-
Notifications
You must be signed in to change notification settings - Fork 0
/
NMR_Simulation.py
133 lines (97 loc) · 4.86 KB
/
NMR_Simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import matplotlib.pyplot as plt
from rdkit import Chem
import pandas as pd
import argparse
def get_hydrogen_neighbors(smiles, spectrum_type):
mol = Chem.MolFromSmiles(smiles)
mol = Chem.AddHs(mol)
atom_h_neighbors = {}
atom_index=0
for atom in mol.GetAtoms():
if spectrum_type == "1H" and atom.GetAtomicNum() == 1:
atom_index = atom_index + 1
# Get the carbon atom this hydrogen is attached to
carbon_atom = next((nbr for nbr in atom.GetNeighbors() if nbr.GetAtomicNum() == 6), None)
neighboring_hydrogens = 0
equivalent_hydrogens = 0
if carbon_atom is not None:
# Count the hydrogens attached to the same carbon atom (equivalent hydrogens)
equivalent_hydrogens = sum(1 for nbr in carbon_atom.GetNeighbors() if nbr.GetAtomicNum() == 1)
# Count the hydrogens attached to neighboring carbon atoms (for splitting pattern)
for neighbor in carbon_atom.GetNeighbors():
if neighbor.GetAtomicNum() == 6: # Ensure it is a carbon neighbor
neighboring_hydrogens += sum(1 for nbr in neighbor.GetNeighbors() if nbr.GetAtomicNum() == 1)
atom_h_neighbors[atom_index] = (equivalent_hydrogens, neighboring_hydrogens)
print(atom_h_neighbors)
return atom_h_neighbors
def nmr_splitting_patterns(chemical_shifts, atom_h_neighbors, J_coupling=7.0, spectrometer_frequency=90000000):
splitting_patterns = {}
for atom_index, (equivalent_hydrogens, neighboring_hydrogens) in atom_h_neighbors.items():
atom_label = f"H{atom_index}"
shift = chemical_shifts.get(atom_label, None)
if shift is not None:
num_peaks = neighboring_hydrogens + 1
coupling_ppm = J_coupling / spectrometer_frequency
splitting_pattern = (num_peaks, coupling_ppm * equivalent_hydrogens, equivalent_hydrogens)
splitting_patterns[atom_label] = (shift, splitting_pattern)
print(splitting_patterns)
return splitting_patterns
def lorentzian(x, x0, gamma):
return (gamma / np.pi) / ((x - x0) ** 2 + gamma ** 2)
def pascals_triangle_row(n):
row = [1]
for k in range(1, n + 1):
row.append(row[k - 1] * (n - k + 1) // k)
return row
def plot_nmr_spectrum(splitting_patterns, spectrum_type, line_width=0.02, points=10000000):
fig, ax = plt.subplots()
x_min = min(shift - coupling / 2 for shift, (num_peaks, coupling, _) in splitting_patterns.values()) - 1
x_max = max(shift + coupling / 2 for shift, (num_peaks, coupling, _) in splitting_patterns.values()) + 1
x = np.linspace(x_min, x_max, points)
y = np.zeros_like(x)
for atom_label, (shift, (num_peaks, coupling, intensity)) in splitting_patterns.items():
peak_positions = np.linspace(shift - coupling / 2, shift + coupling / 2, num_peaks)
intensities = pascals_triangle_row(num_peaks - 1)
total_intensity = sum(intensities)
for peak_position, relative_intensity in zip(peak_positions, intensities):
y += intensity * lorentzian(x, peak_position, line_width)
ax.plot(x, y, color='blue')
print (y)
ax.set_xlabel('Chemical Shift (ppm)')
ax.set_ylabel('Intensity')
ax.invert_xaxis()
plt.title(f'Simulated {spectrum_type} NMR Spectrum')
plt.show()
def extract_chemical_shifts_from_excel(file_path):
# Read the Excel file
df = pd.read_excel(file_path)
# Drop rows with missing values
df = df.dropna()
# Initialize a dictionary to store chemical shifts
chemical_shifts = {}
# Iterate over the rows of the dataframe
for _, row in df.iterrows():
# Get the first string before the space as the atom label
atom_label = row['Atoms'].split()[0]
# Get the shift value
shift = row['Shift Values']
# Store the shift value in the dictionary
chemical_shifts[atom_label] = shift
# Print the dictionary of chemical shifts
print(chemical_shifts)
# Return the dictionary
return chemical_shifts
# Example usage:
# file_path = 'path_to_your_excel_file.xlsx'
# chemical_shifts = extract_chemical_shifts_from_excel(file_path)
def main():
parser = argparse.ArgumentParser(description="Generate NMR Spectrum")
parser.add_argument("smiles", type=str, help="SMILES string of the molecule.")
args = parser.parse_args()
chemical_shifts = extract_chemical_shifts_from_excel('chemical_shifts.xlsx')
atom_h_neighbors = get_hydrogen_neighbors(args.smiles, spectrum_type="1H")
splitting_patterns = nmr_splitting_patterns(chemical_shifts, atom_h_neighbors)
plot_nmr_spectrum(splitting_patterns, spectrum_type="1H")
if __name__ == "__main__":
main()