-
Notifications
You must be signed in to change notification settings - Fork 0
/
cube.py
353 lines (329 loc) · 14 KB
/
cube.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
"""
This file is part of the Magic Cube project.
license
-------
Copyright 2012 David W. Hogg (NYU).
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.
usage
-----
- initialize a solved cube with `c = Cube(N)` where `N` is the side length.
- randomize a cube with `c.randomize(32)` where `32` is the number of random moves to make.
- make cube moves with `c.move()` and turn the whole cube with `c.turn()`.
- make figures with `c.render().savefig(fn)` where `fn` is the filename.
- change sticker colors with, eg, `c.stickercolors[c.colordict["w"]] = "k"`.
conventions
-----------
- This is a model of where the stickers are, not where the solid cubies are. That's a bug not a feature.
- Cubes are NxNxN in size.
- The faces have integers and one-letter names. The one-letter face names are given by the dictionary `Cube.facedict`.
- The layers of the cube have names that are composed of a face letter and a number, with 0 indicating the outermost face.
- Every layer has two layer names, for instance, (F, 1) and (B, 1) are the same layer of a 3x3x3 cube; (F, 1) and (B, 3) are the same layer of a 5x5x5.
- The colors have integers and one-letter names. The one-letter color names are given by the dictionary `Cube.colordict`.
- Convention is x before y in face arrays, plus an annoying baked-in left-handedness. Sue me. Or fork, fix, pull-request.
to-do
-----
- Write translations to other move languages, so you can take a string of moves from some website (eg, <http://www.speedcubing.com/chris/3-permutations.html>) and execute it.
- Keep track of sticker ID numbers and orientations to show that seemingly unchanged parts of big cubes have had cubie swaps or stickers rotated.
- Figure out a physical "cubie" model to replace the "sticker" model.
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from matplotlib.patches import Polygon
class Cube(object):
"""
Cube
----
Initialize with arguments:
- `N`, the side length (the cube is `N`x`N`x`N`)
- optional `whiteplastic=True` if you like white cubes
"""
facedict = {"U":0, "D":1, "F":2, "B":3, "R":4, "L":5}
dictface = dict([(v, k) for k, v in facedict.items()])
normals = [np.array([0., 1., 0.]), np.array([0., -1., 0.]),
np.array([0., 0., 1.]), np.array([0., 0., -1.]),
np.array([1., 0., 0.]), np.array([-1., 0., 0.])]
# this xdirs has to be synchronized with the self.move() function
xdirs = [np.array([1., 0., 0.]), np.array([1., 0., 0.]),
np.array([1., 0., 0.]), np.array([-1., 0., 0.]),
np.array([0., 0., -1.]), np.array([0, 0., 1.])]
colordict = {"w":0, "y":1, "b":2, "g":3, "o":4, "r":5}
pltpos = [(0., 1.05), (0., -1.05), (0., 0.), (2.10, 0.), (1.05, 0.), (-1.05, 0.)]
labelcolor = "#7f00ff"
def __init__(self, N, whiteplastic=False):
"""
(see above)
"""
self.N = N
self.stickers = np.array([np.tile(i, (self.N, self.N)) for i in range(6)])
self.stickercolors = ["w", "#ffcf00", "#00008f", "#009f0f", "#ff6f00", "#cf0000"]
self.stickerthickness = 0.001 # sticker thickness in units of total cube size
self.stickerwidth = 0.9 # sticker size relative to cubie size (must be < 1)
if whiteplastic:
self.plasticcolor = "#dfdfdf"
else:
self.plasticcolor = "#1f1f1f"
self.fontsize = 12. * (self.N / 5.)
return None
def turn(self, f, d):
"""
Turn whole cube (without making a layer move) around face `f`
`d` 90-degree turns in the clockwise direction. Use `d=3` or
`d=-1` for counter-clockwise.
"""
for l in range(self.N):
self.move(f, l, d)
return None
def move(self, f, l, d):
"""
Make a layer move of layer `l` parallel to face `f` through
`d` 90-degree turns in the clockwise direction. Layer `0` is
the face itself, and higher `l` values are for layers deeper
into the cube. Use `d=3` or `d=-1` for counter-clockwise
moves, and `d=2` for a 180-degree move..
