diff --git a/docs/src/tutorials/neural_adapter.md b/docs/src/tutorials/neural_adapter.md index 93f0dd036f..56d3a0679e 100644 --- a/docs/src/tutorials/neural_adapter.md +++ b/docs/src/tutorials/neural_adapter.md @@ -69,7 +69,7 @@ function loss(cord, θ) ch2 .- phi(cord, res.u) end -strategy = NeuralPDE.QuadratureTraining(; reltol = 1e-6) +strategy = NeuralPDE.QuadratureTraining(; reltol = 1e-6, abstol = 1e-3) prob_ = NeuralPDE.neural_adapter(loss, init_params2, pde_system, strategy) res_ = Optimization.solve(prob_, OptimizationOptimisers.Adam(5e-3); maxiters = 10000) @@ -173,7 +173,7 @@ for i in 1:count_decomp bcs_ = create_bcs(domains_[1].domain, phi_bound) @named pde_system_ = PDESystem(eq, bcs_, domains_, [x, y], [u(x, y)]) push!(pde_system_map, pde_system_) - strategy = NeuralPDE.QuadratureTraining(; reltol = 1e-6) + strategy = NeuralPDE.QuadratureTraining(; reltol = 1e-6, abstol = 1e-3) discretization = NeuralPDE.PhysicsInformedNN(chains[i], strategy; init_params = init_params[i]) @@ -243,10 +243,10 @@ callback = function (p, l) end prob_ = NeuralPDE.neural_adapter(losses, init_params2, pde_system_map, - NeuralPDE.QuadratureTraining(; reltol = 1e-6)) + NeuralPDE.QuadratureTraining(; reltol = 1e-6, abstol = 1e-3)) res_ = Optimization.solve(prob_, OptimizationOptimisers.Adam(5e-3); maxiters = 5000) prob_ = NeuralPDE.neural_adapter(losses, res_.u, pde_system_map, - NeuralPDE.QuadratureTraining(; reltol = 1e-6)) + NeuralPDE.QuadratureTraining(; reltol = 1e-6, abstol = 1e-3)) res_ = Optimization.solve(prob_, OptimizationOptimisers.Adam(5e-3); maxiters = 5000) phi_ = PhysicsInformedNN(chain2, strategy; init_params = res_.u).phi