forked from espnet/espnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
enh_scoring.py
executable file
·186 lines (160 loc) · 6.19 KB
/
enh_scoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python3
import argparse
import logging
import sys
from typing import List, Union
import numpy as np
import torch
from mir_eval.separation import bss_eval_sources
from pystoi import stoi
from typeguard import check_argument_types
from espnet2.enh.loss.criterions.time_domain import SISNRLoss
from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.fileio.sound_scp import SoundScpReader
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool
from espnet.utils.cli_utils import get_commandline_args
si_snr_loss = SISNRLoss()
def scoring(
output_dir: str,
dtype: str,
log_level: Union[int, str],
key_file: str,
ref_scp: List[str],
inf_scp: List[str],
ref_channel: int,
flexible_numspk: bool,
):
assert check_argument_types()
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if not flexible_numspk:
assert len(ref_scp) == len(inf_scp), ref_scp
num_spk = len(ref_scp)
keys = [
line.rstrip().split(maxsplit=1)[0] for line in open(key_file, encoding="utf-8")
]
ref_readers = [SoundScpReader(f, dtype=dtype, normalize=True) for f in ref_scp]
inf_readers = [SoundScpReader(f, dtype=dtype, normalize=True) for f in inf_scp]
# get sample rate
sample_rate, _ = ref_readers[0][keys[0]]
# check keys
if not flexible_numspk:
for inf_reader, ref_reader in zip(inf_readers, ref_readers):
assert inf_reader.keys() == ref_reader.keys()
with DatadirWriter(output_dir) as writer:
for key in keys:
if not flexible_numspk:
ref_audios = [ref_reader[key][1] for ref_reader in ref_readers]
inf_audios = [inf_reader[key][1] for inf_reader in inf_readers]
else:
ref_audios = [
ref_reader[key][1]
for ref_reader in ref_readers
if key in ref_reader.keys()
]
inf_audios = [
inf_reader[key][1]
for inf_reader in inf_readers
if key in inf_reader.keys()
]
ref = np.array(ref_audios)
inf = np.array(inf_audios)
if ref.ndim > inf.ndim:
# multi-channel reference and single-channel output
ref = ref[..., ref_channel]
elif ref.ndim < inf.ndim:
# single-channel reference and multi-channel output
inf = inf[..., ref_channel]
elif ref.ndim == inf.ndim == 3:
# multi-channel reference and output
ref = ref[..., ref_channel]
inf = inf[..., ref_channel]
if not flexible_numspk:
assert ref.shape == inf.shape, (ref.shape, inf.shape)
else:
# epsilon value to avoid divergence
# caused by zero-value, e.g., log(0)
eps = 0.000001
# if num_spk of ref > num_spk of inf
if ref.shape[0] > inf.shape[0]:
p = np.full((ref.shape[0] - inf.shape[0], inf.shape[1]), eps)
inf = np.concatenate([inf, p])
num_spk = ref.shape[0]
# if num_spk of ref < num_spk of inf
elif ref.shape[0] < inf.shape[0]:
p = np.full((inf.shape[0] - ref.shape[0], ref.shape[1]), eps)
ref = np.concatenate([ref, p])
num_spk = inf.shape[0]
else:
num_spk = ref.shape[0]
sdr, sir, sar, perm = bss_eval_sources(ref, inf, compute_permutation=True)
for i in range(num_spk):
stoi_score = stoi(ref[i], inf[int(perm[i])], fs_sig=sample_rate)
estoi_score = stoi(
ref[i], inf[int(perm[i])], fs_sig=sample_rate, extended=True
)
si_snr_score = -float(
si_snr_loss(
torch.from_numpy(ref[i][None, ...]),
torch.from_numpy(inf[int(perm[i])][None, ...]),
)
)
writer[f"STOI_spk{i + 1}"][key] = str(stoi_score * 100) # in percentage
writer[f"ESTOI_spk{i + 1}"][key] = str(estoi_score * 100)
writer[f"SI_SNR_spk{i + 1}"][key] = str(si_snr_score)
writer[f"SDR_spk{i + 1}"][key] = str(sdr[i])
writer[f"SAR_spk{i + 1}"][key] = str(sar[i])
writer[f"SIR_spk{i + 1}"][key] = str(sir[i])
# save permutation assigned script file
if i < len(ref_scp):
writer[f"wav_spk{i + 1}"][key] = inf_readers[perm[i]].data[key]
def get_parser():
parser = config_argparse.ArgumentParser(
description="Frontend inference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--ref_scp",
type=str,
required=True,
action="append",
)
group.add_argument(
"--inf_scp",
type=str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str)
group.add_argument("--ref_channel", type=int, default=0)
group.add_argument("--flexible_numspk", type=str2bool, default=False)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
scoring(**kwargs)
if __name__ == "__main__":
main()