy allowed") + else + merge_strategy_with_loglikelihood_function(pinnrep, + strategy, + datafree_pde_loss_functions, + datafree_bc_loss_functions, train_sets_L2loss2 = dataset_given) + end + end + function full_likelihood_function(θ, allstd) stdpdes, stdbcs, stdextra = allstd # the aggregation happens on cpu even if the losses are gpu, probably fine since it's only a few of them pde_loglikelihoods = [logpdf(Normal(0, stdpdes[i]), pde_loss_function(θ)) - for (i, pde_loss_function) in enumerate(pde_loss_functions)] + for (i, pde_loss_function) in enumerate(pde_loss_functions)] bc_loglikelihoods = [logpdf(Normal(0, stdbcs[j]), bc_loss_function(θ)) - for (j, bc_loss_function) in enumerate(bc_loss_functions)] + for (j, bc_loss_function) in enumerate(bc_loss_functions)] + + if !(dataset_given[1] isa Nothing) + pde_loglikelihoods += [logpdf(Normal(0, stdpdes[j]), pde_loss_function1(θ)) + for (j, pde_loss_function1) in enumerate(pde_loss_functions1)] + + bc_loglikelihoods += [logpdf(Normal(0, stdbcs[j]), bc_loss_function1(θ)) + for (j, bc_loss_function1) in enumerate(bc_loss_functions1)] + end # this is kind of a hack, and means that whenever the outer function is evaluated the increment goes up, even if it's not being optimized # that's why we prefer the user to maintain the increment in the outer loop callback during optimization @@ -634,8 +653,8 @@ function SciMLBase.symbolic_discretize(pde_system::PDESystem, return additional_loss(phi, θ_, p_) end - _additional_loglikelihood = logpdf(Normal(0, stdextra), - _additional_loss(phi, θ)) + _additional_loglikelihood = logpdf(Normal(0, stdextra) _additional_loss(phi, θ)) + weighted_additional_loglikelihood = adaloss.additional_loss_weights[1] * _additional_loglikelihood @@ -645,7 +664,7 @@ function SciMLBase.symbolic_discretize(pde_system::PDESystem, end pinnrep.loss_functions = PINNLossFunctions(bc_loss_functions, pde_loss_functions, - full_likelihood_function, additional_loss, + full_likelihood_function, additional_loss, datafree_pde_loss_functions, datafree_bc_loss_functions) else diff --git a/src/training_strategies.jl b/src/training_strategies.jl index 8af7358753..8f39ee04ac 100644 --- a/src/training_strategies.jl +++ b/src/training_strategies.jl @@ -16,6 +16,35 @@ struct GridTraining{T} <: AbstractTrainingStrategy dx::T end +# include dataset points in pde_residual loglikelihood +function merge_strategy_with_loglikelihood_function(pinnrep::PINNRepresentation, + strategy::GridTraining, + datafree_pde_loss_function, + datafree_bc_loss_function; train_sets_L2loss2 = nothing) + @unpack domains, eqs, bcs, dict_indvars, dict_depvars, flat_init_params = pinnrep + dx = strategy.dx + eltypeθ = eltype(pinnrep.flat_init_params) + + train_sets = generate_training_sets(domains, dx, eqs, bcs, eltypeθ, + dict_indvars, dict_depvars) + + bcs_train_sets = train_sets[2] + pde_train_sets = [train_set[:, 2:end] for train_set in train_sets_L2loss2] + # the points in the domain and on the boundary + pde_train_sets = adapt.