diff --git a/docs/src/tutorials/dgm.md b/docs/src/tutorials/dgm.md index 61d32cbe33..1917df8f43 100644 --- a/docs/src/tutorials/dgm.md +++ b/docs/src/tutorials/dgm.md @@ -7,6 +7,7 @@ Deep Galerkin Method is a meshless deep learning algorithm to solve high dimensi In the following example, we demonstrate computing the loss function using Quasi-Random Sampling, a sampling technique that uses quasi-Monte Carlo sampling to generate low discrepancy random sequences in high dimensional spaces. ### Algorithm + The authors of DGM suggest a network composed of LSTM-type layers that works well for most of the parabolic and quasi-parabolic PDEs. ```math @@ -47,13 +48,15 @@ u(t, 1) & = 0 ``` ### Copy- Pasteable code + ```@example dgm using NeuralPDE using ModelingToolkit, Optimization, OptimizationOptimisers -import Lux: tanh, identity +using Lux: tanh, identity using Distributions -import ModelingToolkit: Interval, infimum, supremum +using ModelingToolkit: Interval, infimum, supremum using MethodOfLines, OrdinaryDiffEq +using Plots @parameters x t @variables u(..) @@ -108,8 +111,9 @@ phi = discretization.phi u_predict= [first(phi([t, x], res.minimizer)) for t in ts, x in xs] diff_u = abs.(u_predict .- u_MOL) +tgrid = 0.0:0.01:1.0 +xgrid = -1.0:0.01:1.0 -using Plots p1 = plot(tgrid, xgrid, u_MOL', linetype = :contourf, title = "FD"); p2 = plot(tgrid, xgrid, u_predict', linetype = :contourf, title = "predict"); p3 = plot(tgrid, xgrid, diff_u', linetype = :contourf, title = "error");