-
Notifications
You must be signed in to change notification settings - Fork 4
/
python12.07.py
943 lines (772 loc) · 27.1 KB
/
python12.07.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
import serial
import cv2
import os
import pytesseract
import math
import numpy
import numpy as np
from PIL import Image
#ser = 0
ser = serial.Serial('/dev/ttyS0', 4800, timeout=0.01)
cap = cv2.VideoCapture(0)
viewSize = (320, int(320 / 1.333))
cap.set(3, viewSize[0])
cap.set(4, viewSize[1])
cap.set(5, 30)
ROI_row1 = 0
ROI_row2 = viewSize[1]
roomColor = 0
def CutImg(img, rx):
global ROI_row1, ROI_row2
if rx == 150:
ROI_row1 = viewSize[1]*(1/5)
ROI_row2 = viewSize[1]
elif rx == 151:
ROI_row1 = 0
ROI_row2 = viewSize[1]*(1/2)
elif rx == 152:
ROI_row1 = viewSize[1] * (1 / 2)
ROI_row2 = viewSize[1]
img = img[int(ROI_row1):int(ROI_row2), 0:int(viewSize[0])]
return img
def getDegree(p1, p2):
if p2[0] == p1[0]:
p2 = (p1[0]+0.1, p2[1])
rad = math.atan(float(p2[1] - p1[1]) / (p2[0] - p1[0]))
return round(rad * (180 / (numpy.pi)), 3)
def getDistance(p1, p2):
return math.sqrt((p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]))
def getSubDegree(deg1, deg2):
ang1 = max(deg1, deg2) - min(deg1, deg2)
ang2 = 180 - ang1
return min(ang1, ang2)
def sendTX(data):
ser.write(serial.to_bytes([data]))
print("send data:", data)
def receiveRX():
if ser.inWaiting() > 0:
rx = ord(ser.read(1))
print("receive data:", rx)
return rx
else:
return 0
red_low = [165, 50, 0]
red_up = [179, 255, 255]
green_low = [45, 80, 0]
green_up = [90, 255, 255]
blue_low = [105, 50, 0]
blue_up = [135, 255, 255]
yellow_low = [15, 100, 0]
yellow_up = [45, 255, 255]
white_low = [0, 0, 141]
white_up = [179, 255, 255]
invert_black_low = [0, 0, 200]
invert_black_up = [179, 80, 255]
lower_color = [0, 0, 0]
upper_color = [255, 255, 255]
def traceLine(img):
res = img
mask = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(mask, tuple(yellow_low), tuple(yellow_up))
img = cv2.bitwise_and(img, img, mask=mask)
contours, _ = cv2.findContours(mask, 1, cv2.CHAIN_APPROX_NONE)
if len(contours) > 0:
c = max(contours, key=cv2.contourArea)
M = cv2.moments(c)
if M["m00"] != 0:
cx = int(M['m10'] / M['m00'])
_, cols = img.shape[:2]
[vx, vy, x, y] = cv2.fitLine(c, cv2.DIST_L2, 0, 0.01, 0.01)
cv2.line(res, (cx, 0), (cx, viewSize[1]), (0, 0, 255), 3)
cv2.drawContours(res, c, -1, (0, 255, 0), 2)
try:
y1 = int((-x * vy / vx) + y)
y2 = int(((cols - x) * vy / vx) + y)
deg = getDegree((0, y1), (cols - 1, y2))
resultDeg = round(getSubDegree(90, deg), 1)
if deg > 0:
deg = resultDeg
else:
deg = -resultDeg
cv2.putText(res, str(deg), (0, 50), 0, 1, (0, 255, 0), 2)
cv2.imshow("traceLine", res)
if deg <= -5:
return 103
elif deg >= 5:
return 102
else:
if cx <= 120:
return 104
elif cx >= 200:
return 105
else:
return 101
except Exception as e:
if str(e) != '0':
print('error: ', e)
return 109
finally:
cv2.imshow("traceLine", res)
return 109
def traceLine_EXIT(img):
res = img
mask = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(mask, tuple(yellow_low), tuple(yellow_up))
img = cv2.bitwise_and(img, img, mask=mask)
contours, _ = cv2.findContours(mask, 1, cv2.CHAIN_APPROX_NONE)
if len(contours) > 0:
c = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(c)
