diff --git a/docs/src/tutorials/param_estim.md b/docs/src/tutorials/Aparam_estim.md similarity index 95% rename from docs/src/tutorials/param_estim.md rename to docs/src/tutorials/Aparam_estim.md index 149b1e7200..79aac22b31 100644 --- a/docs/src/tutorials/param_estim.md +++ b/docs/src/tutorials/Aparam_estim.md @@ -16,7 +16,7 @@ We start by defining the problem, ```@example param_estim using NeuralPDE, Lux, ModelingToolkit, Optimization, OptimizationOptimJL, OrdinaryDiffEq, - Plots + Plots, LineSearches using ModelingToolkit: Interval, infimum, supremum @parameters t, σ_, β, ρ @variables x(..), y(..), z(..) @@ -94,7 +94,7 @@ Then finally defining and optimizing using the `PhysicsInformedNN` interface. ```@example param_estim discretization = NeuralPDE.PhysicsInformedNN([chain1, chain2, chain3], - NeuralPDE.QuadratureTraining(), param_estim = true, + NeuralPDE.QuadratureTraining(; abstol = 1e-6, reltol = 1e-6, batch = 200), param_estim = true, additional_loss = additional_loss) @named pde_system = PDESystem(eqs, bcs, domains, [t], [x(t), y(t), z(t)], [σ_, ρ, β], defaults = Dict([p .=> 1.0 for p in [σ_, ρ, β]])) @@ -103,7 +103,7 @@ callback = function (p, l) println("Current loss is: $l") return false end -res = Optimization.solve(prob, BFGS(); callback = callback, maxiters = 1000) +res = Optimization.solve(prob, BFGS(linesearch = BackTracking()); callback = callback, maxiters = 1000) p_ = res.u[(end - 2):end] # p_ = [9.93, 28.002, 2.667] ```