+#
+# Author: Travis Oliphant, 2002
+#
+
+import operator
+import numpy as np
+import math
+import warnings
+from numpy import (pi, asarray, floor, isscalar, iscomplex, real,
+ imag, sqrt, where, mgrid, sin, place, issubdtype,
+ extract, inexact, nan, zeros, sinc)
+from . import _ufuncs
+from ._ufuncs import (mathieu_a, mathieu_b, iv, jv, gamma,
+ psi, hankel1, hankel2, yv, kv, poch, binom)
+from . import _specfun
+from ._comb import _comb_int
+
+
+__all__ = [
+ 'ai_zeros',
+ 'assoc_laguerre',
+ 'bei_zeros',
+ 'beip_zeros',
+ 'ber_zeros',
+ 'bernoulli',
+ 'berp_zeros',
+ 'bi_zeros',
+ 'clpmn',
+ 'comb',
+ 'digamma',
+ 'diric',
+ 'erf_zeros',
+ 'euler',
+ 'factorial',
+ 'factorial2',
+ 'factorialk',
+ 'fresnel_zeros',
+ 'fresnelc_zeros',
+ 'fresnels_zeros',
+ 'h1vp',
+ 'h2vp',
+ 'ivp',
+ 'jn_zeros',
+ 'jnjnp_zeros',
+ 'jnp_zeros',
+ 'jnyn_zeros',
+ 'jvp',
+ 'kei_zeros',
+ 'keip_zeros',
+ 'kelvin_zeros',
+ 'ker_zeros',
+ 'kerp_zeros',
+ 'kvp',
+ 'lmbda',
+ 'lpmn',
+ 'lpn',
+ 'lqmn',
+ 'lqn',
+ 'mathieu_even_coef',
+ 'mathieu_odd_coef',
+ 'obl_cv_seq',
+ 'pbdn_seq',
+ 'pbdv_seq',
+ 'pbvv_seq',
+ 'perm',
+ 'polygamma',
+ 'pro_cv_seq',
+ 'riccati_jn',
+ 'riccati_yn',
+ 'sinc',
+ 'y0_zeros',
+ 'y1_zeros',
+ 'y1p_zeros',
+ 'yn_zeros',
+ 'ynp_zeros',
+ 'yvp',
+ 'zeta'
+]
+
+
+# mapping k to last n such that factorialk(n, k) < np.iinfo(np.int64).max
+_FACTORIALK_LIMITS_64BITS = {1: 20, 2: 33, 3: 44, 4: 54, 5: 65,
+ 6: 74, 7: 84, 8: 93, 9: 101}
+# mapping k to last n such that factorialk(n, k) < np.iinfo(np.int32).max
+_FACTORIALK_LIMITS_32BITS = {1: 12, 2: 19, 3: 25, 4: 31, 5: 37,
+ 6: 43, 7: 47, 8: 51, 9: 56}
+
+
+def _nonneg_int_or_fail(n, var_name, strict=True):
+ try:
+ if strict:
+ # Raises an exception if float
+ n = operator.index(n)
+ elif n == floor(n):
+ n = int(n)
+ else:
+ raise ValueError()
+ if n < 0:
+ raise ValueError()
+ except (ValueError, TypeError) as err:
+ raise err.__class__(f"{var_name} must be a non-negative integer") from err
+ return n
+
+
+def diric(x, n):
+ """Periodic sinc function, also called the Dirichlet function.
+
+ The Dirichlet function is defined as::
+
+ diric(x, n) = sin(x * n/2) / (n * sin(x / 2)),
+
+ where `n` is a positive integer.
+
+ Parameters
+ ----------
+ x : array_like
+ Input data
+ n : int
+ Integer defining the periodicity.
+
+ Returns
+ -------
+ diric : ndarray
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from scipy import special
+ >>> import matplotlib.pyplot as plt
+
+ >>> x = np.linspace(-8*np.pi, 8*np.pi, num=201)
+ >>> plt.figure(figsize=(8, 8));
+ >>> for idx, n in enumerate([2, 3, 4, 9]):
+ ... plt.subplot(2, 2, idx+1)
+ ... plt.plot(x, special.diric(x, n))
+ ... plt.title('diric, n={}'.format(n))
+ >>> plt.show()
+
+ The following example demonstrates that `diric` gives the magnitudes
+ (modulo the sign and scaling) of the Fourier coefficients of a
+ rectangular pulse.
+
+ Suppress output of values that are effectively 0:
+
+ >>> np.set_printoptions(suppress=True)
+
+ Create a signal `x` of length `m` with `k` ones:
+
+ >>> m = 8
+ >>> k = 3
+ >>> x = np.zeros(m)
+ >>> x[:k] = 1
+
+ Use the FFT to compute the Fourier transform of `x`, and
+ inspect the magnitudes of the coefficients:
+
+ >>> np.abs(np.fft.fft(x))
+ array([ 3. , 2.41421356, 1. , 0.41421356, 1. ,
+ 0.41421356, 1. , 2.41421356])
+
+ Now find the same values (up to sign) using `diric`. We multiply
+ by `k` to account for the different scaling conventions of
+ `numpy.fft.fft` and `diric`:
+
+ >>> theta = np.linspace(0, 2*np.pi, m, endpoint=False)
+ >>> k * special.diric(theta, k)
+ array([ 3. , 2.41421356, 1. , -0.41421356, -1. ,
+ -0.41421356, 1. , 2.41421356])
+ """
+ x, n = asarray(x), asarray(n)
+ n = asarray(n + (x-x))
+ x = asarray(x + (n-n))
+ if issubdtype(x.dtype, inexact):
+ ytype = x.dtype
+ else:
+ ytype = float
+ y = zeros(x.shape, ytype)
+
+ # empirical minval for 32, 64 or 128 bit float computations
+ # where sin(x/2) < minval, result is fixed at +1 or -1
+ if np.finfo(ytype).eps < 1e-18:
+ minval = 1e-11
+ elif np.finfo(ytype).eps < 1e-15:
+ minval = 1e-7
+ else:
+ minval = 1e-3
+
+ mask1 = (n <= 0) | (n != floor(n))
+ place(y, mask1, nan)
+
+ x = x / 2
+ denom = sin(x)
+ mask2 = (1-mask1) & (abs(denom) < minval)
+ xsub = extract(mask2, x)
+ nsub = extract(mask2, n)
+ zsub = xsub / pi
+ place(y, mask2, pow(-1, np.round(zsub)*(nsub-1)))
+
+ mask = (1-mask1) & (1-mask2)
+ xsub = extract(mask, x)
+ nsub = extract(mask, n)
+ dsub = extract(mask, denom)
+ place(y, mask, sin(nsub*xsub)/(nsub*dsub))
+ return y
+
+
+def jnjnp_zeros(nt):
+ """Compute zeros of integer-order Bessel functions Jn and Jn'.
+
+ Results are arranged in order of the magnitudes of the zeros.
+
+ Parameters
+ ----------
+ nt : int
+ Number (<=1200) of zeros to compute
+
+ Returns
+ -------
+ zo[l-1] : ndarray
+ Value of the lth zero of Jn(x) and Jn'(x). Of length `nt`.
+ n[l-1] : ndarray
+ Order of the Jn(x) or Jn'(x) associated with lth zero. Of length `nt`.
+ m[l-1] : ndarray
+ Serial number of the zeros of Jn(x) or Jn'(x) associated
+ with lth zero. Of length `nt`.
+ t[l-1] : ndarray
+ 0 if lth zero in zo is zero of Jn(x), 1 if it is a zero of Jn'(x). Of
+ length `nt`.
+
+ See Also
+ --------
+ jn_zeros, jnp_zeros : to get separated arrays of zeros.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt > 1200):
+ raise ValueError("Number must be integer <= 1200.")
+ nt = int(nt)
+ n, m, t, zo = _specfun.jdzo(nt)
+ return zo[1:nt+1], n[:nt], m[:nt], t[:nt]
+
+
+def jnyn_zeros(n, nt):
+ """Compute nt zeros of Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x).
+
+ Returns 4 arrays of length `nt`, corresponding to the first `nt`
+ zeros of Jn(x), Jn'(x), Yn(x), and Yn'(x), respectively. The zeros
+ are returned in ascending order.
+
+ Parameters
+ ----------
+ n : int
+ Order of the Bessel functions
+ nt : int
+ Number (<=1200) of zeros to compute
+
+ Returns
+ -------
+ Jn : ndarray
+ First `nt` zeros of Jn
+ Jnp : ndarray
+ First `nt` zeros of Jn'
+ Yn : ndarray
+ First `nt` zeros of Yn
+ Ynp : ndarray
+ First `nt` zeros of Yn'
+
+ See Also
+ --------
+ jn_zeros, jnp_zeros, yn_zeros, ynp_zeros
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ Examples
+ --------
+ Compute the first three roots of :math:`J_1`, :math:`J_1'`,
+ :math:`Y_1` and :math:`Y_1'`.
