diff --git a/docs/make.jl b/docs/make.jl index 3b1340c277..dfa8087f3f 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -13,7 +13,7 @@ makedocs(sitename = "NeuralPDE.jl", authors = "#", modules = [NeuralPDE], clean = true, doctest = false, linkcheck = true, - warnonly = [:missing_docs, :example_block], + warnonly = [:missing_docs], format = Documenter.HTML(assets = ["assets/favicon.ico"], canonical = "https://docs.sciml.ai/NeuralPDE/stable/"), pages = pages) diff --git a/docs/src/tutorials/dgm.md b/docs/src/tutorials/dgm.md index 1917df8f43..cb853d0099 100644 --- a/docs/src/tutorials/dgm.md +++ b/docs/src/tutorials/dgm.md @@ -28,15 +28,15 @@ where $\vec{x}$ is the concatenated vector of $(t, x)$ and $L$ is the number of Let's try to solve the following Burger's equation using Deep Galerkin Method for $\alpha = 0.05$ and compare our solution with the finite difference method: -$$ +```math \partial_t u(t, x) + u(t, x) \partial_x u(t, x) - \alpha \partial_{xx} u(t, x) = 0 -$$ +``` defined over -$$ +```math t \in [0, 1], x \in [-1, 1] -$$ +``` with boundary conditions ```math diff --git a/src/BPINN_ode.jl b/src/BPINN_ode.jl index 4493a07326..3bbf1afea8 100644 --- a/src/BPINN_ode.jl +++ b/src/BPINN_ode.jl @@ -123,18 +123,19 @@ function BNNODE(chain, Kernel = HMC; strategy = nothing, draw_samples = 2000, end """ -Contains ahmc_bayesian_pinn_ode() function output: -1> a MCMCChains.jl chain object for sampled parameters -2> The set of all sampled parameters -3> statistics like: - > n_steps - > acceptance_rate - > log_density - > hamiltonian_energy - > hamiltonian_energy_error - > numerical_error - > step_size - > nom_step_size +Contains `ahmc_bayesian_pinn_ode()` function output: + +1. A MCMCChains.jl chain object for sampled parameters. +2. The set of all sampled parameters. +3. Statistics like: + - n_steps + - acceptance_rate + - log_density + - hamiltonian_energy + - hamiltonian_energy_error + - numerical_error + - step_size + - nom_step_size """ struct BPINNstats{MC, S, ST} mcmc_chain::MC @@ -143,10 +144,11 @@ struct BPINNstats{MC, S, ST} end """ -BPINN Solution contains the original solution from AdvancedHMC.jl sampling(BPINNstats contains fields related to that) -> ensemblesol is the Probabilistic Estimate(MonteCarloMeasurements.jl Particles type) of Ensemble solution from All Neural Network's(made using all sampled parameters) output's. -> estimated_nn_params - Probabilistic Estimate of NN params from sampled weights,biases -> estimated_de_params - Probabilistic Estimate of DE params from sampled unknown DE parameters +BPINN Solution contains the original solution from AdvancedHMC.jl sampling (BPINNstats contains fields related to that). + +1. `ensemblesol` is the Probabilistic Estimate (MonteCarloMeasurements.jl Particles type) of Ensemble solution from All Neural Network's (made using all sampled parameters) output's. +2. `estimated_nn_params` - Probabilistic Estimate of NN params from sampled weights, biases. +3. `estimated_de_params` - Probabilistic Estimate of DE params from sampled unknown DE parameters. """ struct BPINNsolution{O <: BPINNstats, E, NP, OP, P} original::O diff --git a/src/advancedHMC_MCMC.jl b/src/advancedHMC_MCMC.jl index c051d208ca..6f30149257 100644 --- a/src/advancedHMC_MCMC.jl +++ b/src/advancedHMC_MCMC.jl @@ -344,8 +344,8 @@ end !!! warn - Note that ahmc_bayesian_pinn_ode() only supports ODEs which are written in the out-of-place form, i.e. - `du = f(u,p,t)`, and not `f(du,u,p,t)`. If not declared out-of-place, then the ahmc_bayesian_pinn_ode() + Note that `ahmc_bayesian_pinn_ode()` only supports ODEs which are written in the out-of-place form, i.e. + `du = f(u,p,t)`, and not `f(du,u,p,t)`. If not declared out-of-place, then the `ahmc_bayesian_pinn_ode()` will exit with an error. ## Example