-
Notifications
You must be signed in to change notification settings - Fork 42
/
verifier.cpp
562 lines (494 loc) · 19.1 KB
/
verifier.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <malloc.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <memory>
#include <openssl/ecdsa.h>
#include <openssl/obj_mac.h>
#include "asn1_decoder.h"
#include "common.h"
#include "print_sha1.h"
#include "ui.h"
#include "verifier.h"
extern RecoveryUI* ui;
static constexpr size_t MiB = 1024 * 1024;
/*
* Simple version of PKCS#7 SignedData extraction. This extracts the
* signature OCTET STRING to be used for signature verification.
*
* For full details, see http://www.ietf.org/rfc/rfc3852.txt
*
* The PKCS#7 structure looks like:
*
* SEQUENCE (ContentInfo)
* OID (ContentType)
* [0] (content)
* SEQUENCE (SignedData)
* INTEGER (version CMSVersion)
* SET (DigestAlgorithmIdentifiers)
* SEQUENCE (EncapsulatedContentInfo)
* [0] (CertificateSet OPTIONAL)
* [1] (RevocationInfoChoices OPTIONAL)
* SET (SignerInfos)
* SEQUENCE (SignerInfo)
* INTEGER (CMSVersion)
* SEQUENCE (SignerIdentifier)
* SEQUENCE (DigestAlgorithmIdentifier)
* SEQUENCE (SignatureAlgorithmIdentifier)
* OCTET STRING (SignatureValue)
*/
static bool read_pkcs7(uint8_t* pkcs7_der, size_t pkcs7_der_len, uint8_t** sig_der,
size_t* sig_der_length) {
asn1_context_t* ctx = asn1_context_new(pkcs7_der, pkcs7_der_len);
if (ctx == NULL) {
return false;
}
asn1_context_t* pkcs7_seq = asn1_sequence_get(ctx);
if (pkcs7_seq != NULL && asn1_sequence_next(pkcs7_seq)) {
asn1_context_t *signed_data_app = asn1_constructed_get(pkcs7_seq);
if (signed_data_app != NULL) {
asn1_context_t* signed_data_seq = asn1_sequence_get(signed_data_app);
if (signed_data_seq != NULL
&& asn1_sequence_next(signed_data_seq)
&& asn1_sequence_next(signed_data_seq)
&& asn1_sequence_next(signed_data_seq)
&& asn1_constructed_skip_all(signed_data_seq)) {
asn1_context_t *sig_set = asn1_set_get(signed_data_seq);
if (sig_set != NULL) {
asn1_context_t* sig_seq = asn1_sequence_get(sig_set);
if (sig_seq != NULL
&& asn1_sequence_next(sig_seq)
&& asn1_sequence_next(sig_seq)
&& asn1_sequence_next(sig_seq)
&& asn1_sequence_next(sig_seq)) {
uint8_t* sig_der_ptr;
if (asn1_octet_string_get(sig_seq, &sig_der_ptr, sig_der_length)) {
*sig_der = (uint8_t*) malloc(*sig_der_length);
if (*sig_der != NULL) {
memcpy(*sig_der, sig_der_ptr, *sig_der_length);
}
}
asn1_context_free(sig_seq);
}
asn1_context_free(sig_set);
}
asn1_context_free(signed_data_seq);
}
asn1_context_free(signed_data_app);
}
asn1_context_free(pkcs7_seq);
}
asn1_context_free(ctx);
return *sig_der != NULL;
}
// Look for an RSA signature embedded in the .ZIP file comment given
// the path to the zip. Verify it matches one of the given public
// keys.
//
// Return VERIFY_SUCCESS, VERIFY_FAILURE (if any error is encountered
// or no key matches the signature).
int verify_file(unsigned char* addr, size_t length,
const std::vector<Certificate>& keys) {
ui->SetProgress(0.0);
// An archive with a whole-file signature will end in six bytes:
//
// (2-byte signature start) $ff $ff (2-byte comment size)
//
// (As far as the ZIP format is concerned, these are part of the
// archive comment.) We start by reading this footer, this tells
// us how far back from the end we have to start reading to find
// the whole comment.
