forked from RsaCtfTool/RsaCtfTool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rsalibnum.py
114 lines (89 loc) · 2.02 KB
/
rsalibnum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from functools import reduce
import binascii
import math
_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
_primes_mask = []
def invmod(a, n):
"""
Return 1 / a (mod n).
@a and @n must be co-primes.
"""
if n < 2:
raise ValueError("modulus must be greater than 1")
x, y, g = xgcd(a, n)
if g != 1:
raise ValueError("no invmod for given @a and @n")
else:
return x % n
def xgcd(a, b):
"""
Extended Euclid GCD algorithm.
Return (x, y, g) : a * x + b * y = gcd(a, b) = g.
"""
if a == 0:
return 0, 1, b
if b == 0:
return 1, 0, a
px, ppx = 0, 1
py, ppy = 1, 0
while b:
q = a // b
a, b = b, a % b
x = ppx - q * px
y = ppy - q * py
ppx, px = px, x
ppy, py = py, y
return ppx, ppy, a
def gcd(*lst):
"""
Return gcd of a variable number of arguments.
"""
return abs(reduce(lambda a, b: _gcd(a, b), lst))
def _gcd(a, b):
"""
Return greatest common divisor using Euclid's Algorithm.
"""
if a == 0:
return b
if b == 0:
return a
while b:
a, b = b, a % b
return abs(a)
def s2n(s):
"""
String to number.
"""
if not len(s):
return 0
return int(binascii.hexlify(s), 16)
def n2s(n):
"""
Number to string.
"""
s = hex(n)[2:].rstrip("L")
if len(s) % 2 != 0:
s = "0" + s
return binascii.unhexlify(s)
def primes(until):
"""
Return list of primes not greater than @until. Rather slow.
"""
global _primes, _primes_mask
if until < 2:
return []
if until <= _primes[-1]:
for index, prime in enumerate(_primes):
if prime > until:
return _primes[:index]
i = _primes[-1]
while i < until + 1:
i += 2
sqrt = math.sqrt(i) + 1
for j in _primes:
if i % j == 0:
break
if j > sqrt:
_primes.append(i)
break
return _primes