"""
i = self.facedict[f]
l2 = self.N - 1 - l
assert l < self.N
ds = range((d + 4) % 4)
if f == "U":
f2 = "D"
i2 = self.facedict[f2]
for d in ds:
self._rotate([(self.facedict["F"], range(self.N), l2),
(self.facedict["R"], range(self.N), l2),
(self.facedict["B"], range(self.N), l2),
(self.facedict["L"], range(self.N), l2)])
if f == "D":
return self.move("U", l2, -d)
if f == "F":
f2 = "B"
i2 = self.facedict[f2]
for d in ds:
self._rotate([(self.facedict["U"], range(self.N), l),
(self.facedict["L"], l2, range(self.N)),
(self.facedict["D"], range(self.N)[::-1], l2),
(self.facedict["R"], l, range(self.N)[::-1])])
if f == "B":
return self.move("F", l2, -d)
if f == "R":
f2 = "L"
i2 = self.facedict[f2]
for d in ds:
self._rotate([(self.facedict["U"], l2, range(self.N)),
(self.facedict["F"], l2, range(self.N)),
(self.facedict["D"], l2, range(self.N)),
(self.facedict["B"], l, range(self.N)[::-1])])
if f == "L":
return self.move("R", l2, -d)
for d in ds:
if l == 0:
self.stickers[i] = np.rot90(self.stickers[i], 3)
if l == self.N - 1:
self.stickers[i2] = np.rot90(self.stickers[i2], 1)
print "moved", f, l, len(ds)
return None
def _rotate(self, args):
"""
Internal function for the `move()` function.
"""
a0 = args[0]
foo = self.stickers[a0]
a = a0
for b in args[1:]:
self.stickers[a] = self.stickers[b]
a = b
self.stickers[a] = foo
return None
def randomize(self, number):
"""
Make `number` randomly chosen moves to scramble the cube.
"""
for t in range(number):
f = self.dictface[np.random.randint(6)]
l = np.random.randint(self.N)
d = 1 + np.random.randint(3)
self.move(f, l, d)
return None
def _render_points(self, points, viewpoint):
"""
Internal function for the `render()` function. Clunky
projection from 3-d to 2-d, but also return a zorder variable.
"""
v2 = np.dot(viewpoint, viewpoint)
zdir = viewpoint / np.sqrt(v2)
xdir = np.cross(np.array([0., 1., 0.]), zdir)
xdir /= np.sqrt(np.dot(xdir, xdir))
ydir = np.cross(zdir, xdir)
result = []
for p in points:
dpoint = p - viewpoint
dproj = 0.5 * dpoint * v2 / np.dot(dpoint, -1. * viewpoint)
result += [np.array([np.dot(xdir, dproj),
np.dot(ydir, dproj),
np.dot(zdir, dpoint / np.sqrt(v2))])]
return result
def render_views(self, ax):
"""
Make three projected 3-dimensional views of the cube for the
`render()` function. Because of zorder / occulting issues,
this code is very brittle; it will not work for all viewpoints
(the `np.dot(zdir, viewpoint)` test is not general; the corect
test involves the "handedness" of the projected polygon).
"""
csz = 2. / self.N
x2 = 8.
x1 = 0.5 * x2
for viewpoint, shift in [(np.array([-x1, -x1, x2]), np.array([-1.5, 3.])),
(np.array([x1, x1, x2]), np.array([0.5, 3.])),
(np.array([x2, x1, -x1]), np.array([2.5, 3.]))]:
for f, i in self.facedict.items():
zdir = self.normals[i]
if np.dot(zdir, viewpoint) < 0:
continue
xdir = self.xdirs[i]
ydir = np.cross(zdir, xdir) # insanity: left-handed!