print("넓이: ", w, h)
if (w*h < 1000):
return 211 # exit completely finished 로보베이직에서 위험지역 단어 말하면
M = cv2.moments(c)
if M["m00"] != 0:
cx = int(M['m10'] / M['m00'])
_, cols = img.shape[:2]
[vx, vy, x, y] = cv2.fitLine(c, cv2.DIST_L2, 0, 0.01, 0.01)
cv2.line(res, (cx, 0), (cx, viewSize[1]), (0, 0, 255), 3)
cv2.drawContours(res, c, -1, (0, 255, 0), 2)
try:
y1 = int((-x * vy / vx) + y)
y2 = int(((cols - x) * vy / vx) + y)
deg = getDegree((0, y1), (cols - 1, y2))
resultDeg = round(getSubDegree(90, deg), 1)
if deg > 0:
deg = resultDeg
else:
deg = -resultDeg
cv2.putText(res, str(deg), (0, 50), 0, 1, (0, 255, 0), 2)
cv2.imshow("traceLine", res)
if deg <= -5:
return 103
elif deg >= 5:
return 102
else:
if cx <= 120:
return 104
elif cx >= 200:
return 105
else:
return 101
except Exception as e:
if str(e) != '0':
print('error: ', e)
return 109
finally:
cv2.imshow("traceLine", res)
return 109
def detectYellow(img):
mask = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(mask, tuple(yellow_low), tuple(yellow_up))
img = cv2.bitwise_and(img, img, mask=mask)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
contours, _ = cv2.findContours(
img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) < 1:
return {
'x': 0,
'y': 0,
'w': 0,
'h': 0,
'cx': 0,
'cy': 0
}
contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(contour)
cx = x + (w / 2)
cy = y + (h / 2)
rect = {
'x': x,
'y': y,
'w': w,
'h': h,
'cx': cx,
'cy': cy
}
if (w*h) > 5000:
return 109
else:
return 0
def detectWord(img):
alphas = ('N', 'W', 'S', 'E')
txVal = {'N': 111, 'W': 113, 'S': 115, 'E': 117}
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, img = cv2.threshold(
img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
img = cv2.copyMakeBorder(
img, 50, 50, 50, 50, cv2.BORDER_CONSTANT, value=(255, 255, 255))
filename = "{}.png".format(os.getpid())
cv2.imwrite(filename, img)
text = pytesseract.image_to_string(
Image.open(filename), config="--psm 10", lang='eng')
os.remove(filename)
try:
if alphas.count(text[0]) > 0:
print(text[0])
return txVal[text[0]]
except Exception as e:
if str(e) != '0':
print('error: ', e)
return 119
return 119
def detectRoomWord(img):
contours, _ = cv2.findContours(
img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
img_color = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.drawContours(img_color, contours, -1, (0, 255, 0), 5)
cv2.imshow("wwww", img_color)
if len(contours) < 1:
print("contours is not")
return 149
c = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(c)
img = img[y:y+h, x:x+w]
cv2.imshow("wwww2", img)
alphas = ('A', 'B', 'C', 'D')
txVal = {'A': 141, 'B': 142, 'C': 143, 'D': 144}
_, img = cv2.threshold(
img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
img = cv2.copyMakeBorder(
img, 50, 50, 50, 50, cv2.BORDER_CONSTANT, value=(255, 255, 255))
filename = "{}.png".format(os.getpid())
cv2.imwrite(filename, img)
text = pytesseract.image_to_string(
Image.open(filename), config="--psm 10", lang='eng')
os.remove(filename)
try:
if alphas.count(text[0]) > 0:
print(text[0])
return txVal[text[0]]
except Exception as e:
if str(e) != '0':
print('error: ', e)
return 149
return 149
def detectArrow(img, tx):
if tx == 119:
return 119
img = cv2.Canny(img, 200, 200)
lines = cv2.HoughLinesP(img, rho=1, theta=np.pi/180.0, threshold=30)
if lines is None:
return 119
temp = []
for line in lines:
x1, y1, x2, y2 = line[0]
temp.append(line[0])
x1, y1, x2, y2 = min(temp, key=lambda l: min(l[1], l[3]))
# img2 = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
# cv2.line(img2, (x1, y1), (x2, y2), (0, 255, 0), 3, cv2.LINE_AA)
# cv2.imshow("capture", img2)
if x2 == x1:
x2 = x1+0.1
ang1 = math.atan(float(y2-y1)/(x2-x1))
if (ang1 > np.pi/8 and ang1 < 3*np.pi/8):
return tx+1
elif (ang1 < -np.pi/8 and ang1 > -3*np.pi/8):
return tx
else:
return 119
def detectCorner(img):
mask = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(mask, tuple(yellow_low), tuple(yellow_up))
img = cv2.bitwise_and(img, img, mask=mask)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
skel = numpy.zeros(img.shape, numpy.uint8)
element = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
while True:
open = cv2.morphologyEx(img, cv2.MORPH_OPEN, element)
temp = cv2.subtract(img, open)
eroded = cv2.erode(img, element)
skel = cv2.bitwise_or(skel, temp)
img = eroded.copy()
if cv2.countNonZero(img) == 0:
break
edges = cv2.Canny(skel, 200, 200)
linesP = cv2.HoughLinesP(edges, 1, numpy.pi / 180,
30, minLineLength=30, maxLineGap=30)
cdstP = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
if linesP is not None:
for line in range(0, len(linesP)):
I = linesP[line][0]
temps = []
points = []
for line in linesP:
x1, y1, x2, y2 = line[0]
deg = round(getDegree((x1, y1), (x2, y2)), 3)
temps.append([x1, y1, x2, y2, deg])
points.append([x1, y1])
points.append([x2, y2])
stn = max(temps, key=lambda l: max(l[1], l[3]))
if stn[1] > stn[3]:
stn_point = [stn[0], stn[1]]
else:
stn_point = [stn[2], stn[3]]
left_point = min(points, key=lambda p: p[0])
right_point = max(points, key=lambda p: p[0])
stn_deg = stn[4]
print_deg = stn_deg
cv2.line(cdstP, (stn_point[0], stn_point[1]), (stn_point[0]+int(math.cos(stn_deg/(2*math.pi)*50)), stn_point[0]+int(math.sin(stn_deg/(2*math.pi)*50))),
(0, 0, 255), 3, cv2.LINE_AA)
if print_deg < 0:
print_deg += 180
cv2.circle(cdstP, (stn_point[0], stn_point[1]), 5, (255, 255, 255), -1)
cv2.circle(
cdstP, (left_point[0], left_point[1]), 5, (255, 255, 255), -1)
cv2.circle(
cdstP, (right_point[0], right_point[1]), 5, (255, 255, 255), -1)
notCurve = False
if getDistance(left_point, stn_point) < 30:
left_deg = stn_deg
notCurve = True
else:
left_deg = getDegree(left_point, stn_point)
cv2.line(cdstP, (stn_point[0], stn_point[1]), (left_point[0], left_point[1]),
(0, 255, 0), 3, cv2.LINE_AA)
ld = left_deg
left_deg = getSubDegree(stn_deg, left_deg)
left = left_deg >= 30 and left_deg <= 75
if getDistance(right_point, stn_point) < 30:
right_deg = stn_deg
notCurve = True
else:
right_deg = getDegree(right_point, stn_point)
cv2.line(cdstP, (stn_point[0], stn_point[1]), (right_point[0], right_point[1]),
(255, 0, 0), 3, cv2.LINE_AA)
rd = right_deg
right_deg = getSubDegree(stn_deg, right_deg)
right = right_deg >= 30 and right_deg <= 75
print("left_deg:", ld)
print("right_deg:", rd)
print("stn_deg:", stn_deg)
print("left_subdeg:", left_deg)
print("right_subdeg:", right_deg)
print("right:", right)
print("left:", left)