#define FOOTER_SIZE 6
if (length < FOOTER_SIZE) {
LOGE("not big enough to contain footer\n");
return VERIFY_FAILURE;
}
unsigned char* footer = addr + length - FOOTER_SIZE;
if (footer[2] != 0xff || footer[3] != 0xff) {
LOGE("footer is wrong\n");
return VERIFY_FAILURE;
}
size_t comment_size = footer[4] + (footer[5] << 8);
size_t signature_start = footer[0] + (footer[1] << 8);
LOGI("comment is %zu bytes; signature %zu bytes from end\n",
comment_size, signature_start);
if (signature_start > comment_size) {
LOGE("signature start: %zu is larger than comment size: %zu\n", signature_start,
comment_size);
return VERIFY_FAILURE;
}
if (signature_start <= FOOTER_SIZE) {
LOGE("Signature start is in the footer");
return VERIFY_FAILURE;
}
#define EOCD_HEADER_SIZE 22
// The end-of-central-directory record is 22 bytes plus any
// comment length.
size_t eocd_size = comment_size + EOCD_HEADER_SIZE;
if (length < eocd_size) {
LOGE("not big enough to contain EOCD\n");
return VERIFY_FAILURE;
}
// Determine how much of the file is covered by the signature.
// This is everything except the signature data and length, which
// includes all of the EOCD except for the comment length field (2
// bytes) and the comment data.
size_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2;
unsigned char* eocd = addr + length - eocd_size;
// If this is really is the EOCD record, it will begin with the
// magic number $50 $4b $05 $06.
if (eocd[0] != 0x50 || eocd[1] != 0x4b ||
eocd[2] != 0x05 || eocd[3] != 0x06) {
LOGE("signature length doesn't match EOCD marker\n");
return VERIFY_FAILURE;
}
for (size_t i = 4; i < eocd_size-3; ++i) {
if (eocd[i ] == 0x50 && eocd[i+1] == 0x4b &&
eocd[i+2] == 0x05 && eocd[i+3] == 0x06) {
// if the sequence $50 $4b $05 $06 appears anywhere after
// the real one, minzip will find the later (wrong) one,
// which could be exploitable. Fail verification if
// this sequence occurs anywhere after the real one.
LOGE("EOCD marker occurs after start of EOCD\n");
return VERIFY_FAILURE;
}
}
bool need_sha1 = false;
bool need_sha256 = false;
for (const auto& key : keys) {
switch (key.hash_len) {
case SHA_DIGEST_LENGTH: need_sha1 = true; break;
case SHA256_DIGEST_LENGTH: need_sha256 = true; break;
}
}
SHA_CTX sha1_ctx;
SHA256_CTX sha256_ctx;
SHA1_Init(&sha1_ctx);
SHA256_Init(&sha256_ctx);
double frac = -1.0;
size_t so_far = 0;
while (so_far < signed_len) {
// On a Nexus 5X, experiment showed 16MiB beat 1MiB by 6% faster for a
// 1196MiB full OTA and 60% for an 89MiB incremental OTA.
// http://b/28135231.
size_t size = std::min(signed_len - so_far, 16 * MiB);
if (need_sha1) SHA1_Update(&sha1_ctx, addr + so_far, size);
if (need_sha256) SHA256_Update(&sha256_ctx, addr + so_far, size);
so_far += size;
double f = so_far / (double)signed_len;
if (f > frac + 0.02 || size == so_far) {
ui->SetProgress(f);
frac = f;
}
}
uint8_t sha1[SHA_DIGEST_LENGTH];
SHA1_Final(sha1, &sha1_ctx);
uint8_t sha256[SHA256_DIGEST_LENGTH];
SHA256_Final(sha256, &sha256_ctx);
uint8_t* sig_der = nullptr;
size_t sig_der_length = 0;
uint8_t* signature = eocd + eocd_size - signature_start;
size_t signature_size = signature_start - FOOTER_SIZE;
LOGI("signature (offset: 0x%zx, length: %zu): %s\n",
length - signature_start, signature_size,
print_hex(signature, signature_size).c_str());
if (!read_pkcs7(signature, signature_size, &sig_der, &sig_der_length)) {
LOGE("Could not find signature DER block\n");
return VERIFY_FAILURE;
}
/*
* Check to make sure at least one of the keys matches the signature. Since
* any key can match, we need to try each before determining a verification
* failure has happened.
*/
size_t i = 0;
for (const auto& key : keys) {
const uint8_t* hash;
int hash_nid;
switch (key.hash_len) {
case SHA_DIGEST_LENGTH:
hash = sha1;
hash_nid = NID_sha1;
break;
case SHA256_DIGEST_LENGTH:
hash = sha256;
hash_nid = NID_sha256;
break;
default:
continue;
}
// The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that
// the signing tool appends after the signature itself.