+
+ >>> from scipy.special import jnyn_zeros
+ >>> jn_roots, jnp_roots, yn_roots, ynp_roots = jnyn_zeros(1, 3)
+ >>> jn_roots, yn_roots
+ (array([ 3.83170597, 7.01558667, 10.17346814]),
+ array([2.19714133, 5.42968104, 8.59600587]))
+
+ Plot :math:`J_1`, :math:`J_1'`, :math:`Y_1`, :math:`Y_1'` and their roots.
+
+ >>> import numpy as np
+ >>> import matplotlib.pyplot as plt
+ >>> from scipy.special import jnyn_zeros, jvp, jn, yvp, yn
+ >>> jn_roots, jnp_roots, yn_roots, ynp_roots = jnyn_zeros(1, 3)
+ >>> fig, ax = plt.subplots()
+ >>> xmax= 11
+ >>> x = np.linspace(0, xmax)
+ >>> x[0] += 1e-15
+ >>> ax.plot(x, jn(1, x), label=r"$J_1$", c='r')
+ >>> ax.plot(x, jvp(1, x, 1), label=r"$J_1'$", c='b')
+ >>> ax.plot(x, yn(1, x), label=r"$Y_1$", c='y')
+ >>> ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$", c='c')
+ >>> zeros = np.zeros((3, ))
+ >>> ax.scatter(jn_roots, zeros, s=30, c='r', zorder=5,
+ ... label=r"$J_1$ roots")
+ >>> ax.scatter(jnp_roots, zeros, s=30, c='b', zorder=5,
+ ... label=r"$J_1'$ roots")
+ >>> ax.scatter(yn_roots, zeros, s=30, c='y', zorder=5,
+ ... label=r"$Y_1$ roots")
+ >>> ax.scatter(ynp_roots, zeros, s=30, c='c', zorder=5,
+ ... label=r"$Y_1'$ roots")
+ >>> ax.hlines(0, 0, xmax, color='k')
+ >>> ax.set_ylim(-0.6, 0.6)
+ >>> ax.set_xlim(0, xmax)
+ >>> ax.legend(ncol=2, bbox_to_anchor=(1., 0.75))
+ >>> plt.tight_layout()
+ >>> plt.show()
+ """
+ if not (isscalar(nt) and isscalar(n)):
+ raise ValueError("Arguments must be scalars.")
+ if (floor(n) != n) or (floor(nt) != nt):
+ raise ValueError("Arguments must be integers.")
+ if (nt <= 0):
+ raise ValueError("nt > 0")
+ return _specfun.jyzo(abs(n), nt)
+
+
+def jn_zeros(n, nt):
+ r"""Compute zeros of integer-order Bessel functions Jn.
+
+ Compute `nt` zeros of the Bessel functions :math:`J_n(x)` on the
+ interval :math:`(0, \infty)`. The zeros are returned in ascending
+ order. Note that this interval excludes the zero at :math:`x = 0`
+ that exists for :math:`n > 0`.
+
+ Parameters
+ ----------
+ n : int
+ Order of Bessel function
+ nt : int
+ Number of zeros to return
+
+ Returns
+ -------
+ ndarray
+ First `nt` zeros of the Bessel function.
+
+ See Also
+ --------
+ jv: Real-order Bessel functions of the first kind
+ jnp_zeros: Zeros of :math:`Jn'`
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ Examples
+ --------
+ Compute the first four positive roots of :math:`J_3`.
+
+ >>> from scipy.special import jn_zeros
+ >>> jn_zeros(3, 4)
+ array([ 6.3801619 , 9.76102313, 13.01520072, 16.22346616])
+
+ Plot :math:`J_3` and its first four positive roots. Note
+ that the root located at 0 is not returned by `jn_zeros`.
+
+ >>> import numpy as np
+ >>> import matplotlib.pyplot as plt
+ >>> from scipy.special import jn, jn_zeros
+ >>> j3_roots = jn_zeros(3, 4)
+ >>> xmax = 18
+ >>> xmin = -1
+ >>> x = np.linspace(xmin, xmax, 500)
+ >>> fig, ax = plt.subplots()
+ >>> ax.plot(x, jn(3, x), label=r'$J_3$')
+ >>> ax.scatter(j3_roots, np.zeros((4, )), s=30, c='r',
+ ... label=r"$J_3$_Zeros", zorder=5)
+ >>> ax.scatter(0, 0, s=30, c='k',
+ ... label=r"Root at 0", zorder=5)
+ >>> ax.hlines(0, 0, xmax, color='k')
+ >>> ax.set_xlim(xmin, xmax)
+ >>> plt.legend()
+ >>> plt.show()
+ """
+ return jnyn_zeros(n, nt)[0]
+
+
+def jnp_zeros(n, nt):
+ r"""Compute zeros of integer-order Bessel function derivatives Jn'.
+
+ Compute `nt` zeros of the functions :math:`J_n'(x)` on the
+ interval :math:`(0, \infty)`. The zeros are returned in ascending
+ order. Note that this interval excludes the zero at :math:`x = 0`
+ that exists for :math:`n > 1`.
+
+ Parameters
+ ----------
+ n : int
+ Order of Bessel function
+ nt : int
+ Number of zeros to return
+
+ Returns
+ -------
+ ndarray
+ First `nt` zeros of the Bessel function.
+
+ See Also
+ --------
+ jvp: Derivatives of integer-order Bessel functions of the first kind
+ jv: Float-order Bessel functions of the first kind
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ Examples
+ --------
+ Compute the first four roots of :math:`J_2'`.
+
+ >>> from scipy.special import jnp_zeros
+ >>> jnp_zeros(2, 4)
+ array([ 3.05423693, 6.70613319, 9.96946782, 13.17037086])
+
+ As `jnp_zeros` yields the roots of :math:`J_n'`, it can be used to
+ compute the locations of the peaks of :math:`J_n`. Plot
+ :math:`J_2`, :math:`J_2'` and the locations of the roots of :math:`J_2'`.
+
+ >>> import numpy as np
+ >>> import matplotlib.pyplot as plt
+ >>> from scipy.special import jn, jnp_zeros, jvp
+ >>> j2_roots = jnp_zeros(2, 4)
+ >>> xmax = 15
+ >>> x = np.linspace(0, xmax, 500)
+ >>> fig, ax = plt.subplots()
+ >>> ax.plot(x, jn(2, x), label=r'$J_2$')
+ >>> ax.plot(x, jvp(2, x, 1), label=r"$J_2'$")
+ >>> ax.hlines(0, 0, xmax, color='k')
+ >>> ax.scatter(j2_roots, np.zeros((4, )), s=30, c='r',
+ ... label=r"Roots of $J_2'$", zorder=5)
+ >>> ax.set_ylim(-0.4, 0.8)
+ >>> ax.set_xlim(0, xmax)
+ >>> plt.legend()
+ >>> plt.show()
+ """
+ return jnyn_zeros(n, nt)[1]
+
+
+def yn_zeros(n, nt):
+ r"""Compute zeros of integer-order Bessel function Yn(x).
+
+ Compute `nt` zeros of the functions :math:`Y_n(x)` on the interval
+ :math:`(0, \infty)`. The zeros are returned in ascending order.
+
+ Parameters
+ ----------
+ n : int
+ Order of Bessel function
+ nt : int
+ Number of zeros to return
+
+ Returns
+ -------
+ ndarray
+ First `nt` zeros of the Bessel function.
+
+ See Also
+ --------
+ yn: Bessel function of the second kind for integer order
+ yv: Bessel function of the second kind for real order
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ Examples
+ --------
+ Compute the first four roots of :math:`Y_2`.
+
+ >>> from scipy.special import yn_zeros
+ >>> yn_zeros(2, 4)
+ array([ 3.38424177, 6.79380751, 10.02347798, 13.20998671])
+
+ Plot :math:`Y_2` and its first four roots.
+
+ >>> import numpy as np
+ >>> import matplotlib.pyplot as plt
+ >>> from scipy.special import yn, yn_zeros
+ >>> xmin = 2
+ >>> xmax = 15
+ >>> x = np.linspace(xmin, xmax, 500)
+ >>> fig, ax = plt.subplots()
+ >>> ax.hlines(0, xmin, xmax, color='k')
+ >>> ax.plot(x, yn(2, x), label=r'$Y_2$')
+ >>> ax.scatter(yn_zeros(2, 4), np.zeros((4, )), s=30, c='r',
+ ... label='Roots', zorder=5)
+ >>> ax.set_ylim(-0.4, 0.4)
+ >>> ax.set_xlim(xmin, xmax)
+ >>> plt.legend()
+ >>> plt.show()
+ """
+ return jnyn_zeros(n, nt)[2]
+
+
+def ynp_zeros(n, nt):
+ r"""Compute zeros of integer-order Bessel function derivatives Yn'(x).
+
+ Compute `nt` zeros of the functions :math:`Y_n'(x)` on the
+ interval :math:`(0, \infty)`. The zeros are returned in ascending
+ order.
+
+ Parameters
+ ----------
+ n : int
+ Order of Bessel function
+ nt : int
+ Number of zeros to return
+
+ Returns
+ -------
+ ndarray
+ First `nt` zeros of the Bessel derivative function.