print()
cv2.imshow("corner", cdstP)
# if notCurve:
# return 133
if right and left:
return 108
elif right and not (left):
return 106
elif not (right) and left:
return 107
else:
return 133
if not math.isnan(print_deg):
cv2.line(cdstP, (stn[0], stn[1]), (stn[2], stn[3]),
(0, 0, 255), 3, cv2.LINE_AA)
cv2.imshow("detectCorner", cdstP)
return 133
def detectLine(img):
tx = detectCorner(img)
if tx == 133:
return traceLine(img)
return tx
def detectDirection(img):
img_ori = img
mask = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(mask, tuple(white_low), tuple(white_up))
img = cv2.bitwise_and(img, img, mask=mask)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
contours, _ = cv2.findContours(
img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# print(len(contours))
# cv2.drawContours(img, contours, -1, (0, 255, 0), 5)
if len(contours) < 1:
return 119
c = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(c)
# cv2.rectangle(img, (x, y), (x+w, y+h), (255, 255, 0), 2)
img = img_ori[y:y+h, x:x+w]
img_ori = img
cv2.imshow("white", img)
img = cv2.bitwise_not(img)
mask = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(mask, tuple(invert_black_low), tuple(invert_black_up))
img = cv2.bitwise_and(img, img, mask=mask)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
contours, _ = cv2.findContours(
img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
rects = []
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
rect = {
'x': x,
'y': y,
'w': w,
'h': h,
'cx': x + (w / 2),
'cy': y + (h / 2)
}
rects.append(rect)
if len(rects) < 1:
return 119
maxRect1 = max(rects, key=lambda r: r['w']*r['h'])
rects.remove(maxRect1)
# while maxRect['w']*3 < maxRect['h'] or maxRect['w'] > 3*maxRect['h']:
# maxRect = max(rects, key=lambda r: r['w']*r['h'])
# rects.remove(maxRect)
subImg1 = img_ori[maxRect1['y']:maxRect1['y']+maxRect1['h'],
maxRect1['x']:maxRect1['x']+maxRect1['w']].copy()
cv2.rectangle(img_ori, (maxRect1['x'], maxRect1['y']), (
maxRect1['x'] + maxRect1['w'], maxRect1['y'] + maxRect1['h']), (255, 255, 0), 2)
# cv2.imshow("arrow", img)
if len(rects) < 1:
return 119
maxRect2 = max(rects, key=lambda r: r['w']*r['h'])
rects.remove(maxRect2)
# while maxRect['w']*3 < maxRect['h'] or maxRect['w'] > 3*maxRect['h']:
# maxRect = max(rects, key=lambda r: r['w']*r['h'])
# rects.remove(maxRect)
subImg2 = img_ori[maxRect2['y']:maxRect2['y']+maxRect2['h'],
maxRect2['x']:maxRect2['x']+maxRect2['w']].copy()
cv2.rectangle(img_ori, (maxRect2['x'], maxRect2['y']), (
maxRect2['x'] + maxRect2['w'], maxRect2['y'] + maxRect2['h']), (255, 255, 0), 2)
# cv2.imshow("aaa", subImg1)
# cv2.imshow("bbb", subImg2)
if maxRect1['cy'] > maxRect2['cy']:
return detectArrow(subImg2, detectWord(subImg1))
else:
return detectArrow(subImg1, detectWord(subImg2))
# cv2.imshow("word", img)
def detectRoomName(img):
global roomColor
img_ori = img.copy()
mask = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask_red = cv2.inRange(mask, tuple(red_low), tuple(red_up))
mask_blue = cv2.inRange(mask, tuple(blue_low), tuple(blue_up))
img_red = cv2.bitwise_and(img, img, mask=mask_red)
img_blue = cv2.bitwise_and(img, img, mask=mask_blue)
img_red = cv2.cvtColor(img_red, cv2.COLOR_BGR2GRAY)