psc = 1. - 2. * self.stickerthickness
corners = [psc * zdir - psc * xdir - psc * ydir,
psc * zdir + psc * xdir - psc * ydir,
psc * zdir + psc * xdir + psc * ydir,
psc * zdir - psc * xdir + psc * ydir]
projects = self._render_points(corners, viewpoint)
xys = [p[0:2] + shift for p in projects]
zorder = np.mean([p[2] for p in projects])
ax.add_artist(Polygon(xys, ec="none", fc=self.plasticcolor))
for j in range(self.N):
for k in range(self.N):
corners = self._stickerpolygon(xdir, ydir, zdir, csz, j, k)
projects = self._render_points(corners, viewpoint)
xys = [p[0:2] + shift for p in projects]
ax.add_artist(Polygon(xys, ec="none", fc=self.stickercolors[self.stickers[i, j, k]]))
x0, y0, zorder = self._render_points([1.5 * self.normals[i], ], viewpoint)[0]
ax.text(x0 + shift[0], y0 + shift[1], f, color=self.labelcolor,
ha="center", va="center", rotation=20, fontsize=self.fontsize / (-zorder))
return None
def _stickerpolygon(self, xdir, ydir, zdir, csz, j, k):
small = 0.5 * (1. - self.stickerwidth)
large = 1. - small
return [zdir - xdir + (j + small) * csz * xdir - ydir + (k + small + small) * csz * ydir,
zdir - xdir + (j + small + small) * csz * xdir - ydir + (k + small) * csz * ydir,
zdir - xdir + (j + large - small) * csz * xdir - ydir + (k + small) * csz * ydir,
zdir - xdir + (j + large) * csz * xdir - ydir + (k + small + small) * csz * ydir,
zdir - xdir + (j + large) * csz * xdir - ydir + (k + large - small) * csz * ydir,
zdir - xdir + (j + large - small) * csz * xdir - ydir + (k + large) * csz * ydir,
zdir - xdir + (j + small + small) * csz * xdir - ydir + (k + large) * csz * ydir,
zdir - xdir + (j + small) * csz * xdir - ydir + (k + large - small) * csz * ydir]
def render_flat(self, ax):
"""
Make an unwrapped, flat view of the cube for the `render()`
function. This is a map, not a view really. It does not
properly render the plastic and stickers.
"""
for f, i in self.facedict.items():
x0, y0 = self.pltpos[i]
cs = 1. / self.N
for j in range(self.N):
for k in range(self.N):
ax.add_artist(Rectangle((x0 + j * cs, y0 + k * cs), cs, cs, ec=self.plasticcolor,
fc=self.stickercolors[self.stickers[i, j, k]]))
ax.text(x0 + 0.5, y0 + 0.5, f, color=self.labelcolor,
ha="center", va="center", rotation=20, fontsize=self.fontsize)
return None
def render(self, flat=True, views=True):
"""
Visualize the cube in a standard layout, including a flat,
unwrapped view and three perspective views.
"""
assert flat or views
xlim = (-2.4, 3.4)
ylim = (-1.2, 4.)
if not flat:
ylim = (2., 4.)
if not views:
xlim = (-1.2, 3.2)
ylim = (-1.2, 2.2)
fig = plt.figure(figsize=((xlim[1] - xlim[0]) * self.N / 5., (ylim[1] - ylim[0]) * self.N / 5.))
ax = fig.add_axes((0, 0, 1, 1), frameon=False,
xticks=[], yticks=[])
if views:
self.render_views(ax)
if flat:
self.render_flat(ax)
ax.set_xlim(xlim)
ax.set_ylim(ylim)
return fig
def adjacent_edge_flip(cube):
"""
Do a standard edge-flipping algorithm. Used for testing.
"""
ls = range(cube.N)[1:-1]
cube.move("R", 0, -1)
for l in ls:
cube.move("U", l, 1)
cube.move("R", 0, 2)
for l in ls:
cube.move("U", l, 2)
cube.move("R", 0, -1)
cube.move("U", 0, -1)
cube.move("R", 0, 1)
for l in ls:
cube.move("U", l, 2)
cube.move("R", 0, 2)
for l in ls:
cube.move("U", l, -1)
cube.move("R", 0, 1)
cube.move("U", 0, 1)
return None
def swap_off_diagonal(cube, f, l1, l2):
"""
A big-cube move that swaps three cubies (I think) but looks like two.
"""
cube.move(f, l1, 1)
cube.move(f, l2, 1)
cube.move("U", 0, -1)
cube.move(f, l2, -1)
cube.move("U", 0, 1)
cube.move(f, l1, -1)
cube.move("U", 0, -1)
cube.move(f, l2, 1)
cube.move("U", 0, 1)
cube.move(f, l2, -1)
return None
def checkerboard(cube):
"""
Dumbness.
"""
ls = range(cube.N)[::2]
for f in ["U", "F", "R"]:
for l in ls:
cube.move(f, l, 2)
if cube.N % 2 == 0:
for l in ls:
cube.move("F", l, 2)
return None
if __name__ == "__main__":
"""
Functional testing.
"""
np.random.seed(42)
c = Cube(6, whiteplastic=False)
# c.turn("U", 1)
# c.move("U", 0, -1)
# swap_off_diagonal(c, "R", 2, 1)
# c.move("U", 0, 1)
# swap_off_diagonal(c, "R", 3, 2)
# checkerboard(c)
for m in range(32):
c.render(flat=False).savefig("test%02d.png" % m, dpi=865 / c.N)
c.randomize(1)