+
+
+ See Also
+ --------
+ yvp
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ Examples
+ --------
+ Compute the first four roots of the first derivative of the
+ Bessel function of second kind for order 0 :math:`Y_0'`.
+
+ >>> from scipy.special import ynp_zeros
+ >>> ynp_zeros(0, 4)
+ array([ 2.19714133, 5.42968104, 8.59600587, 11.74915483])
+
+ Plot :math:`Y_0`, :math:`Y_0'` and confirm visually that the roots of
+ :math:`Y_0'` are located at local extrema of :math:`Y_0`.
+
+ >>> import numpy as np
+ >>> import matplotlib.pyplot as plt
+ >>> from scipy.special import yn, ynp_zeros, yvp
+ >>> zeros = ynp_zeros(0, 4)
+ >>> xmax = 13
+ >>> x = np.linspace(0, xmax, 500)
+ >>> fig, ax = plt.subplots()
+ >>> ax.plot(x, yn(0, x), label=r'$Y_0$')
+ >>> ax.plot(x, yvp(0, x, 1), label=r"$Y_0'$")
+ >>> ax.scatter(zeros, np.zeros((4, )), s=30, c='r',
+ ... label=r"Roots of $Y_0'$", zorder=5)
+ >>> for root in zeros:
+ ... y0_extremum = yn(0, root)
+ ... lower = min(0, y0_extremum)
+ ... upper = max(0, y0_extremum)
+ ... ax.vlines(root, lower, upper, color='r')
+ >>> ax.hlines(0, 0, xmax, color='k')
+ >>> ax.set_ylim(-0.6, 0.6)
+ >>> ax.set_xlim(0, xmax)
+ >>> plt.legend()
+ >>> plt.show()
+ """
+ return jnyn_zeros(n, nt)[3]
+
+
+def y0_zeros(nt, complex=False):
+ """Compute nt zeros of Bessel function Y0(z), and derivative at each zero.
+
+ The derivatives are given by Y0'(z0) = -Y1(z0) at each zero z0.
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to return
+ complex : bool, default False
+ Set to False to return only the real zeros; set to True to return only
+ the complex zeros with negative real part and positive imaginary part.
+ Note that the complex conjugates of the latter are also zeros of the
+ function, but are not returned by this routine.
+
+ Returns
+ -------
+ z0n : ndarray
+ Location of nth zero of Y0(z)
+ y0pz0n : ndarray
+ Value of derivative Y0'(z0) for nth zero
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ Examples
+ --------
+ Compute the first 4 real roots and the derivatives at the roots of
+ :math:`Y_0`:
+
+ >>> import numpy as np
+ >>> from scipy.special import y0_zeros
+ >>> zeros, grads = y0_zeros(4)
+ >>> with np.printoptions(precision=5):
+ ... print(f"Roots: {zeros}")
+ ... print(f"Gradients: {grads}")
+ Roots: [ 0.89358+0.j 3.95768+0.j 7.08605+0.j 10.22235+0.j]
+ Gradients: [-0.87942+0.j 0.40254+0.j -0.3001 +0.j 0.2497 +0.j]
+
+ Plot the real part of :math:`Y_0` and the first four computed roots.
+
+ >>> import matplotlib.pyplot as plt
+ >>> from scipy.special import y0
+ >>> xmin = 0
+ >>> xmax = 11
+ >>> x = np.linspace(xmin, xmax, 500)
+ >>> fig, ax = plt.subplots()
+ >>> ax.hlines(0, xmin, xmax, color='k')
+ >>> ax.plot(x, y0(x), label=r'$Y_0$')
+ >>> zeros, grads = y0_zeros(4)
+ >>> ax.scatter(zeros.real, np.zeros((4, )), s=30, c='r',
+ ... label=r'$Y_0$_zeros', zorder=5)
+ >>> ax.set_ylim(-0.5, 0.6)
+ >>> ax.set_xlim(xmin, xmax)
+ >>> plt.legend(ncol=2)
+ >>> plt.show()
+
+ Compute the first 4 complex roots and the derivatives at the roots of
+ :math:`Y_0` by setting ``complex=True``:
+
+ >>> y0_zeros(4, True)
+ (array([ -2.40301663+0.53988231j, -5.5198767 +0.54718001j,
+ -8.6536724 +0.54841207j, -11.79151203+0.54881912j]),
+ array([ 0.10074769-0.88196771j, -0.02924642+0.5871695j ,
+ 0.01490806-0.46945875j, -0.00937368+0.40230454j]))
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("Arguments must be scalar positive integer.")
+ kf = 0
+ kc = not complex
+ return _specfun.cyzo(nt, kf, kc)
+
+
+def y1_zeros(nt, complex=False):
+ """Compute nt zeros of Bessel function Y1(z), and derivative at each zero.
+
+ The derivatives are given by Y1'(z1) = Y0(z1) at each zero z1.
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to return
+ complex : bool, default False
+ Set to False to return only the real zeros; set to True to return only
+ the complex zeros with negative real part and positive imaginary part.
+ Note that the complex conjugates of the latter are also zeros of the
+ function, but are not returned by this routine.
+
+ Returns
+ -------
+ z1n : ndarray
+ Location of nth zero of Y1(z)
+ y1pz1n : ndarray
+ Value of derivative Y1'(z1) for nth zero
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ Examples
+ --------
+ Compute the first 4 real roots and the derivatives at the roots of
+ :math:`Y_1`:
+
+ >>> import numpy as np
+ >>> from scipy.special import y1_zeros
+ >>> zeros, grads = y1_zeros(4)
+ >>> with np.printoptions(precision=5):
+ ... print(f"Roots: {zeros}")
+ ... print(f"Gradients: {grads}")
+ Roots: [ 2.19714+0.j 5.42968+0.j 8.59601+0.j 11.74915+0.j]
+ Gradients: [ 0.52079+0.j -0.34032+0.j 0.27146+0.j -0.23246+0.j]
+
+ Extract the real parts:
+
+ >>> realzeros = zeros.real
+ >>> realzeros
+ array([ 2.19714133, 5.42968104, 8.59600587, 11.74915483])
+
+ Plot :math:`Y_1` and the first four computed roots.
+
+ >>> import matplotlib.pyplot as plt
+ >>> from scipy.special import y1
+ >>> xmin = 0
+ >>> xmax = 13
+ >>> x = np.linspace(xmin, xmax, 500)
+ >>> zeros, grads = y1_zeros(4)
+ >>> fig, ax = plt.subplots()
+ >>> ax.hlines(0, xmin, xmax, color='k')
+ >>> ax.plot(x, y1(x), label=r'$Y_1$')
+ >>> ax.scatter(zeros.real, np.zeros((4, )), s=30, c='r',
+ ... label=r'$Y_1$_zeros', zorder=5)
+ >>> ax.set_ylim(-0.5, 0.5)
+ >>> ax.set_xlim(xmin, xmax)
+ >>> plt.legend()
+ >>> plt.show()
+
+ Compute the first 4 complex roots and the derivatives at the roots of
+ :math:`Y_1` by setting ``complex=True``:
+
+ >>> y1_zeros(4, True)
+ (array([ -0.50274327+0.78624371j, -3.83353519+0.56235654j,
+ -7.01590368+0.55339305j, -10.17357383+0.55127339j]),
+ array([-0.45952768+1.31710194j, 0.04830191-0.69251288j,
+ -0.02012695+0.51864253j, 0.011614 -0.43203296j]))
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("Arguments must be scalar positive integer.")
+ kf = 1
+ kc = not complex
+ return _specfun.cyzo(nt, kf, kc)
+
+
+def y1p_zeros(nt, complex=False):
+ """Compute nt zeros of Bessel derivative Y1'(z), and value at each zero.
+
+ The values are given by Y1(z1) at each z1 where Y1'(z1)=0.
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to return
+ complex : bool, default False
+ Set to False to return only the real zeros; set to True to return only
+ the complex zeros with negative real part and positive imaginary part.
+ Note that the complex conjugates of the latter are also zeros of the
+ function, but are not returned by this routine.
+
+ Returns
+ -------
+ z1pn : ndarray
+ Location of nth zero of Y1'(z)
+ y1z1pn : ndarray
+ Value of derivative Y1(z1) for nth zero
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ Examples
+ --------
+ Compute the first four roots of :math:`Y_1'` and the values of
+ :math:`Y_1` at these roots.
+
+ >>> import numpy as np
+ >>> from scipy.special import y1p_zeros
+ >>> y1grad_roots, y1_values = y1p_zeros(4)
+ >>> with np.printoptions(precision=5):
+ ... print(f"Y1' Roots: {y1grad_roots}")
+ ... print(f"Y1 values: {y1_values}")
+ Y1' Roots: [ 3.68302+0.j 6.9415 +0.j 10.1234 +0.j 13.28576+0.j]
+ Y1 values: [ 0.41673+0.j -0.30317+0.j 0.25091+0.j -0.21897+0.j]
+
+ `y1p_zeros` can be used to calculate the extremal points of :math:`Y_1`
+ directly. Here we plot :math:`Y_1` and the first four extrema.