if (key.key_type == Certificate::KEY_TYPE_RSA) {
if (!RSA_verify(hash_nid, hash, key.hash_len, sig_der,
sig_der_length, key.rsa.get())) {
LOGI("failed to verify against RSA key %zu\n", i);
continue;
}
LOGI("whole-file signature verified against RSA key %zu\n", i);
free(sig_der);
return VERIFY_SUCCESS;
} else if (key.key_type == Certificate::KEY_TYPE_EC
&& key.hash_len == SHA256_DIGEST_LENGTH) {
if (!ECDSA_verify(0, hash, key.hash_len, sig_der,
sig_der_length, key.ec.get())) {
LOGI("failed to verify against EC key %zu\n", i);
continue;
}
LOGI("whole-file signature verified against EC key %zu\n", i);
free(sig_der);
return VERIFY_SUCCESS;
} else {
LOGI("Unknown key type %d\n", key.key_type);
}
i++;
}
if (need_sha1) {
LOGI("SHA-1 digest: %s\n", print_hex(sha1, SHA_DIGEST_LENGTH).c_str());
}
if (need_sha256) {
LOGI("SHA-256 digest: %s\n", print_hex(sha256, SHA256_DIGEST_LENGTH).c_str());
}
free(sig_der);
LOGE("failed to verify whole-file signature\n");
return VERIFY_FAILURE;
}
std::unique_ptr<RSA, RSADeleter> parse_rsa_key(FILE* file, uint32_t exponent) {
// Read key length in words and n0inv. n0inv is a precomputed montgomery
// parameter derived from the modulus and can be used to speed up
// verification. n0inv is 32 bits wide here, assuming the verification logic
// uses 32 bit arithmetic. However, BoringSSL may use a word size of 64 bits
// internally, in which case we don't have a valid n0inv. Thus, we just
// ignore the montgomery parameters and have BoringSSL recompute them
// internally. If/When the speedup from using the montgomery parameters
// becomes relevant, we can add more sophisticated code here to obtain a
// 64-bit n0inv and initialize the montgomery parameters in the key object.
uint32_t key_len_words = 0;
uint32_t n0inv = 0;
if (fscanf(file, " %i , 0x%x", &key_len_words, &n0inv) != 2) {
return nullptr;
}
if (key_len_words > 8192 / 32) {
LOGE("key length (%d) too large\n", key_len_words);
return nullptr;
}
// Read the modulus.
std::unique_ptr<uint32_t[]> modulus(new uint32_t[key_len_words]);
if (fscanf(file, " , { %u", &modulus[0]) != 1) {
return nullptr;
}
for (uint32_t i = 1; i < key_len_words; ++i) {
if (fscanf(file, " , %u", &modulus[i]) != 1) {
return nullptr;
}
}
// Cconvert from little-endian array of little-endian words to big-endian
// byte array suitable as input for BN_bin2bn.
std::reverse((uint8_t*)modulus.get(),
(uint8_t*)(modulus.get() + key_len_words));
// The next sequence of values is the montgomery parameter R^2. Since we
// generally don't have a valid |n0inv|, we ignore this (see comment above).
uint32_t rr_value;
if (fscanf(file, " } , { %u", &rr_value) != 1) {
return nullptr;
}
for (uint32_t i = 1; i < key_len_words; ++i) {
if (fscanf(file, " , %u", &rr_value) != 1) {
return nullptr;
}
}
if (fscanf(file, " } } ") != 0) {
return nullptr;
}
// Initialize the key.
std::unique_ptr<RSA, RSADeleter> key(RSA_new());
if (!key) {
return nullptr;
}
key->n = BN_bin2bn((uint8_t*)modulus.get(),
key_len_words * sizeof(uint32_t), NULL);
if (!key->n) {
return nullptr;
}
key->e = BN_new();
if (!key->e || !BN_set_word(key->e, exponent)) {
return nullptr;
}
return key;
}
struct BNDeleter {
void operator()(BIGNUM* bn) {
BN_free(bn);
}
};
std::unique_ptr<EC_KEY, ECKEYDeleter> parse_ec_key(FILE* file) {
uint32_t key_len_bytes = 0;
if (fscanf(file, " %i", &key_len_bytes) != 1) {
return nullptr;
}
std::unique_ptr<EC_GROUP, void (*)(EC_GROUP*)> group(
EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1), EC_GROUP_free);
if (!group) {
return nullptr;
}
// Verify that |key_len| matches the group order.
if (key_len_bytes != BN_num_bytes(EC_GROUP_get0_order(group.get()))) {
return nullptr;
}
// Read the public key coordinates. Note that the byte order in the file is
// little-endian, so we convert to big-endian here.