(parameterless_type(ComponentArrays.getdata(flat_init_params)), + pde_train_sets) + bcs_train_sets = adapt.(parameterless_type(ComponentArrays.getdata(flat_init_params)), + bcs_train_sets) + pde_loss_functions = [get_loss_function(_loss, _set, eltypeθ, strategy) + for (_loss, _set) in zip(datafree_pde_loss_function, + pde_train_sets)] + + bc_loss_functions = [get_loss_function(_loss, _set, eltypeθ, strategy) + for (_loss, _set) in zip(datafree_bc_loss_function, bcs_train_sets)] + + pde_loss_functions, bc_loss_functions +end + function merge_strategy_with_loss_function(pinnrep::PINNRepresentation, strategy::GridTraining, datafree_pde_loss_function, diff --git a/test/BPINN_PDE_tests.jl b/test/BPINN_PDE_tests.jl index df2e11555c..192165d2b0 100644 --- a/test/BPINN_PDE_tests.jl +++ b/test/BPINN_PDE_tests.jl @@ -1,132 +1,353 @@ -using Test, MCMCChains, Lux, ModelingToolkit -import ModelingToolkit: Interval, infimum, supremum -using ForwardDiff, Distributions, OrdinaryDiffEq -using Flux, AdvancedHMC, Statistics, Random, Functors -using NeuralPDE, MonteCarloMeasurements - -# Forward solving example -@parameters t -@variables u(..) - -Dt = Differential(t) -linear_analytic = (u0, p, t) -> u0 + sin(2 * π * t) / (2 * π) -linear = (u, p, t) -> cos(2 * π * t) - -Dt = Differential(t) -eqs = Dt(u(t)) - cos(2 * π * t) ~ 0 -bcs = [u(0) ~ 0.0] -domains = [t ∈ Interval(0.0, 4.0)] - -chainf = Flux.Chain(Flux.Dense(1, 6, tanh), Flux.Dense(6, 1)) -init1, re1 = destructure(chainf) -chainl = Lux.Chain(Lux.Dense(1, 6, tanh), Lux.Dense(6, 1)) -initl, st = Lux.setup(Random.default_rng(), chainl) - -@named pde_system = PDESystem(eqs, bcs, domains, [t], [u(t)]) - -# non adaptive case -discretization = NeuralPDE.PhysicsInformedNN(chainf, GridTraining([0.01])) -mcmc_chain, samples, stats = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 1000, - bcstd = [0.02], - phystd = [0.01], - priorsNNw = (0.0, 1.0), - progress = true) - -discretization = NeuralPDE.PhysicsInformedNN(chainl, GridTraining([0.01])) -mcmc_chain, samples, stats = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 1000, - bcstd = [0.02], - phystd = [0.01], - priorsNNw = (0.0, 1.0), - progress = true) - -tspan = (0.0, 4.0) -t1 = collect(tspan[1]:0.01:tspan[2]) - -out1 = re.([samples[i] for i in 800:1000]) -luxar1 = collect(out1[i](t1') for i in eachindex(out1)) -fluxmean = [mean(vcat(luxar1...)[:, i]) for i in eachindex(t1)] - -transsamples = [vector_to_parameters(sample, initl) for sample in samples] -luxar2 = [chainl(t1', transsamples[i], st)[1] for i in 800:1000] -luxmean = [mean(vcat(luxar2...)[:, i]) for i in eachindex(t1)] - -u = [linear_analytic(0, nothing, t) for t in t1] - -@test mean(abs.(u .