+
+ >>> import matplotlib.pyplot as plt
+ >>> from scipy.special import y1, yvp
+ >>> y1_roots, y1_values_at_roots = y1p_zeros(4)
+ >>> real_roots = y1_roots.real
+ >>> xmax = 15
+ >>> x = np.linspace(0, xmax, 500)
+ >>> x[0] += 1e-15
+ >>> fig, ax = plt.subplots()
+ >>> ax.plot(x, y1(x), label=r'$Y_1$')
+ >>> ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$")
+ >>> ax.scatter(real_roots, np.zeros((4, )), s=30, c='r',
+ ... label=r"Roots of $Y_1'$", zorder=5)
+ >>> ax.scatter(real_roots, y1_values_at_roots.real, s=30, c='k',
+ ... label=r"Extrema of $Y_1$", zorder=5)
+ >>> ax.hlines(0, 0, xmax, color='k')
+ >>> ax.set_ylim(-0.5, 0.5)
+ >>> ax.set_xlim(0, xmax)
+ >>> ax.legend(ncol=2, bbox_to_anchor=(1., 0.75))
+ >>> plt.tight_layout()
+ >>> plt.show()
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("Arguments must be scalar positive integer.")
+ kf = 2
+ kc = not complex
+ return _specfun.cyzo(nt, kf, kc)
+
+
+def _bessel_diff_formula(v, z, n, L, phase):
+ # from AMS55.
+ # L(v, z) = J(v, z), Y(v, z), H1(v, z), H2(v, z), phase = -1
+ # L(v, z) = I(v, z) or exp(v*pi*i)K(v, z), phase = 1
+ # For K, you can pull out the exp((v-k)*pi*i) into the caller
+ v = asarray(v)
+ p = 1.0
+ s = L(v-n, z)
+ for i in range(1, n+1):
+ p = phase * (p * (n-i+1)) / i # = choose(k, i)
+ s += p*L(v-n + i*2, z)
+ return s / (2.**n)
+
+
+def jvp(v, z, n=1):
+ """Compute derivatives of Bessel functions of the first kind.
+
+ Compute the nth derivative of the Bessel function `Jv` with
+ respect to `z`.
+
+ Parameters
+ ----------
+ v : array_like or float
+ Order of Bessel function
+ z : complex
+ Argument at which to evaluate the derivative; can be real or
+ complex.
+ n : int, default 1
+ Order of derivative. For 0 returns the Bessel function `jv` itself.
+
+ Returns
+ -------
+ scalar or ndarray
+ Values of the derivative of the Bessel function.
+
+ Notes
+ -----
+ The derivative is computed using the relation DLFM 10.6.7 [2]_.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ .. [2] NIST Digital Library of Mathematical Functions.
+ https://dlmf.nist.gov/10.6.E7
+
+ Examples
+ --------
+
+ Compute the Bessel function of the first kind of order 0 and
+ its first two derivatives at 1.
+
+ >>> from scipy.special import jvp
+ >>> jvp(0, 1, 0), jvp(0, 1, 1), jvp(0, 1, 2)
+ (0.7651976865579666, -0.44005058574493355, -0.3251471008130331)
+
+ Compute the first derivative of the Bessel function of the first
+ kind for several orders at 1 by providing an array for `v`.
+
+ >>> jvp([0, 1, 2], 1, 1)
+ array([-0.44005059, 0.3251471 , 0.21024362])
+
+ Compute the first derivative of the Bessel function of the first
+ kind of order 0 at several points by providing an array for `z`.
+
+ >>> import numpy as np
+ >>> points = np.array([0., 1.5, 3.])
+ >>> jvp(0, points, 1)
+ array([-0. , -0.55793651, -0.33905896])
+
+ Plot the Bessel function of the first kind of order 1 and its
+ first three derivatives.
+
+ >>> import matplotlib.pyplot as plt
+ >>> x = np.linspace(-10, 10, 1000)
+ >>> fig, ax = plt.subplots()
+ >>> ax.plot(x, jvp(1, x, 0), label=r"$J_1$")
+ >>> ax.plot(x, jvp(1, x, 1), label=r"$J_1'$")
+ >>> ax.plot(x, jvp(1, x, 2), label=r"$J_1''$")
+ >>> ax.plot(x, jvp(1, x, 3), label=r"$J_1'''$")
+ >>> plt.legend()
+ >>> plt.show()
+ """
+ n = _nonneg_int_or_fail(n, 'n')
+ if n == 0:
+ return jv(v, z)
+ else:
+ return _bessel_diff_formula(v, z, n, jv, -1)
+
+
+def yvp(v, z, n=1):
+ """Compute derivatives of Bessel functions of the second kind.
+
+ Compute the nth derivative of the Bessel function `Yv` with
+ respect to `z`.
+
+ Parameters
+ ----------
+ v : array_like of float
+ Order of Bessel function
+ z : complex
+ Argument at which to evaluate the derivative
+ n : int, default 1
+ Order of derivative. For 0 returns the BEssel function `yv`
+
+ See Also
+ --------
+ yv
+
+ Returns
+ -------
+ scalar or ndarray
+ nth derivative of the Bessel function.
+
+ Notes
+ -----
+ The derivative is computed using the relation DLFM 10.6.7 [2]_.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ .. [2] NIST Digital Library of Mathematical Functions.
+ https://dlmf.nist.gov/10.6.E7
+
+ Examples
+ --------
+ Compute the Bessel function of the second kind of order 0 and
+ its first two derivatives at 1.
+
+ >>> from scipy.special import yvp
+ >>> yvp(0, 1, 0), yvp(0, 1, 1), yvp(0, 1, 2)
+ (0.088256964215677, 0.7812128213002889, -0.8694697855159659)
+
+ Compute the first derivative of the Bessel function of the second
+ kind for several orders at 1 by providing an array for `v`.
+
+ >>> yvp([0, 1, 2], 1, 1)
+ array([0.78121282, 0.86946979, 2.52015239])
+
+ Compute the first derivative of the Bessel function of the
+ second kind of order 0 at several points by providing an array for `z`.
+
+ >>> import numpy as np
+ >>> points = np.array([0.5, 1.5, 3.])
+ >>> yvp(0, points, 1)
+ array([ 1.47147239, 0.41230863, -0.32467442])
+
+ Plot the Bessel function of the second kind of order 1 and its
+ first three derivatives.
+
+ >>> import matplotlib.pyplot as plt
+ >>> x = np.linspace(0, 5, 1000)
+ >>> x[0] += 1e-15
+ >>> fig, ax = plt.subplots()
+ >>> ax.plot(x, yvp(1, x, 0), label=r"$Y_1$")
+ >>> ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$")
+ >>> ax.plot(x, yvp(1, x, 2), label=r"$Y_1''$")
+ >>> ax.plot(x, yvp(1, x, 3), label=r"$Y_1'''$")
+ >>> ax.set_ylim(-10, 10)
+ >>> plt.legend()
+ >>> plt.show()
+ """
+ n = _nonneg_int_or_fail(n, 'n')
+ if n == 0:
+ return yv(v, z)
+ else:
+ return _bessel_diff_formula(v, z, n, yv, -1)
+
+
+def kvp(v, z, n=1):
+ """Compute derivatives of real-order modified Bessel function Kv(z)
+
+ Kv(z) is the modified Bessel function of the second kind.
+ Derivative is calculated with respect to `z`.
+
+ Parameters
+ ----------
+ v : array_like of float
+ Order of Bessel function
+ z : array_like of complex
+ Argument at which to evaluate the derivative
+ n : int, default 1
+ Order of derivative. For 0 returns the Bessel function `kv` itself.
+
+ Returns
+ -------
+ out : ndarray
+ The results
+
+ See Also
+ --------
+ kv
+
+ Notes
+ -----
+ The derivative is computed using the relation DLFM 10.29.5 [2]_.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 6.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ .. [2] NIST Digital Library of Mathematical Functions.
+ https://dlmf.nist.gov/10.29.E5
+
+ Examples
+ --------
+ Compute the modified bessel function of the second kind of order 0 and
+ its first two derivatives at 1.
+
+ >>> from scipy.special import kvp
+ >>> kvp(0, 1, 0), kvp(0, 1, 1), kvp(0, 1, 2)
+ (0.42102443824070834, -0.6019072301972346, 1.0229316684379428)
+
+ Compute the first derivative of the modified Bessel function of the second
+ kind for several orders at 1 by providing an array for `v`.
+
+ >>> kvp([0, 1, 2], 1, 1)
+ array([-0.60190723, -1.02293167, -3.85158503])
+
+ Compute the first derivative of the modified Bessel function of the
+ second kind of order 0 at several points by providing an array for `z`.
+
+ >>> import numpy as np
+ >>> points = np.array([0.5, 1.5, 3.])
+ >>> kvp(0, points, 1)
+ array([-1.65644112, -0.2773878 , -0.04015643])
+
+ Plot the modified bessel function of the second kind and its
+ first three derivatives.
