-
Notifications
You must be signed in to change notification settings - Fork 134
/
model_tpu.py
262 lines (224 loc) · 9.61 KB
/
model_tpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Creates and runs `Estimator` for object detection model on TPUs.
This uses the TPUEstimator API to define and run a model in TRAIN/EVAL modes.
"""
# pylint: enable=line-too-long
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import tensorflow as tf
from tensorflow.contrib.tpu.python.tpu import tpu_config
from tensorflow.contrib.tpu.python.tpu import tpu_estimator
from tensorflow.contrib.training.python.training import evaluation
from object_detection import inputs
from object_detection import model
from object_detection import model_hparams
from object_detection.builders import model_builder
from object_detection.utils import config_util
tf.flags.DEFINE_bool('use_tpu', True, 'Use TPUs rather than plain CPUs')
# Cloud TPU Cluster Resolvers
tf.flags.DEFINE_string(
'gcp_project',
default=None,
help='Project name for the Cloud TPU-enabled project. If not specified, we '
'will attempt to automatically detect the GCE project from metadata.')
tf.flags.DEFINE_string(
'tpu_zone',
default=None,
help='GCE zone where the Cloud TPU is located in. If not specified, we '
'will attempt to automatically detect the GCE project from metadata.')
tf.flags.DEFINE_string(
'tpu_name',
default=None,
help='Name of the Cloud TPU for Cluster Resolvers. You must specify either '
'this flag or --master.')
tf.flags.DEFINE_string(
'master', default=None,
help='GRPC URL of the master (e.g. grpc://ip.address.of.tpu:8470). You '
'must specify either this flag or --tpu_name.')
tf.flags.DEFINE_integer('num_shards', 8, 'Number of shards (TPU cores).')
tf.flags.DEFINE_integer('iterations_per_loop', 100,
'Number of iterations per TPU training loop.')
# For mode=train_and_eval, evaluation occurs after training is finished.
# Note: independently of steps_per_checkpoint, estimator will save the most
# recent checkpoint every 10 minutes by default for train_and_eval
tf.flags.DEFINE_string('mode', 'train_and_eval',
'Mode to run: train, eval, train_and_eval')
tf.flags.DEFINE_integer('train_batch_size', 32 * 8, 'Batch size for training.')
# For EVAL.
tf.flags.DEFINE_integer('min_eval_interval_secs', 180,
'Minimum seconds between evaluations.')
tf.flags.DEFINE_integer(
'eval_timeout_secs', None,
'Maximum seconds between checkpoints before evaluation terminates.')
FLAGS = tf.flags.FLAGS
def create_estimator(run_config,
hparams,
pipeline_config_path,
train_steps=None,
eval_steps=None,
train_batch_size=None,
model_fn_creator=model.create_model_fn,
use_tpu=False,
num_shards=1,
params=None,
**kwargs):
"""Creates an `Estimator` object.
Args:
run_config: A `RunConfig`.
hparams: A `HParams`.
pipeline_config_path: A path to a pipeline config file.
train_steps: Number of training steps. If None, the number of training steps
is set from the `TrainConfig` proto.
eval_steps: Number of evaluation steps per evaluation cycle. If None, the
number of evaluation steps is set from the `EvalConfig` proto.
train_batch_size: Training batch size. If none, use batch size from
`TrainConfig` proto.
model_fn_creator: A function that creates a `model_fn` for `Estimator`.
Follows the signature:
* Args:
* `detection_model_fn`: Function that returns `DetectionModel` instance.
* `configs`: Dictionary of pipeline config objects.
* `hparams`: `HParams` object.
* Returns:
`model_fn` for `Estimator`.
use_tpu: Boolean, whether training and evaluation should run on TPU.
num_shards: Number of shards (TPU cores).
params: Parameter dictionary passed from the estimator.