img_blue = cv2.cvtColor(img_blue, cv2.COLOR_BGR2GRAY)
cv2.imshow("ss", img_blue)
ret = detectRoomWord(img_red)
roomColor = 1
if ret == 149:
ret = detectRoomWord(img_blue)
if ret != 149:
roomColor = 2
return ret
def onChangeHMin(val):
global lower_color
lower_color[0] = val
def onChangeHMax(val):
global upper_color
upper_color[0] = val
def onChangeSMin(val):
global lower_color
lower_color[1] = val
def onChangeSMax(val):
global upper_color
upper_color[1] = val
def onChangeVMin(val):
global lower_color
lower_color[2] = val
def onChangeVMax(val):
global upper_color
upper_color[2] = val
def color_write():
cv2.setTrackbarPos("H_min", "Trackbar Windows", lower_color[0])
cv2.setTrackbarPos("H_max", "Trackbar Windows", upper_color[0])
cv2.setTrackbarPos("S_min", "Trackbar Windows", lower_color[1])
cv2.setTrackbarPos("S_max", "Trackbar Windows", upper_color[1])
cv2.setTrackbarPos("V_min", "Trackbar Windows", lower_color[2])
cv2.setTrackbarPos("V_max", "Trackbar Windows", upper_color[2])
cv2.namedWindow("Trackbar Windows")
cv2.createTrackbar("H_min", "Trackbar Windows", 0, 179, onChangeHMin)
cv2.createTrackbar("H_max", "Trackbar Windows", 0, 179, onChangeHMax)
cv2.createTrackbar("S_min", "Trackbar Windows", 0, 255, onChangeSMin)
cv2.createTrackbar("S_max", "Trackbar Windows", 0, 255, onChangeSMax)
cv2.createTrackbar("V_min", "Trackbar Windows", 0, 255, onChangeVMin)
cv2.createTrackbar("V_max", "Trackbar Windows", 0, 255, onChangeVMax)
color_write()
def getColorObject(img, lower, upper):
mask = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(mask, tuple(lower), tuple(upper))
img = cv2.bitwise_and(img, img, mask=mask)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
contours, _ = cv2.findContours(
img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) < 1:
return {
'x': 0,
'y': 0,
'w': 0,
'h': 0,
'cx': 0,
'cy': 0
}
contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(contour)
cx = x + (w / 2)
cy = y + (h / 2)
rect = {
'x': x,
'y': y,
'w': w,
'h': h,
'cx': cx,
'cy': cy
}
return rect
def getBlackObject(img):
img = cv2.bitwise_not(img)
return getColorObject(img, invert_black_low, invert_black_up)
def drawRects(img, rects):
for rect in rects:
pt1 = (int(rect['x']), int(rect['y']))
pt2 = (pt1[0]+int(rect['w']), pt1[1]+int(rect['h']))
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
return img
def command_direction(rects):
w_view = viewSize[0]
h_view = viewSize[1]
for rect in rects:
center_point = (int(rect['cx']), int(rect['cy']))
if (center_point[0] <= int(w_view*0.33)) and (center_point[1] <= int(h_view*0.33)):
return 171
elif(center_point[0] <= int(w_view*0.33*2)) and (center_point[1] <= int(h_view*0.33)):
return 172
elif (center_point[0] <= int(w_view)) and (center_point[1] <= int(h_view * 0.33)):
return 173
elif (center_point[0] <= int(w_view * 0.33)) and (center_point[1] <= int(h_view * 0.33*2)):
return 174
elif (center_point[0] <= int(w_view * 0.33 * 2)) and (center_point[1] <= int(h_view * 0.33*2)):
return 175
elif (center_point[0] <= int(w_view)) and (center_point[1] <= int(h_view * 0.33*2)):
return 176
elif (center_point[0] <= int(w_view * 0.33)) and (center_point[1] <= int(h_view)):
return 177