+
+ >>> import matplotlib.pyplot as plt
+ >>> x = np.linspace(0, 5, 1000)
+ >>> fig, ax = plt.subplots()
+ >>> ax.plot(x, kvp(1, x, 0), label=r"$K_1$")
+ >>> ax.plot(x, kvp(1, x, 1), label=r"$K_1'$")
+ >>> ax.plot(x, kvp(1, x, 2), label=r"$K_1''$")
+ >>> ax.plot(x, kvp(1, x, 3), label=r"$K_1'''$")
+ >>> ax.set_ylim(-2.5, 2.5)
+ >>> plt.legend()
+ >>> plt.show()
+ """
+ n = _nonneg_int_or_fail(n, 'n')
+ if n == 0:
+ return kv(v, z)
+ else:
+ return (-1)**n * _bessel_diff_formula(v, z, n, kv, 1)
+
+
+def ivp(v, z, n=1):
+ """Compute derivatives of modified Bessel functions of the first kind.
+
+ Compute the nth derivative of the modified Bessel function `Iv`
+ with respect to `z`.
+
+ Parameters
+ ----------
+ v : array_like or float
+ Order of Bessel function
+ z : array_like
+ Argument at which to evaluate the derivative; can be real or
+ complex.
+ n : int, default 1
+ Order of derivative. For 0, returns the Bessel function `iv` itself.
+
+ Returns
+ -------
+ scalar or ndarray
+ nth derivative of the modified Bessel function.
+
+ See Also
+ --------
+ iv
+
+ Notes
+ -----
+ The derivative is computed using the relation DLFM 10.29.5 [2]_.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 6.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ .. [2] NIST Digital Library of Mathematical Functions.
+ https://dlmf.nist.gov/10.29.E5
+
+ Examples
+ --------
+ Compute the modified Bessel function of the first kind of order 0 and
+ its first two derivatives at 1.
+
+ >>> from scipy.special import ivp
+ >>> ivp(0, 1, 0), ivp(0, 1, 1), ivp(0, 1, 2)
+ (1.2660658777520084, 0.565159103992485, 0.7009067737595233)
+
+ Compute the first derivative of the modified Bessel function of the first
+ kind for several orders at 1 by providing an array for `v`.
+
+ >>> ivp([0, 1, 2], 1, 1)
+ array([0.5651591 , 0.70090677, 0.29366376])
+
+ Compute the first derivative of the modified Bessel function of the
+ first kind of order 0 at several points by providing an array for `z`.
+
+ >>> import numpy as np
+ >>> points = np.array([0., 1.5, 3.])
+ >>> ivp(0, points, 1)
+ array([0. , 0.98166643, 3.95337022])
+
+ Plot the modified Bessel function of the first kind of order 1 and its
+ first three derivatives.
+
+ >>> import matplotlib.pyplot as plt
+ >>> x = np.linspace(-5, 5, 1000)
+ >>> fig, ax = plt.subplots()
+ >>> ax.plot(x, ivp(1, x, 0), label=r"$I_1$")
+ >>> ax.plot(x, ivp(1, x, 1), label=r"$I_1'$")
+ >>> ax.plot(x, ivp(1, x, 2), label=r"$I_1''$")
+ >>> ax.plot(x, ivp(1, x, 3), label=r"$I_1'''$")
+ >>> plt.legend()
+ >>> plt.show()
+ """
+ n = _nonneg_int_or_fail(n, 'n')
+ if n == 0:
+ return iv(v, z)
+ else:
+ return _bessel_diff_formula(v, z, n, iv, 1)
+
+
+def h1vp(v, z, n=1):
+ """Compute derivatives of Hankel function H1v(z) with respect to `z`.
+
+ Parameters
+ ----------
+ v : array_like
+ Order of Hankel function
+ z : array_like
+ Argument at which to evaluate the derivative. Can be real or
+ complex.
+ n : int, default 1
+ Order of derivative. For 0 returns the Hankel function `h1v` itself.
+
+ Returns
+ -------
+ scalar or ndarray
+ Values of the derivative of the Hankel function.
+
+ See Also
+ --------
+ hankel1
+
+ Notes
+ -----
+ The derivative is computed using the relation DLFM 10.6.7 [2]_.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ .. [2] NIST Digital Library of Mathematical Functions.
+ https://dlmf.nist.gov/10.6.E7
+
+ Examples
+ --------
+ Compute the Hankel function of the first kind of order 0 and
+ its first two derivatives at 1.
+
+ >>> from scipy.special import h1vp
+ >>> h1vp(0, 1, 0), h1vp(0, 1, 1), h1vp(0, 1, 2)
+ ((0.7651976865579664+0.088256964215677j),
+ (-0.44005058574493355+0.7812128213002889j),
+ (-0.3251471008130329-0.8694697855159659j))
+
+ Compute the first derivative of the Hankel function of the first kind
+ for several orders at 1 by providing an array for `v`.
+
+ >>> h1vp([0, 1, 2], 1, 1)
+ array([-0.44005059+0.78121282j, 0.3251471 +0.86946979j,
+ 0.21024362+2.52015239j])
+
+ Compute the first derivative of the Hankel function of the first kind
+ of order 0 at several points by providing an array for `z`.
+
+ >>> import numpy as np
+ >>> points = np.array([0.5, 1.5, 3.])
+ >>> h1vp(0, points, 1)
+ array([-0.24226846+1.47147239j, -0.55793651+0.41230863j,
+ -0.33905896-0.32467442j])
+ """
+ n = _nonneg_int_or_fail(n, 'n')
+ if n == 0:
+ return hankel1(v, z)
+ else:
+ return _bessel_diff_formula(v, z, n, hankel1, -1)
+
+
+def h2vp(v, z, n=1):
+ """Compute derivatives of Hankel function H2v(z) with respect to `z`.
+
+ Parameters
+ ----------
+ v : array_like
+ Order of Hankel function
+ z : array_like
+ Argument at which to evaluate the derivative. Can be real or
+ complex.
+ n : int, default 1
+ Order of derivative. For 0 returns the Hankel function `h2v` itself.
+
+ Returns
+ -------
+ scalar or ndarray
+ Values of the derivative of the Hankel function.
+
+ See Also
+ --------
+ hankel2
+
+ Notes
+ -----
+ The derivative is computed using the relation DLFM 10.6.7 [2]_.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 5.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ .. [2] NIST Digital Library of Mathematical Functions.
+ https://dlmf.nist.gov/10.6.E7
+
+ Examples
+ --------
+ Compute the Hankel function of the second kind of order 0 and
+ its first two derivatives at 1.
+
+ >>> from scipy.special import h2vp
+ >>> h2vp(0, 1, 0), h2vp(0, 1, 1), h2vp(0, 1, 2)
+ ((0.7651976865579664-0.088256964215677j),
+ (-0.44005058574493355-0.7812128213002889j),
+ (-0.3251471008130329+0.8694697855159659j))
+
+ Compute the first derivative of the Hankel function of the second kind
+ for several orders at 1 by providing an array for `v`.
+
+ >>> h2vp([0, 1, 2], 1, 1)
+ array([-0.44005059-0.78121282j, 0.3251471 -0.86946979j,
+ 0.21024362-2.52015239j])
+
+ Compute the first derivative of the Hankel function of the second kind
+ of order 0 at several points by providing an array for `z`.
+
+ >>> import numpy as np
+ >>> points = np.array([0.5, 1.5, 3.])
+ >>> h2vp(0, points, 1)
+ array([-0.24226846-1.47147239j, -0.55793651-0.41230863j,
+ -0.33905896+0.32467442j])
+ """
+ n = _nonneg_int_or_fail(n, 'n')
+ if n == 0:
+ return hankel2(v, z)
+ else:
+ return _bessel_diff_formula(v, z, n, hankel2, -1)
+
+
+def riccati_jn(n, x):
+ r"""Compute Ricatti-Bessel function of the first kind and its derivative.
+
+ The Ricatti-Bessel function of the first kind is defined as :math:`x
+ j_n(x)`, where :math:`j_n` is the spherical Bessel function of the first
+ kind of order :math:`n`.
+
+ This function computes the value and first derivative of the
+ Ricatti-Bessel function for all orders up to and including `n`.
+
+ Parameters
+ ----------
+ n : int
+ Maximum order of function to compute
+ x : float
+ Argument at which to evaluate
+
+ Returns
+ -------
+ jn : ndarray
+ Value of j0(x), ..., jn(x)
+ jnp : ndarray
+ First derivative j0'(x), ..., jn'(x)
+
+ Notes
+ -----
+ The computation is carried out via backward recurrence, using the
+ relation DLMF 10.51.1 [2]_.
+
+ Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
+ Jin [1]_.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+ .. [2] NIST Digital Library of Mathematical Functions.
+ https://dlmf.nist.gov/10.51.E1
+
+ """
+ if not (isscalar(n) and isscalar(x)):
+ raise ValueError("arguments must be scalars.")