**kwargs: Additional keyword arguments for configuration override.
Returns:
Estimator: A estimator object used for training and evaluation
train_input_fn: Input function for the training loop
eval_input_fn: Input function for the evaluation run
train_steps: Number of training steps either from arg `train_steps` or
`TrainConfig` proto
eval_steps: Number of evaluation steps either from arg `eval_steps` or
`EvalConfig` proto
"""
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(
configs,
hparams,
train_steps=train_steps,
eval_steps=eval_steps,
batch_size=train_batch_size,
**kwargs)
model_config = configs['model']
train_config = configs['train_config']
train_input_config = configs['train_input_config']
eval_config = configs['eval_config']
eval_input_config = configs['eval_input_config']
if params is None:
params = {}
if train_steps is None:
train_steps = train_config.num_steps if train_config.num_steps else None
if eval_steps is None:
eval_steps = eval_config.num_examples if eval_config.num_examples else None
detection_model_fn = functools.partial(
model_builder.build, model_config=model_config)
# Create the input functions for TRAIN/EVAL.
train_input_fn = inputs.create_train_input_fn(
train_config=train_config,
train_input_config=train_input_config,
model_config=model_config)
eval_input_fn = inputs.create_eval_input_fn(
eval_config=eval_config,
eval_input_config=eval_input_config,
model_config=model_config)
estimator = tpu_estimator.TPUEstimator(
model_fn=model_fn_creator(detection_model_fn, configs, hparams,
use_tpu),
train_batch_size=train_config.batch_size,
# For each core, only batch size 1 is supported for eval.
eval_batch_size=num_shards * 1 if use_tpu else 1,
use_tpu=use_tpu,
config=run_config,
params=params)
return estimator, train_input_fn, eval_input_fn, train_steps, eval_steps
def main(unused_argv):
tf.flags.mark_flag_as_required('model_dir')
tf.flags.mark_flag_as_required('pipeline_config_path')
if FLAGS.master is None and FLAGS.tpu_name is None:
raise RuntimeError('You must specify either --master or --tpu_name.')
if FLAGS.master is not None:
if FLAGS.tpu_name is not None:
tf.logging.warn('Both --master and --tpu_name are set. Ignoring '
'--tpu_name and using --master.')
tpu_grpc_url = FLAGS.master
else:
tpu_cluster_resolver = (
tf.contrib.cluster_resolver.python.training.TPUClusterResolver(
tpu_names=[FLAGS.tpu_name],
zone=FLAGS.tpu_zone,
project=FLAGS.gcp_project))
tpu_grpc_url = tpu_cluster_resolver.get_master()
config = tpu_config.RunConfig(
master=tpu_grpc_url,
evaluation_master=tpu_grpc_url,
model_dir=FLAGS.model_dir,
tpu_config=tpu_config.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_shards))
params = {}
estimator, train_input_fn, eval_input_fn, train_steps, eval_steps = (
create_estimator(
config,
model_hparams.create_hparams(),
FLAGS.pipeline_config_path,
train_steps=FLAGS.num_train_steps,
eval_steps=FLAGS.num_eval_steps,
train_batch_size=FLAGS.train_batch_size,
use_tpu=FLAGS.use_tpu,
num_shards=FLAGS.num_shards,
params=params))
if FLAGS.mode in ['train', 'train_and_eval']:
estimator.train(input_fn=train_input_fn, max_steps=train_steps)
if FLAGS.mode == 'train_and_eval':
# Eval one time.
eval_results = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)
tf.logging.info('Eval results: %s' % eval_results)
# Continuously evaluating.
if FLAGS.mode == 'eval':
def terminate_eval():
tf.logging.info('Terminating eval after %d seconds of no checkpoints' %
FLAGS.eval_timeout_secs)
return True
# Run evaluation when there's a new checkpoint.
for ckpt in evaluation.checkpoints_iterator(
FLAGS.model_dir,
min_interval_secs=FLAGS.min_eval_interval_secs,
timeout=FLAGS.eval_timeout_secs,
timeout_fn=terminate_eval):
tf.logging.info('Starting to evaluate.')
try:
eval_results = estimator.evaluate(
input_fn=eval_input_fn,
steps=eval_steps,
checkpoint_path=ckpt)
tf.logging.info('Eval results: %s' % eval_results)
# Terminate eval job when final checkpoint is reached
current_step = int(os.path.basename(ckpt).split('-')[1])
if current_step >= train_steps:
tf.logging.info(
'Evaluation finished after training step %d' % current_step)
break
except tf.errors.NotFoundError:
tf.logging.info(
'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)
if __name__ == '__main__':
tf.app.run()