elif (center_point[0] <= int(w_view * 0.33 * 2)) and (center_point[1] <= int(h_view)):
return 178
elif (center_point[0] <= int(w_view)) and (center_point[1] <= int(h_view)):
return 179
def detect_object(rects):
w_view = viewSize[0]
h_view = viewSize[1]
for rect in rects:
center_point = (int(rect['cx']), int(rect['cy']))
if (center_point[0] <= int(w_view*0.33)) and (center_point[1] <= int(h_view*0.33)):
return 181
elif(center_point[0] <= int(w_view*0.33*2)) and (center_point[1] <= int(h_view*0.33)):
return 182
elif (center_point[0] <= int(w_view)) and (center_point[1] <= int(h_view * 0.33)):
return 183
elif (center_point[0] <= int(w_view * 0.33)) and (center_point[1] <= int(h_view * 0.33*2)):
return 184
elif (center_point[0] <= int(w_view * 0.33 * 2)) and (center_point[1] <= int(h_view * 0.33*2)):
return 185
elif (center_point[0] <= int(w_view)) and (center_point[1] <= int(h_view * 0.33*2)):
return 186
elif (center_point[0] <= int(w_view * 0.33)) and (center_point[1] <= int(h_view)):
return 187
elif (center_point[0] <= int(w_view * 0.33 * 2)) and (center_point[1] <= int(h_view)):
return 188
elif (center_point[0] <= int(w_view)) and (center_point[1] <= int(h_view)):
return 189
def gridline():
w_view = viewSize[0]
h_view = viewSize[1]
for n_line in range(1, 3):
cv2.line(img, (int(w_view*0.33*n_line), 0),
(int(w_view*0.33*n_line), h_view), (255, 255, 255), 1)
cv2.line(img, (0, int(h_view * 0.33*n_line)),
(w_view, int(h_view * 0.33*n_line)), (255, 255, 255), 1)
cv2.imshow("camera_grid", img)
def gotoObject(img):
global roomColor
if roomColor == 1:
rect_blue = getColorObject(img, red_low, red_up)
elif roomColor == 2:
rect_blue = getColorObject(img, blue_low, blue_up)
else:
print("not detect room name")
return 170
rect = rect_blue
gridline()
if rect['w'] > 0:
img = drawRects(img, [rect])
return command_direction([rect])
else:
return 170
def pickObject(img):
global roomColor
if roomColor == 1:
rect_blue = getColorObject(img, red_low, red_up)
elif roomColor == 2:
rect_blue = getColorObject(img, blue_low, blue_up)
else:
print("not detect room name")
return 170
rect = rect_blue
gridline()
if rect['w'] > 0:
img = drawRects(img, [rect])
return detect_object([rect])
else:
return 180
def putObject(img):
rect_black = getBlackObject(img)
rect = rect_black
gridline()
if rect['h'] > 80:
print(rect)
return 191
else:
return 192
def gotoEdge(img):
rect_yellow = getColorObject(img, yellow_low, yellow_up)
rect = rect_yellow
gridline()
if rect['h'] > 20:
print(rect)
return 193
else:
return 194
def detectDanger(img):
rect_green = getColorObject(img, green_low, green_up)
rectg = rect_green
rect_black = getBlackObject(img)
rectk = rect_black
print("green rect", rectg)
print("black rect2", rectk)
if (rectg['w']*rectg['h']) > 25000:
return 195
elif (rectk['w']*rectk['h'] > 25000):
return 196
else:
return 197
'''
def backToLine(img):
rect = getColorObject(img, yellow_low, yellow_up)
gridline()
cv2.rectangle(img, (rect['x'], rect['y']), (rect['x'] +
rect['w'], rect['y']+rect['h']), (255, 255, 0), 2)
cv2.imshow("adsf", img)
if rect['w'] > 0:
img = drawRects(img, [rect])
return command_direction([rect])
else:
return 170
'''
def checkLineExisted(img):
if detectYellow(img) == 109:
return 200
else:
return 201