+ n = _nonneg_int_or_fail(n, 'n', strict=False)
+ if (n == 0):
+ n1 = 1
+ else:
+ n1 = n
+ nm, jn, jnp = _specfun.rctj(n1, x)
+ return jn[:(n+1)], jnp[:(n+1)]
+
+
+def riccati_yn(n, x):
+ """Compute Ricatti-Bessel function of the second kind and its derivative.
+
+ The Ricatti-Bessel function of the second kind is defined as :math:`x
+ y_n(x)`, where :math:`y_n` is the spherical Bessel function of the second
+ kind of order :math:`n`.
+
+ This function computes the value and first derivative of the function for
+ all orders up to and including `n`.
+
+ Parameters
+ ----------
+ n : int
+ Maximum order of function to compute
+ x : float
+ Argument at which to evaluate
+
+ Returns
+ -------
+ yn : ndarray
+ Value of y0(x), ..., yn(x)
+ ynp : ndarray
+ First derivative y0'(x), ..., yn'(x)
+
+ Notes
+ -----
+ The computation is carried out via ascending recurrence, using the
+ relation DLMF 10.51.1 [2]_.
+
+ Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
+ Jin [1]_.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+ .. [2] NIST Digital Library of Mathematical Functions.
+ https://dlmf.nist.gov/10.51.E1
+
+ """
+ if not (isscalar(n) and isscalar(x)):
+ raise ValueError("arguments must be scalars.")
+ n = _nonneg_int_or_fail(n, 'n', strict=False)
+ if (n == 0):
+ n1 = 1
+ else:
+ n1 = n
+ nm, jn, jnp = _specfun.rcty(n1, x)
+ return jn[:(n+1)], jnp[:(n+1)]
+
+
+def erf_zeros(nt):
+ """Compute the first nt zero in the first quadrant, ordered by absolute value.
+
+ Zeros in the other quadrants can be obtained by using the symmetries erf(-z) = erf(z) and
+ erf(conj(z)) = conj(erf(z)).
+
+
+ Parameters
+ ----------
+ nt : int
+ The number of zeros to compute
+
+ Returns
+ -------
+ The locations of the zeros of erf : ndarray (complex)
+ Complex values at which zeros of erf(z)
+
+ Examples
+ --------
+ >>> from scipy import special
+ >>> special.erf_zeros(1)
+ array([1.45061616+1.880943j])
+
+ Check that erf is (close to) zero for the value returned by erf_zeros
+
+ >>> special.erf(special.erf_zeros(1))
+ array([4.95159469e-14-1.16407394e-16j])
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
+ raise ValueError("Argument must be positive scalar integer.")
+ return _specfun.cerzo(nt)
+
+
+def fresnelc_zeros(nt):
+ """Compute nt complex zeros of cosine Fresnel integral C(z).
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
+ raise ValueError("Argument must be positive scalar integer.")
+ return _specfun.fcszo(1, nt)
+
+
+def fresnels_zeros(nt):
+ """Compute nt complex zeros of sine Fresnel integral S(z).
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
+ raise ValueError("Argument must be positive scalar integer.")
+ return _specfun.fcszo(2, nt)
+
+
+def fresnel_zeros(nt):
+ """Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z).
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
+ raise ValueError("Argument must be positive scalar integer.")
+ return _specfun.fcszo(2, nt), _specfun.fcszo(1, nt)
+
+
+def assoc_laguerre(x, n, k=0.0):
+ """Compute the generalized (associated) Laguerre polynomial of degree n and order k.
+
+ The polynomial :math:`L^{(k)}_n(x)` is orthogonal over ``[0, inf)``,
+ with weighting function ``exp(-x) * x**k`` with ``k > -1``.
+
+ Notes
+ -----
+ `assoc_laguerre` is a simple wrapper around `eval_genlaguerre`, with
+ reversed argument order ``(x, n, k=0.0) --> (n, k, x)``.
+
+ """
+ return _ufuncs.eval_genlaguerre(n, k, x)
+
+
+digamma = psi
+
+
+def polygamma(n, x):
+ r"""Polygamma functions.
+
+ Defined as :math:`\psi^{(n)}(x)` where :math:`\psi` is the
+ `digamma` function. See [dlmf]_ for details.
+
+ Parameters
+ ----------
+ n : array_like
+ The order of the derivative of the digamma function; must be
+ integral
+ x : array_like
+ Real valued input
+
+ Returns
+ -------
+ ndarray
+ Function results
+
+ See Also
+ --------
+ digamma
+
+ References
+ ----------
+ .. [dlmf] NIST, Digital Library of Mathematical Functions,
+ https://dlmf.nist.gov/5.15
+
+ Examples
+ --------
+ >>> from scipy import special
+ >>> x = [2, 3, 25.5]
+ >>> special.polygamma(1, x)
+ array([ 0.64493407, 0.39493407, 0.03999467])
+ >>> special.polygamma(0, x) == special.psi(x)
+ array([ True, True, True], dtype=bool)
+
+ """
+ n, x = asarray(n), asarray(x)
+ fac2 = (-1.0)**(n+1) * gamma(n+1.0) * zeta(n+1, x)
+ return where(n == 0, psi(x), fac2)
+
+
+def mathieu_even_coef(m, q):
+ r"""Fourier coefficients for even Mathieu and modified Mathieu functions.
+
+ The Fourier series of the even solutions of the Mathieu differential
+ equation are of the form
+
+ .. math:: \mathrm{ce}_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz
+
+ .. math:: \mathrm{ce}_{2n+1}(z, q) = \sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos (2k+1)z
+
+ This function returns the coefficients :math:`A_{(2n)}^{(2k)}` for even
+ input m=2n, and the coefficients :math:`A_{(2n+1)}^{(2k+1)}` for odd input
+ m=2n+1.
+
+ Parameters
+ ----------
+ m : int
+ Order of Mathieu functions. Must be non-negative.
+ q : float (>=0)
+ Parameter of Mathieu functions. Must be non-negative.
+
+ Returns
+ -------
+ Ak : ndarray
+ Even or odd Fourier coefficients, corresponding to even or odd m.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+ .. [2] NIST Digital Library of Mathematical Functions
+ https://dlmf.nist.gov/28.4#i
+
+ """
+ if not (isscalar(m) and isscalar(q)):
+ raise ValueError("m and q must be scalars.")
+ if (q < 0):
+ raise ValueError("q >=0")
+ if (m != floor(m)) or (m < 0):
+ raise ValueError("m must be an integer >=0.")
+
+ if (q <= 1):
+ qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q
+ else:
+ qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q
+ km = int(qm + 0.5*m)
+ if km > 251:
+ warnings.warn("Too many predicted coefficients.", RuntimeWarning, 2)
+ kd = 1
+ m = int(floor(m))
+ if m % 2:
+ kd = 2
+
+ a = mathieu_a(m, q)
+ fc = _specfun.fcoef(kd, m, q, a)
+ return fc[:km]
+
+
+def mathieu_odd_coef(m, q):
+ r"""Fourier coefficients for even Mathieu and modified Mathieu functions.
+
+ The Fourier series of the odd solutions of the Mathieu differential
+ equation are of the form
+
+ .. math:: \mathrm{se}_{2n+1}(z, q) = \sum_{k=0}^{\infty} B_{(2n+1)}^{(2k+1)} \sin (2k+1)z
+
+ .. math:: \mathrm{se}_{2n+2}(z, q) = \sum_{k=0}^{\infty} B_{(2n+2)}^{(2k+2)} \sin (2k+2)z
+
+ This function returns the coefficients :math:`B_{(2n+2)}^{(2k+2)}` for even
+ input m=2n+2, and the coefficients :math:`B_{(2n+1)}^{(2k+1)}` for odd
+ input m=2n+1.
+
+ Parameters
+ ----------
+ m : int
+ Order of Mathieu functions. Must be non-negative.
+ q : float (>=0)
+ Parameter of Mathieu functions. Must be non-negative.
+
+ Returns
+ -------
+ Bk : ndarray
+ Even or odd Fourier coefficients, corresponding to even or odd m.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not (isscalar(m) and isscalar(q)):
+ raise ValueError("m and q must be scalars.")
+ if (q < 0):
+ raise ValueError("q >=0")
+ if (m != floor(m)) or (m <= 0):
+ raise ValueError("m must be an integer > 0")
+
+ if (q <= 1):
+ qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q
+ else:
+ qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q
+ km = int(qm + 0.5*m)
+ if km > 251:
+ warnings.warn("Too many predicted coefficients.", RuntimeWarning, 2)
+ kd = 4
+ m = int(floor(m))
+ if m % 2:
+ kd = 3
+
+ b = mathieu_b(m, q)
+ fc = _specfun.fcoef(kd, m, q, b)
+ return fc[:km]
+
+
+def lpmn(m, n, z):
+ """Sequence of associated Legendre functions of the first kind.
+
+ Computes the associated Legendre function of the first kind of order m and
+ degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``.
+ Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and
+ ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.
+
+ This function takes a real argument ``z``. For complex arguments ``z``
+ use clpmn instead.
+
+ Parameters
+ ----------
+ m : int
+ ``|m| <= n``; the order of the Legendre function.
