forked from uoip/SSD-variants
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multibox.py
172 lines (128 loc) · 5.7 KB
/
multibox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
import torch
import itertools
from numbers import Number
class MultiBox(object):
def __init__(self, cfg):
self.pos_thresh = cfg.get('pos_thresh', 0.5)
self.neg_thresh = cfg.get('neg_thresh', 0.5)
self.prior_variance = cfg.get('prior_variance', [0.1, 0.1, 0.2, 0.2])
steps = cfg.get('steps', None)
grids = cfg['grids']
sizes = cfg['sizes']
aspect_ratios = cfg['aspect_ratios']
if isinstance(aspect_ratios[0], Number):
aspect_ratios = [aspect_ratios] * len(grids)
anchor_boxes = []
for k in range(len(grids)):
w, h = (grids[k], grids[k]) if isinstance(grids[k], Number) else grids[k]
if steps is None:
step_w, step_h = 1. / w, 1. / h
else:
step_w, step_h = (steps[k], steps[k]) if isinstance(steps[k], Number) else steps[k]
for u, v in itertools.product(range(h), range(w)): # mind the order
cx = (v + 0.5) * step_w
cy = (u + 0.5) * step_h
s = np.sqrt(sizes[k] * sizes[k+1])
anchor_boxes.append([cx, cy, s, s])
s = sizes[k]
for ar in aspect_ratios[k]:
anchor_boxes.append([cx, cy, s * np.sqrt(ar), s * np.sqrt(1. / ar)])
self.anchor_boxes = np.array(anchor_boxes) # x-y-w-h
self.anchor_boxes_ = np.hstack([ # l-t-r-b, normalized
self.anchor_boxes[:, :2] - self.anchor_boxes[:, 2:] / 2,
self.anchor_boxes[:, :2] + self.anchor_boxes[:, 2:] / 2]) # do NOT clip
def encode(self, boxes, labels):
if len(boxes) == 0:
return (
torch.FloatTensor(np.zeros(self.anchor_boxes.shape, dtype=np.float32)),
torch.LongTensor(np.zeros(self.anchor_boxes.shape[0], dtype=np.int)))
iou = batch_iou(self.anchor_boxes_, boxes)
idx = iou.argmax(axis=1)
# ensure each target box correspondes to at least one anchor box
iouc = iou.copy()
for _ in range(len(boxes)):
i, j = np.unravel_index(iouc.argmax(), iouc.shape)
if iouc[i, j] < 0.1:
continue
iouc[i, :] = 0
iouc[:, j] = 0
idx[i] = j
iou[i, j] = 1.
iou = iou.max(axis=1)
boxes = boxes[idx]
loc = np.hstack([
((boxes[:, :2] + boxes[:, 2:]) / 2. - self.anchor_boxes[:, :2]) / self.anchor_boxes[:, 2:],
np.log((boxes[:, 2:] - boxes[:, :2]) / self.anchor_boxes[:, 2:]),
]) / self.prior_variance
labels = labels[idx]
labels = 1 + labels
labels[iou < self.neg_thresh] = 0
labels[(self.neg_thresh <= iou) & (iou < self.pos_thresh)] = -1 # ignored during training
return torch.FloatTensor(loc.astype(np.float32)), torch.LongTensor(labels.astype(np.int))
def decode(self, loc, conf, nms_thresh=0.5, conf_thresh=0.5):
loc = loc * self.prior_variance
boxes = np.hstack([
loc[:, :2] * self.anchor_boxes[:, 2:] + self.anchor_boxes[:, :2],
np.exp(loc[:, 2:]) * self.anchor_boxes[:, 2:]])
boxes[:, :2], boxes[:, 2:] = (boxes[:, :2] - boxes[:, 2:] / 2.,
boxes[:, :2] + boxes[:, 2:] / 2.)
boxes = np.clip(boxes, 0, 1)
conf = np.exp(conf)
conf /= conf.sum(axis=-1, keepdims=True)
scores = conf[:, 1:]
chosen = np.zeros(len(scores), dtype=bool)
for i in range(scores.shape[1]):
keep = nms(boxes, scores[:, i], nms_thresh, conf_thresh)
scores[:, i] *= keep
chosen |= keep
chosen &= (-scores.max(axis=1)).argsort().argsort() < 200
return boxes[chosen], scores.argmax(axis=1)[chosen], scores.max(axis=1)[chosen]
def batch_iou(a, b):
# pairwise jaccard botween boxes a and boxes b
# box: [left, top, right, bottom]
lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
inter = np.clip(rb - lt, 0, None)
area_i = np.prod(inter, axis=2)
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
area_u = area_a[:, np.newaxis] + area_b - area_i
return area_i / np.clip(area_u, 1e-7, None) # shape: (len(a) x len(b))
def nms(boxes, scores, nms_thresh=0.45, conf_thresh=0, topk=400, topk_after=50):
Keep = np.zeros(len(scores), dtype=bool)
idx = (scores >= conf_thresh) & ((-scores).argsort().argsort() < topk)
if idx.sum() == 0:
return Keep
boxes = boxes[idx]
scores = scores[idx]
iou = batch_iou(boxes, boxes)
keep = np.zeros(len(scores), dtype=bool)
keep[scores.argmax()] = True
for i in scores.argsort()[::-1]:
if (iou[i, keep] < nms_thresh).all():
keep[i] = True
#if keep.sum() >= topk_after:
# break
Keep[idx] = keep
return Keep
# def soft_nms(boxes, scores, sigma=0.5, Nt=0.3, thresh=0.001, method=1):
# num = len(scores)
# keep = np.zeros(num, dtype=bool)
# for _ in range(num):
# i = np.argmax(scores)
# if scores[i] < thresh:
# break
# keep[i] = True
# iou = batch_iou(boxes[np.newaxis, i], boxes).reshape(-1)
# if method == 1: # linear
# weight = np.ones_like(iou) * (1 - iou)
# weight[iou <= Nt] = 1
# elif method == 2: # gaussian
# weight = np.exp(-(iou * iou)/sigma)
# else: # original
# weight = np.zeros_like(iou)
# weight[iou <= Nt] = 1
# scores = scores * weight
# scores[i] = 0
# return keep