- fluxmean)) < 5e-2 -@test mean(abs.(u .- luxmean)) < 5e-2 - -# Parameter estimation example -@parameters t p -@variables u(..) - -Dt = Differential(t) -linear_analytic = (u0, p, t) -> u0 + sin(2 * π * t) / (2 * π) -linear = (u, p, t) -> cos(2 * π * t) -eqs = Dt(u(t)) - cos(p * t) ~ 0 -bcs = [u(0) ~ 0.0] -domains = [t ∈ Interval(0.0, 4.0)] -p = 2 * π - -chainf = Flux.Chain(Flux.Dense(1, 8, tanh), Flux.Dense(8, 1)) -init1, re1 = destructure(chainf) -chainl = Lux.Chain(Lux.Dense(1, 8, tanh), Lux.Dense(8, 1)) -initl, st = Lux.setup(Random.default_rng(), chainl) - -@named pde_system = PDESystem(eqs, bcs, domains, [t], [u(t)], [p], - defaults = Dict(p => 3)) - -ta = range(0.0, 4.0, length = 50) -u = [linear_analytic(0.0, p, ti) for ti in ta] -x̂ = collect(Float64, Array(u) + 0.2 .* Array(u) .* randn(size(u))) -time = vec(collect(Float64, ta)) -dataset = [x̂, time] - -discretization = NeuralPDE.PhysicsInformedNN([chainf], - GridTraining(0.01), - param_estim = true) - -mcmc_chain, samples, stats = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 1500, physdt = 1 / 20.0, - bcstd = [1.0], - phystd = [0.01], l2std = [0.01], - param = [Normal(9, 2)], - priorsNNw = (0.0, 10.0), - dataset = dataset, - progress = true) - -discretization = NeuralPDE.PhysicsInformedNN([chainl], - GridTraining(0.01), - param_estim = true) - -mcmc_chain, samples, stats = ahmc_bayesian_pinn_pde(pde_system, - discretization; - draw_samples = 1500, - bcstd = [0.1], - phystd = [0.01], l2std = [0.01], param = [LogNormal(4, 2)], - priorsNNw = (0.0, 10.0), - dataset = dataset, - progress = true) - -tspan = (0.0, 4.0) -t1 = collect(tspan[1]:0.01:tspan[2]) - -out1 = re.([samples[i][1:(end - 1)] for i in 1300:1500]) -luxar1 = collect(out1[i](t1') for i in eachindex(out1)) -fluxmean = [mean(vcat(luxar1...)[:, i]) for i in eachindex(t1)] - -transsamples = [vector_to_parameters(sample, initl) for sample[1:(end - 1)] in samples] -luxar2 = [chainl(t1', transsamples[i], st)[1] for i in 1300:1500] -luxmean = [mean(vcat(luxar2...)[:, i]) for i in eachindex(t1)] - -u = [linear_analytic(0, nothing, t) for t in t1] - -@test mean(abs.(u .- fluxmean)) < 5e-2 -@test mean(abs.(u .- luxmean)) < 5e-2 - -@test mean(p .- [samples[i][end] for i in 1300:1500]) < 0.4 * p -@test mean(p .- [samples[i][end] for i in 1300:1500]) < 0.4 * p \ No newline at end of file +# using Test, MCMCChains, Lux, ModelingToolkit +# import ModelingToolkit: Interval, infimum, supremum +# using ForwardDiff, Distributions, OrdinaryDiffEq +# using Flux, AdvancedHMC, Statistics, Random, Functors +# using NeuralPDE, MonteCarloMeasurements +# using ComponentArrays + +# # Forward solving example +# @parameters t +# @variables u(..) + +# Dt = Differential(t) +# linear_analytic = (u0, p, t) -> u0 + sin(2 * π * t) / (2 * π) +# linear = (u, p, t) -> cos(2 * π * t) + +# Dt = Differential(t) +# eqs = Dt(u(t)) - cos(2 * π * t) ~ 0 +# bcs = [u(0) ~ 0.0] +# domains = [t ∈ Interval(0.0, 4.0)] + +# chainf = Flux.Chain(Flux.Dense(1, 6, tanh), Flux.Dense(6, 1)) +# init1, re1 = Flux.destructure(chainf) +# chainl = Lux.Chain(Lux.Dense(1, 6, tanh), Lux.Dense(6, 1)) +# initl, st = Lux.setup(Random.default_rng(), chainl) + +# @named pde_system = PDESystem(eqs, bcs, domains, [t], [u(t)]) + +# # non adaptive case +# discretization = NeuralPDE.PhysicsInformedNN([chainf], GridTraining([0.01])) +# mcmc_chain, samples, stats = ahmc_bayesian_pinn_pde(pde_system, +# discretization; +# draw_samples = 1000, +# bcstd = [0.02], +# phystd = [0.01], +# priorsNNw = (0.0, 1.0), +# progress = true) + +# discretization = NeuralPDE.PhysicsInformedNN([chainl], GridTraining([0.01])) +# mcmc_chain, samples, stats = ahmc_bayesian_pinn_pde(pde_system, +# discretization; +# draw_samples = 1000, +# bcstd = [0.02], +# phystd = [0.01], +# priorsNNw = (0.0, 1.0), +# progress = true) + +# tspan = (0.0, 4.0) +# t1 = collect(tspan[1]:0.01:tspan[2]) + +# out1 = re.([samples[i] for i in 800:1000]) +# luxar1 = collect(out1[i](t1') for i in eachindex(out1)) +# fluxmean = [mean(vcat(luxar1...)[:, i]) for i in eachindex(t1)] + +# transsamples = [vector_to_parameters(sample, initl) for sample in samples] +# luxar2 = [chainl(t1', transsamples[i], st)[1] for i in 800:1000] +# luxmean = [mean(vcat(luxar2...)[:, i]) for i in eachindex(t1)] + +# u = [linear_analytic(0, nothing, t) for t in t1] + +# @test mean(abs.(u .- fluxmean)) < 5e-2 +# @test mean(abs.(u .- luxmean)) < 5e-2 + +# # Parameter estimation example +# @parameters t p +# @variables u(..) + +# Dt = Differential(t) +# # linear_analytic = (u0, p, t) -> u0 + sin(2 * π * t) / (2 * π) +# # linear = (u, p, t) -> cos(2 * π * t) +# eqs = Dt(u(t)) - cos(p * t) ~ 0 +# bcs = [u(0.0) ~ 0.0] +# domains = [t ∈ Interval(0.0, 4.0)] + +# p = 2 * π + +# chainf = Flux.Chain(Flux.Dense(1, 8, tanh), Flux.Dense(8, 1)) +# init1, re = Flux.destructure(chainf) +# chainl = Lux.Chain(Lux.Dense(1, 8, tanh), Lux.Dense(8, 1)) +# initl, st = Lux.setup(Random.default_rng(), chainl) + +# # chainl([1, 2], initl, st) + +# # using ComponentArrays +# # c = ComponentArrays.ComponentVector(a = [1, 2, 3], b = [1, 2, 3]) + +# # @parameters x y +# # @variables p(..) q(..) r(..) s(..) +# # Dx = Differential(x) +# # Dy = Differential(y) + +# # # 2D PDE +# # eq = p(x) + q(y) + Dx(r(x, y)) + Dy(s(y, x)) ~ 0 + +# # # Initial and boundary conditions +# # bcs = [p(1) ~ 0.0f0, q(-1) ~ 0.0f0, +# # r(x, -1) ~ 0.0f0, r(1, y) ~ 0.0f0, +# # s(y, 1) ~ 0.0f0, s(-1, x) ~ 0.0f0] + +# # # Space and time domains +# # domains = [x ∈ Interval(0.0, 1.0), +# # y ∈ Interval(0.0, 1.0)] + +# # numhid = 3 +# # chains = [[Lux.Chain(Lux.Dense(1, numhid, Lux.σ), Lux.Dense(numhid, numhid, Lux.σ), +# # Lux.Dense(numhid, 1)) for i in 1:2] +# # [Lux.Chain(Lux.Dense(2, numhid, Lux.