+ n : int
+ where ``n >= 0``; the degree of the Legendre function. Often
+ called ``l`` (lower case L) in descriptions of the associated
+ Legendre function
+ z : float
+ Input value.
+
+ Returns
+ -------
+ Pmn_z : (m+1, n+1) array
+ Values for all orders 0..m and degrees 0..n
+ Pmn_d_z : (m+1, n+1) array
+ Derivatives for all orders 0..m and degrees 0..n
+
+ See Also
+ --------
+ clpmn: associated Legendre functions of the first kind for complex z
+
+ Notes
+ -----
+ In the interval (-1, 1), Ferrer's function of the first kind is
+ returned. The phase convention used for the intervals (1, inf)
+ and (-inf, -1) is such that the result is always real.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+ .. [2] NIST Digital Library of Mathematical Functions
+ https://dlmf.nist.gov/14.3
+
+ """
+ if not isscalar(m) or (abs(m) > n):
+ raise ValueError("m must be <= n.")
+ if not isscalar(n) or (n < 0):
+ raise ValueError("n must be a non-negative integer.")
+ if not isscalar(z):
+ raise ValueError("z must be scalar.")
+ if iscomplex(z):
+ raise ValueError("Argument must be real. Use clpmn instead.")
+ if (m < 0):
+ mp = -m
+ mf, nf = mgrid[0:mp+1, 0:n+1]
+ with _ufuncs.errstate(all='ignore'):
+ if abs(z) < 1:
+ # Ferrer function; DLMF 14.9.3
+ fixarr = where(mf > nf, 0.0,
+ (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1))
+ else:
+ # Match to clpmn; DLMF 14.9.13
+ fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1))
+ else:
+ mp = m
+ p, pd = _specfun.lpmn(mp, n, z)
+ if (m < 0):
+ p = p * fixarr
+ pd = pd * fixarr
+ return p, pd
+
+
+def clpmn(m, n, z, type=3):
+ """Associated Legendre function of the first kind for complex arguments.
+
+ Computes the associated Legendre function of the first kind of order m and
+ degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``.
+ Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and
+ ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.
+
+ Parameters
+ ----------
+ m : int
+ ``|m| <= n``; the order of the Legendre function.
+ n : int
+ where ``n >= 0``; the degree of the Legendre function. Often
+ called ``l`` (lower case L) in descriptions of the associated
+ Legendre function
+ z : float or complex
+ Input value.
+ type : int, optional
+ takes values 2 or 3
+ 2: cut on the real axis ``|x| > 1``
+ 3: cut on the real axis ``-1 < x < 1`` (default)
+
+ Returns
+ -------
+ Pmn_z : (m+1, n+1) array
+ Values for all orders ``0..m`` and degrees ``0..n``
+ Pmn_d_z : (m+1, n+1) array
+ Derivatives for all orders ``0..m`` and degrees ``0..n``
+
+ See Also
+ --------
+ lpmn: associated Legendre functions of the first kind for real z
+
+ Notes
+ -----
+ By default, i.e. for ``type=3``, phase conventions are chosen according
+ to [1]_ such that the function is analytic. The cut lies on the interval
+ (-1, 1). Approaching the cut from above or below in general yields a phase
+ factor with respect to Ferrer's function of the first kind
+ (cf. `lpmn`).
+
+ For ``type=2`` a cut at ``|x| > 1`` is chosen. Approaching the real values
+ on the interval (-1, 1) in the complex plane yields Ferrer's function
+ of the first kind.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+ .. [2] NIST Digital Library of Mathematical Functions
+ https://dlmf.nist.gov/14.21
+
+ """
+ if not isscalar(m) or (abs(m) > n):
+ raise ValueError("m must be <= n.")
+ if not isscalar(n) or (n < 0):
+ raise ValueError("n must be a non-negative integer.")
+ if not isscalar(z):
+ raise ValueError("z must be scalar.")
+ if not (type == 2 or type == 3):
+ raise ValueError("type must be either 2 or 3.")
+ if (m < 0):
+ mp = -m
+ mf, nf = mgrid[0:mp+1, 0:n+1]
+ with _ufuncs.errstate(all='ignore'):
+ if type == 2:
+ fixarr = where(mf > nf, 0.0,
+ (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1))
+ else:
+ fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1))
+ else:
+ mp = m
+ p, pd = _specfun.clpmn(mp, n, real(z), imag(z), type)
+ if (m < 0):
+ p = p * fixarr
+ pd = pd * fixarr
+ return p, pd
+
+
+def lqmn(m, n, z):
+ """Sequence of associated Legendre functions of the second kind.
+
+ Computes the associated Legendre function of the second kind of order m and
+ degree n, ``Qmn(z)`` = :math:`Q_n^m(z)`, and its derivative, ``Qmn'(z)``.
+ Returns two arrays of size ``(m+1, n+1)`` containing ``Qmn(z)`` and
+ ``Qmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.
+
+ Parameters
+ ----------
+ m : int
+ ``|m| <= n``; the order of the Legendre function.
+ n : int
+ where ``n >= 0``; the degree of the Legendre function. Often
+ called ``l`` (lower case L) in descriptions of the associated
+ Legendre function
+ z : complex
+ Input value.
+
+ Returns
+ -------
+ Qmn_z : (m+1, n+1) array
+ Values for all orders 0..m and degrees 0..n
+ Qmn_d_z : (m+1, n+1) array
+ Derivatives for all orders 0..m and degrees 0..n
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not isscalar(m) or (m < 0):
+ raise ValueError("m must be a non-negative integer.")
+ if not isscalar(n) or (n < 0):
+ raise ValueError("n must be a non-negative integer.")
+ if not isscalar(z):
+ raise ValueError("z must be scalar.")
+ m = int(m)
+ n = int(n)
+
+ # Ensure neither m nor n == 0
+ mm = max(1, m)
+ nn = max(1, n)
+
+ if iscomplex(z):
+ q, qd = _specfun.clqmn(mm, nn, z)
+ else:
+ q, qd = _specfun.lqmn(mm, nn, z)
+ return q[:(m+1), :(n+1)], qd[:(m+1), :(n+1)]
+
+
+def bernoulli(n):
+ """Bernoulli numbers B0..Bn (inclusive).
+
+ Parameters
+ ----------
+ n : int
+ Indicated the number of terms in the Bernoulli series to generate.
+
+ Returns
+ -------
+ ndarray
+ The Bernoulli numbers ``[B(0), B(1), ..., B(n)]``.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+ .. [2] "Bernoulli number", Wikipedia, https://en.wikipedia.org/wiki/Bernoulli_number
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from scipy.special import bernoulli, zeta
+ >>> bernoulli(4)
+ array([ 1. , -0.5 , 0.16666667, 0. , -0.03333333])
+
+ The Wikipedia article ([2]_) points out the relationship between the
+ Bernoulli numbers and the zeta function, ``B_n^+ = -n * zeta(1 - n)``
+ for ``n > 0``:
+
+ >>> n = np.arange(1, 5)
+ >>> -n * zeta(1 - n)
+ array([ 0.5 , 0.16666667, -0. , -0.03333333])
+
+ Note that, in the notation used in the wikipedia article,
+ `bernoulli` computes ``B_n^-`` (i.e. it used the convention that
+ ``B_1`` is -1/2). The relation given above is for ``B_n^+``, so the
+ sign of 0.5 does not match the output of ``bernoulli(4)``.
+
+ """
+ if not isscalar(n) or (n < 0):
+ raise ValueError("n must be a non-negative integer.")
+ n = int(n)
+ if (n < 2):
+ n1 = 2
+ else:
+ n1 = n
+ return _specfun.bernob(int(n1))[:(n+1)]
+
+
+def euler(n):
+ """Euler numbers E(0), E(1), ..., E(n).
+
+ The Euler numbers [1]_ are also known as the secant numbers.
+
+ Because ``euler(n)`` returns floating point values, it does not give
+ exact values for large `n`. The first inexact value is E(22).
+
+ Parameters
+ ----------
+ n : int
+ The highest index of the Euler number to be returned.
+
+ Returns
+ -------
+ ndarray
+ The Euler numbers [E(0), E(1), ..., E(n)].
+ The odd Euler numbers, which are all zero, are included.
+
+ References
+ ----------
+ .. [1] Sequence A122045, The On-Line Encyclopedia of Integer Sequences,
+ https://oeis.org/A122045
+ .. [2] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from scipy.special import euler
+ >>> euler(6)
+ array([ 1., 0., -1., 0., 5., 0., -61.])
+
+ >>> euler(13).astype(np.int64)
+ array([ 1, 0, -1, 0, 5, 0, -61,
+ 0, 1385, 0, -50521, 0, 2702765, 0])
+
+ >>> euler(22)[-1] # Exact value of E(22) is -69348874393137901.
+ -69348874393137976.0
+
+ """
+ if not isscalar(n) or (n < 0):
+ raise ValueError("n must be a non-negative integer.")