std::unique_ptr<uint8_t[]> bytes(new uint8_t[key_len_bytes]);
std::unique_ptr<BIGNUM, BNDeleter> point[2];
for (int i = 0; i < 2; ++i) {
unsigned int byte = 0;
if (fscanf(file, " , { %u", &byte) != 1) {
return nullptr;
}
bytes[key_len_bytes - 1] = byte;
for (size_t i = 1; i < key_len_bytes; ++i) {
if (fscanf(file, " , %u", &byte) != 1) {
return nullptr;
}
bytes[key_len_bytes - i - 1] = byte;
}
point[i].reset(BN_bin2bn(bytes.get(), key_len_bytes, nullptr));
if (!point[i]) {
return nullptr;
}
if (fscanf(file, " }") != 0) {
return nullptr;
}
}
if (fscanf(file, " } ") != 0) {
return nullptr;
}
// Create and initialize the key.
std::unique_ptr<EC_KEY, ECKEYDeleter> key(EC_KEY_new());
if (!key || !EC_KEY_set_group(key.get(), group.get()) ||
!EC_KEY_set_public_key_affine_coordinates(key.get(), point[0].get(),
point[1].get())) {
return nullptr;
}
return key;
}
// Reads a file containing one or more public keys as produced by
// DumpPublicKey: this is an RSAPublicKey struct as it would appear
// as a C source literal, eg:
//
// "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
//
// For key versions newer than the original 2048-bit e=3 keys
// supported by Android, the string is preceded by a version
// identifier, eg:
//
// "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
//
// (Note that the braces and commas in this example are actual
// characters the parser expects to find in the file; the ellipses
// indicate more numbers omitted from this example.)
//
// The file may contain multiple keys in this format, separated by
// commas. The last key must not be followed by a comma.
//
// A Certificate is a pair of an RSAPublicKey and a particular hash
// (we support SHA-1 and SHA-256; we store the hash length to signify
// which is being used). The hash used is implied by the version number.
//
// 1: 2048-bit RSA key with e=3 and SHA-1 hash
// 2: 2048-bit RSA key with e=65537 and SHA-1 hash
// 3: 2048-bit RSA key with e=3 and SHA-256 hash
// 4: 2048-bit RSA key with e=65537 and SHA-256 hash
// 5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash
//
// Returns true on success, and appends the found keys (at least one) to certs.
// Otherwise returns false if the file failed to parse, or if it contains zero
// keys. The contents in certs would be unspecified on failure.
bool load_keys(const char* filename, std::vector<Certificate>& certs) {
std::unique_ptr<FILE, decltype(&fclose)> f(fopen(filename, "r"), fclose);
if (!f) {
LOGE("opening %s: %s\n", filename, strerror(errno));
return false;
}
while (true) {
certs.emplace_back(0, Certificate::KEY_TYPE_RSA, nullptr, nullptr);
Certificate& cert = certs.back();
uint32_t exponent = 0;
char start_char;
if (fscanf(f.get(), " %c", &start_char) != 1) return false;
if (start_char == '{') {
// a version 1 key has no version specifier.
cert.key_type = Certificate::KEY_TYPE_RSA;
exponent = 3;
cert.hash_len = SHA_DIGEST_LENGTH;
} else if (start_char == 'v') {
int version;
if (fscanf(f.get(), "%d {", &version) != 1) return false;
switch (version) {
case 2:
cert.key_type = Certificate::KEY_TYPE_RSA;
exponent = 65537;
cert.hash_len = SHA_DIGEST_LENGTH;
break;
case 3:
cert.key_type = Certificate::KEY_TYPE_RSA;
exponent = 3;
cert.hash_len = SHA256_DIGEST_LENGTH;
break;
case 4:
cert.key_type = Certificate::KEY_TYPE_RSA;
exponent = 65537;
cert.hash_len = SHA256_DIGEST_LENGTH;
break;
case 5:
cert.key_type = Certificate::KEY_TYPE_EC;
cert.hash_len = SHA256_DIGEST_LENGTH;
break;
default:
return false;
}
}
if (cert.key_type == Certificate::KEY_TYPE_RSA) {
cert.rsa = parse_rsa_key(f.get(), exponent);
if (!cert.rsa) {
return false;
}
LOGI("read key e=%d hash=%d\n", exponent, cert.hash_len);
} else if (cert.key_type == Certificate::KEY_TYPE_EC) {
cert.ec = parse_ec_key(f.get());
if (!cert.ec) {
return false;
}
} else {
LOGE("Unknown key type %d\n", cert.key_type);
return false;
}
// if the line ends in a comma, this file has more keys.
int ch = fgetc(f.get());
if (ch == ',') {
// more keys to come.
continue;
} else if (ch == EOF) {
break;
} else {
LOGE("unexpected character between keys\n");
return false;
}
}
return true;
}