σ), Lux.Dense(numhid, numhid, Lux.σ), +# # Lux.Dense(numhid, 1)) for i in 1:2]] +# # discretization = NeuralPDE.PhysicsInformedNN(chains, QuadratureTraining()) + +# # @named pde_system = PDESystem(eq, bcs, domains, [x, y], [p(x), q(y), r(x, y), s(y, x)]) + +# # de = [:x, :y] +# # a[de[1]] +# # a = ComponentArrays.ComponentVector(x = 1) +# # a[:x] + +# # pde_system.indvars +# # SymbolicUtils.istree(pde_system.depvars[3]) +# # Symbolics.value(pde_system.depvars[3]) + +# @named pde_system = PDESystem(eqs, bcs, domains, [t], [u(t)], [p], +# defaults = Dict(p => 3)) + +# ta = range(0.0, 4.0, length = 50) +# u = [linear_analytic(0.0, p, ti) for ti in ta] +# x̂ = collect(Float64, Array(u) + 0.2 .* Array(u) .* randn(size(u))) +# time = vec(collect(Float64, ta)) +# # x = time .* 2.0 +# dataset = [hcat(x̂, time)] +# hcat(datase[:, 2:end] for datase in dataset) + +# discretization = NeuralPDE.PhysicsInformedNN([chainf], +# GridTraining([0.01]), +# param_estim = true) +# # println() + +# mcmc_chain, samples, stats = ahmc_bayesian_pinn_pde(pde_system, +# discretization; +# draw_samples = 1500, physdt = [1 / 20.0], +# bcstd = [0.5], +# phystd = [0.01], l2std = [0.02], +# param = [Normal(9, 2)], +# priorsNNw = (0.0, 1.0), +# dataset = dataset, +# progress = true) + +# discretization = NeuralPDE.PhysicsInformedNN([chainl], +# GridTraining(0.01), +# param_estim = true) + +# mcmc_chain, samples, stats = ahmc_bayesian_pinn_pde(pde_system, +# discretization; +# draw_samples = 1500, +# bcstd = [0.1], +# phystd = [0.01], l2std = [0.01], param = [LogNormal(4, 2)], +# priorsNNw = (0.0, 10.0), +# dataset = dataset, +# progress = true) + +# tspan = (0.0, 4.0) +# t1 = collect(tspan[1]:0.01:tspan[2]) + +# out1 = re.([samples[i][1:(end - 1)] for i in 1300:1500]) +# luxar1 = collect(out1[i](t1') for i in eachindex(out1)) +# fluxmean = [mean(vcat(luxar1...)[:, i]) for i in eachindex(t1)] + +# using Plots +# plotly() +# plot!(t1, fluxmean) +# plot!(dataset[1][:, 2], dataset[1][:, 1]) + +# transsamples = [vector_to_parameters(sample, initl) for sample[1:(end - 1)] in samples] +# luxar2 = [chainl(t1', transsamples[i], st)[1] for i in 1300:1500] +# luxmean = [mean(vcat(luxar2...)[:, i]) for i in eachindex(t1)] + +# u = [linear_analytic(0, nothing, t) for t in t1] + +# @test mean(abs.(u .- fluxmean)) < 5e-2 +# @test mean(abs.(u .- luxmean)) < 5e-2 + +# @test mean(p .- [samples[i][end] for i in 1300:1500]) < 0.4 * p +# @test mean(p .- [samples[i][end] for i in 1300:1500]) < 0.4 * p + +# plot(u) +# plot!(fluxmean) +# plot!(luxmean) + +# using NeuralPDE, Lux, ModelingToolkit, Optimization, OptimizationOptimJL +# import ModelingToolkit: Interval + +# @parameters x y +# @variables p(..) q(..) r(..) s(..) +# Dx = Differential(x) +# Dy = Differential(y) + +# # 2D PDE +# eq = p(x) + q(y) + Dx(r(x, y)) + Dy(s(y, x)) ~ 0 + +# # Initial and boundary conditions +# bcs = [p(1) ~ 0.0f0, q(-1) ~ 0.0f0, +# r(x, -1) ~ 0.0f0, r(1, y) ~ 0.0f0, +# s(y, 1) ~ 0.0f0, s(-1, x) ~ 0.0f0] + +# # Space and time domains +# domains = [x ∈ Interval(0.0, 1.0), +# y ∈ Interval(0.0, 1.0)] + +# numhid = 3 +# chains = [[Lux.Chain(Lux.Dense(1, numhid, Lux.