stair_low = [green_low, red_low, blue_low, red_low, green_low, white_low]
stair_up = [green_up, red_up, blue_up, red_up, green_up, white_up]
def getAvgDegree(contour):
vx, vy, x, y = cv2.fitLine(contour, cv2.DIST_L2, 0, 0.01, 0.01)
rad = math.atan(vy/vx)
# x2, y2 = x+100*math.cos(rad), y+100*math.sin(rad)
# x, y, x2, y2 = map(int, [x, y, x2, y2])
return rad*(180/math.pi)
def checkStair(img, rx):
color = rx-90
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(img_hsv, tuple(
stair_low[color]), tuple(stair_up[color]))
img_mask = cv2.bitwise_and(img, img, mask=mask)
contours, _ = cv2.findContours(
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
img3 = np.zeros((viewSize[1], viewSize[0]), np.uint8)
if len(contours) < 1:
return 94
contour = max(contours, key=cv2.contourArea)
cv2.drawContours(img3, contour, -1, (255, 255, 255))
cv2.imshow("sss", img3)
lines = cv2.HoughLinesP(img3, 1, np.pi / 180, 1,
minLineLength=8, maxLineGap=20)
try:
if len(lines) < 1:
return 94
except:
return 94
linesWithAngle = []
for line in lines:
x1, y1, x2, y2 = line[0]
angle = math.atan((y2-y1)/(x2-x1))
if (x1 == x2 and (x1 == 0 or x1 == viewSize[0])) or (y1 == y2 and (y1 == 0 or y1 == viewSize[1])):
continue
linesWithAngle.append((x1, y1, x2, y2, angle))
cv2.line(img3, (x1, y1), (x2, y2), (255, 0, 255))
lineM = max(linesWithAngle, key=lambda l: abs(l[0]-l[2]))
x1, y1, x2, y2, angle = lineM
img3 = np.zeros((viewSize[1], viewSize[0]), np.uint8)
cv2.line(img3, (x1, y1), (x2, y2), (255, 0, 255))
cv2.imshow("final", img3)
lineDeg = angle*(180/math.pi)
#lineDeg = round(getSubDegree(90, lineDeg), 1)
print(lineDeg)
a = 5
if rx >= 93:
a = 5
if lineDeg > a:
return 92
elif lineDeg < -a:
return 91
else:
rect = getColorObject(img, stair_low[color], stair_up[color])
chkY = rect['y']+rect['h']
print(chkY)
#chkY *= 3
cv2.rectangle(img, (rect['x'], rect['y']), (rect['x'] +
rect['w'], rect['y']+rect['h']), (255, 255, 0), 2)
cv2.imshow("rect", img)
if (chkY < viewSize[1]*0.75 and rx < 93) or (rx >= 93 and chkY < viewSize[1]*0.7):
return 94
else:
return 93
actionFunc = {150: detectLine, 151: detectDirection,
152: detectRoomName, 153: gotoObject, 154: pickObject, 155: putObject, 156: gotoEdge, 157: detectDanger, 158: checkLineExisted, 159: traceLine_EXIT}
sendTX(99)
while True:
key = cv2.waitKey(1) & 0xFF
_, img = cap.read()
#rx = 150
rx = receiveRX()
# rx=151
# img = CutImg(img, rx)
if rx != 0:
if rx >= 90 and rx <= 95:
tx = checkStair(img, rx)
sendTX(tx)
else:
tx = actionFunc[rx](img)
sendTX(tx)
cv2.imshow("camera", img)
if key == ord('r'):
lower_color = red_low
upper_color = red_up
print(red_low, red_up)
color_write()
elif key == ord('g'):
lower_color = green_low
upper_color = green_up
print(green_low, green_up)
color_write()
elif key == ord('b'):
lower_color = blue_low
upper_color = blue_up
print(blue_low, blue_up)
color_write()
elif key == ord('y'):
lower_color = yellow_low
upper_color = yellow_up
print(yellow_low, yellow_up)
color_write()
elif key == ord('w'):
lower_color = white_low
upper_color = white_up
print(white_low, white_up)
color_write()
elif key == ord('k'):
lower_color = invert_black_low
upper_color = invert_black_up
print(invert_black_low, invert_black_up)
color_write()