forked from avehtari/BDA_R_demos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
grp_prior_mean.stan
26 lines (26 loc) · 1.12 KB
/
grp_prior_mean.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// Comparison of k groups with common variance and
// hierarchical prior for the mean
data {
int<lower=0> N; // number of observations
int<lower=0> K; // number of groups
int<lower=1,upper=K> x[N]; // discrete group indicators
vector[N] y; // real valued observations
}
parameters {
real mu0; // prior mean
real<lower=0> sigma0; // prior std constrained to be positive
vector[K] mu; // group means
real<lower=0> sigma; // common std constrained to be positive
}
model {
mu0 ~ normal(10, 10); // weakly informative prior
sigma0 ~ normal(0, 10); // weakly informative prior
mu ~ normal(mu0, sigma0); // population prior with unknown parameters
// log-normal prior sets normal prior on logarithm of the paremeter,
// which is useful for positive parameters that shouldn't be very
// close to 0. BDA3 Chapter 5 uses scaled inverse Chi^2 prior, but
// as these don't need to be (semi-)conjugate, thinking in terms of
// log-normal can be easier.
sigma ~ lognormal(0, .5); // weakly informative prior
y ~ normal(mu[x], sigma); // observation model / likelihood
}