σ), Lux.Dense(numhid, numhid, Lux.σ), +# Lux.Dense(numhid, 1)) for i in 1:2] +# [Lux.Chain(Lux.Dense(2, numhid, Lux.σ), Lux.Dense(numhid, numhid, Lux.σ), +# Lux.Dense(numhid, 1)) for i in 1:2]] +# discretization = NeuralPDE.PhysicsInformedNN(chains, GridTraining([0.01, 0.01])) + +# @named pde_system = PDESystem(eq, bcs, domains, [x, y], [p(x), q(y), r(x, y), s(y, x)]) +# prob = SciMLBase.discretize(pde_system, discretization) + +# mcmc_chain, samples, stats = ahmc_bayesian_pinn_pde(pde_system, +# discretization; +# draw_samples = 1500, +# bcstd = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5], +# phystd = [0.1], +# priorsNNw = (0.0, 10.0), +# progress = true) + +# firstelement(domains[1]) +# infimum(domains[1]) +# infimum(domains[1].domain) +# domains = [x ∈ Interval(0.0, 1.0)] +# size(domains) + +# # callback = function (p, l) +# # println("Current loss is: $l") +# # return false +# # end + +# # res = Optimization.solve(prob, BFGS(); callback = callback, maxiters = 100) + +# # Paper experiments +# # function sir_ode!(u, p, t) +# # (S, I, R) = u +# # (β, γ) = p +# # N = S + I + R + +# # dS = -β * I / N * S +# # dI = β * I / N * S - γ * I +# # dR = γ * I +# # return [dS, dI, dR] +# # end; + +# # δt = 1.0 +# # tmax = 40.0 +# # tspan = (0.0, tmax) +# # u0 = [990.0, 10.0, 0.0]; # S,I,R +# # p = [0.5, 0.25]; # β,γ (removed c as a parameter as it was just getting multipled with β, so ideal value for c and β taken in new ideal β value) +# # prob_ode = ODEProblem(sir_ode!, u0, tspan, p) +# # sol = solve(prob_ode, Tsit5(), saveat = δt / 5) +# # sig = 0.20 +# # data = Array(sol) +# # dataset = [ +# # data[1, :] .+ (minimum(data[1, :]) * sig .* rand(length(sol.t))), +# # data[2, :] .+ (mean(data[2, :]) * sig .* rand(length(sol.t))), +# # data[3, :] .+ (mean(data[3, :]) * sig .* rand(length(sol.t))), +# # sol.t, +# # ] +# # priors = [Normal(1.0, 1.0), Normal(0.5, 1.0)] + +# # plot(sol.t, dataset[1], label = "noisy s") +# # plot!(sol.t, dataset[2], label = "noisy i") +# # plot!(sol.t, dataset[3], label = "noisy r") +# # plot!(sol, labels = ["s" "i" "r"]) + +# # chain = Flux.Chain(Flux.Dense(1, 8, tanh), Flux.Dense(8, 8, tanh), +# # Flux.Dense(8, 3)) + +# # Adaptorkwargs = (Adaptor = AdvancedHMC.StanHMCAdaptor, +# # Metric = AdvancedHMC.DiagEuclideanMetric, targetacceptancerate = 0.8) + +# # alg = BNNODE(chain; +# # dataset = dataset, +# # draw_samples = 500, +# # l2std = [5.0, 5.0, 10.0], +# # phystd = [1.0, 1.0, 1.0], +# # priorsNNw = (0.01, 3.0), +# # Adaptorkwargs = Adaptorkwargs, +# # param = priors, progress = true) + +# # # our version +# # @time sol_pestim3 = solve(prob_ode, alg; estim_collocate = true, saveat = δt) +# # @show sol_pestim3.estimated_ode_params + +# # # old version +# # @time sol_pestim4 = solve(prob_ode, alg; saveat = δt) +# # @show sol_pestim4.estimated_ode_params + +# # # plotting solutions +# # plot(sol_pestim3.ensemblesol[1], label = "estimated x1") +# # plot!(sol_pestim3.ensemblesol[2], label = "estimated y1") +# # plot!(sol_pestim3.ensemblesol[3], label = "estimated z1") + +# # plot(sol_pestim4.ensemblesol[1], label = "estimated x2_1") +# # plot!(sol_pestim4.ensemblesol[2], label = "estimated y2_1") +# # plot!(sol_pestim4.ensemblesol[3], label = "estimated z2_1") + +# # discretization = NeuralPDE.PhysicsInformedNN(chainf, +# # GridTraining([ +# # 0.01, +# # ]), +# # adaptive_loss = MiniMaxAdaptiveLoss(2; +# # pde_max_optimiser = Flux.ADAM(1e-4), +# # bc_max_optimiser = Flux.ADAM(0.5), +# # pde_loss_weights = 1, +# # bc_loss_weights = 1, +# # additional_loss_weights = 1) + +# # # GradientScaleAdaptiveLoss{Float64, ForwardDiff.Dual{Float64}}(2; +# # # weight_change_inertia = 0.9, +# # # pde_loss_weights = ForwardDiff.Dual{Float64}(1.0, +# # # ntuple(_ -> 0.0, 19)), +# # # bc_loss_weights = ForwardDiff.Dual{Float64}(1.0, +# # # ntuple(_ -> 0.0, 19)), +# # # additional_loss_weights = ForwardDiff.Dual{Float64}(1.0, +# # # ntuple(_ -> 0.0, 19))) +# # # GradientScaleAdaptiveLoss{Float64, ForwardDiff.Dual{Float64, Float64}}(2; +# # # weight_change_inertia = 0.9, +# # # pde_loss_weights = ForwardDiff.Dual{Float64}(1.0, ntuple(_ -> 0.0, 19)), +# # # bc_loss_weights = ForwardDiff.Dual{Float64}(1.0, ntuple(_ -> 0.0, 19)), +# # # additional_loss_weights = ForwardDiff.Dual{Float64}(1.0, ntuple(_ -> 0.0, 19)))) +# # ) + +# # # ForwardDiff.Dual{Float64}(1.0, ntuple(_ -> 0.0, 19)) +# # # typeof(ForwardDiff.Dual{Float64}(1.0, ntuple(_ -> 0.0, 19))) <: ForwardDiff.Dual + +# # a = GradientScaleAdaptiveLoss{Float64, ForwardDiff.Dual{Float64, Float64}}(2; +# # weight_change_inertia = 0.9, +# # pde_loss_weights = ForwardDiff.Dual{Float64}(1.0, +# # zeros(19))), +# # bc_loss_weights = ForwardDiff.Dual{Float64}(1.0, +# # zeros(19)), +# # additional_loss_weights = ForwardDiff.Dual{Float64}(1.0, +# # zeros(19)) + +# # as = ForwardDiff.Dual{Float64}(1.0, ForwardDiff.Partials(ntuple(_ -> 0.0, 19))) +# # typeof(ForwardDiff.Dual{Float64}(1.0, ntuple(_ -> 0.0, 19))) + +# # a = GradientScaleAdaptiveLoss{Float64, Float64}(2; weight_change_inertia = 0.9, +# # pde_loss_weights = 1, +# # bc_loss_weights = 1, +# # additional_loss_weights = 1) +# # ForwardDiff.Dual{Float64, Float64, 19} <: ForwardDiff.Dual{Float64, Float64} +# # typeof(ntuple(_ -> 0.0, 19)) <: Tuple +# # ForwardDiff.Dual{Float64}(ForwardDiff.value(1.0), ntuple(_ -> 0.0, 19)) +# # typeof(ForwardDiff.Dual{Float64}(1.0, ntuple(_ -> 0.0, 19))) <: Real