+ n = int(n)
+ if (n < 2):
+ n1 = 2
+ else:
+ n1 = n
+ return _specfun.eulerb(n1)[:(n+1)]
+
+
+def lpn(n, z):
+ """Legendre function of the first kind.
+
+ Compute sequence of Legendre functions of the first kind (polynomials),
+ Pn(z) and derivatives for all degrees from 0 to n (inclusive).
+
+ See also special.legendre for polynomial class.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not (isscalar(n) and isscalar(z)):
+ raise ValueError("arguments must be scalars.")
+ n = _nonneg_int_or_fail(n, 'n', strict=False)
+ if (n < 1):
+ n1 = 1
+ else:
+ n1 = n
+ if iscomplex(z):
+ pn, pd = _specfun.clpn(n1, z)
+ else:
+ pn, pd = _specfun.lpn(n1, z)
+ return pn[:(n+1)], pd[:(n+1)]
+
+
+def lqn(n, z):
+ """Legendre function of the second kind.
+
+ Compute sequence of Legendre functions of the second kind, Qn(z) and
+ derivatives for all degrees from 0 to n (inclusive).
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not (isscalar(n) and isscalar(z)):
+ raise ValueError("arguments must be scalars.")
+ n = _nonneg_int_or_fail(n, 'n', strict=False)
+ if (n < 1):
+ n1 = 1
+ else:
+ n1 = n
+ if iscomplex(z):
+ qn, qd = _specfun.clqn(n1, z)
+ else:
+ qn, qd = _specfun.lqnb(n1, z)
+ return qn[:(n+1)], qd[:(n+1)]
+
+
+def ai_zeros(nt):
+ """
+ Compute `nt` zeros and values of the Airy function Ai and its derivative.
+
+ Computes the first `nt` zeros, `a`, of the Airy function Ai(x);
+ first `nt` zeros, `ap`, of the derivative of the Airy function Ai'(x);
+ the corresponding values Ai(a');
+ and the corresponding values Ai'(a).
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to compute
+
+ Returns
+ -------
+ a : ndarray
+ First `nt` zeros of Ai(x)
+ ap : ndarray
+ First `nt` zeros of Ai'(x)
+ ai : ndarray
+ Values of Ai(x) evaluated at first `nt` zeros of Ai'(x)
+ aip : ndarray
+ Values of Ai'(x) evaluated at first `nt` zeros of Ai(x)
+
+ Examples
+ --------
+ >>> from scipy import special
+ >>> a, ap, ai, aip = special.ai_zeros(3)
+ >>> a
+ array([-2.33810741, -4.08794944, -5.52055983])
+ >>> ap
+ array([-1.01879297, -3.24819758, -4.82009921])
+ >>> ai
+ array([ 0.53565666, -0.41901548, 0.38040647])
+ >>> aip
+ array([ 0.70121082, -0.80311137, 0.86520403])
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ kf = 1
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("nt must be a positive integer scalar.")
+ return _specfun.airyzo(nt, kf)
+
+
+def bi_zeros(nt):
+ """
+ Compute `nt` zeros and values of the Airy function Bi and its derivative.
+
+ Computes the first `nt` zeros, b, of the Airy function Bi(x);
+ first `nt` zeros, b', of the derivative of the Airy function Bi'(x);
+ the corresponding values Bi(b');
+ and the corresponding values Bi'(b).
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to compute
+
+ Returns
+ -------
+ b : ndarray
+ First `nt` zeros of Bi(x)
+ bp : ndarray
+ First `nt` zeros of Bi'(x)
+ bi : ndarray
+ Values of Bi(x) evaluated at first `nt` zeros of Bi'(x)
+ bip : ndarray
+ Values of Bi'(x) evaluated at first `nt` zeros of Bi(x)
+
+ Examples
+ --------
+ >>> from scipy import special
+ >>> b, bp, bi, bip = special.bi_zeros(3)
+ >>> b
+ array([-1.17371322, -3.2710933 , -4.83073784])
+ >>> bp
+ array([-2.29443968, -4.07315509, -5.51239573])
+ >>> bi
+ array([-0.45494438, 0.39652284, -0.36796916])
+ >>> bip
+ array([ 0.60195789, -0.76031014, 0.83699101])
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ kf = 2
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("nt must be a positive integer scalar.")
+ return _specfun.airyzo(nt, kf)
+
+
+def lmbda(v, x):
+ r"""Jahnke-Emden Lambda function, Lambdav(x).
+
+ This function is defined as [2]_,
+
+ .. math:: \Lambda_v(x) = \Gamma(v+1) \frac{J_v(x)}{(x/2)^v},
+
+ where :math:`\Gamma` is the gamma function and :math:`J_v` is the
+ Bessel function of the first kind.
+
+ Parameters
+ ----------
+ v : float
+ Order of the Lambda function
+ x : float
+ Value at which to evaluate the function and derivatives
+
+ Returns
+ -------
+ vl : ndarray
+ Values of Lambda_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
+ dl : ndarray
+ Derivatives Lambda_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+ .. [2] Jahnke, E. and Emde, F. "Tables of Functions with Formulae and
+ Curves" (4th ed.), Dover, 1945
+ """
+ if not (isscalar(v) and isscalar(x)):
+ raise ValueError("arguments must be scalars.")
+ if (v < 0):
+ raise ValueError("argument must be > 0.")
+ n = int(v)
+ v0 = v - n
+ if (n < 1):
+ n1 = 1
+ else:
+ n1 = n
+ v1 = n1 + v0
+ if (v != floor(v)):
+ vm, vl, dl = _specfun.lamv(v1, x)
+ else:
+ vm, vl, dl = _specfun.lamn(v1, x)
+ return vl[:(n+1)], dl[:(n+1)]
+
+
+def pbdv_seq(v, x):
+ """Parabolic cylinder functions Dv(x) and derivatives.
+
+ Parameters
+ ----------
+ v : float
+ Order of the parabolic cylinder function
+ x : float
+ Value at which to evaluate the function and derivatives
+
+ Returns
+ -------
+ dv : ndarray
+ Values of D_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
+ dp : ndarray
+ Derivatives D_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 13.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not (isscalar(v) and isscalar(x)):
+ raise ValueError("arguments must be scalars.")
+ n = int(v)
+ v0 = v-n
+ if (n < 1):
+ n1 = 1
+ else:
+ n1 = n
+ v1 = n1 + v0
+ dv, dp, pdf, pdd = _specfun.pbdv(v1, x)
+ return dv[:n1+1], dp[:n1+1]
+
+
+def pbvv_seq(v, x):
+ """Parabolic cylinder functions Vv(x) and derivatives.
+
+ Parameters
+ ----------
+ v : float
+ Order of the parabolic cylinder function
+ x : float
+ Value at which to evaluate the function and derivatives
+
+ Returns
+ -------
+ dv : ndarray
+ Values of V_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
+ dp : ndarray
+ Derivatives V_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 13.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not (isscalar(v) and isscalar(x)):
+ raise ValueError("arguments must be scalars.")
+ n = int(v)
+ v0 = v-n
+ if (n <= 1):
+ n1 = 1
+ else:
+ n1 = n
+ v1 = n1 + v0
+ dv, dp, pdf, pdd = _specfun.pbvv(v1, x)
+ return dv[:n1+1], dp[:n1+1]
+
+
+def pbdn_seq(n, z):
+ """Parabolic cylinder functions Dn(z) and derivatives.
+
+ Parameters
+ ----------
+ n : int
+ Order of the parabolic cylinder function
+ z : complex
+ Value at which to evaluate the function and derivatives
+
+ Returns
+ -------
+ dv : ndarray
+ Values of D_i(z), for i=0, ..., i=n.
+ dp : ndarray
+ Derivatives D_i'(z), for i=0, ..., i=n.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996, chapter 13.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not (isscalar(n) and isscalar(z)):
+ raise ValueError("arguments must be scalars.")
+ if (floor(n) != n):
+ raise ValueError("n must be an integer.")
+ if (abs(n) <= 1):
+ n1 = 1
+ else:
+ n1 = n
+ cpb, cpd = _specfun.cpbdn(n1, z)
+ return cpb[:n1+1], cpd[:n1+1]
+
+
+def ber_zeros(nt):
+ """Compute nt zeros of the Kelvin function ber.
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to compute. Must be positive.
+
+ Returns
+ -------
+ ndarray
+ First `nt` zeros of the Kelvin function.
+
+ See Also
+ --------
+ ber
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("nt must be positive integer scalar.")
+ return _specfun.klvnzo(nt, 1)
+
+
+def bei_zeros(nt):
+ """Compute nt zeros of the Kelvin function bei.
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to compute. Must be positive.
+
+ Returns
+ -------
+ ndarray
+ First `nt` zeros of the Kelvin function.
+
+ See Also
+ --------
+ bei
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("nt must be positive integer scalar.")
+ return _specfun.klvnzo(nt, 2)
+
+
+def ker_zeros(nt):
+ """Compute nt zeros of the Kelvin function ker.
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to compute. Must be positive.
+
+ Returns
+ -------
+ ndarray
+ First `nt` zeros of the Kelvin function.
+
+ See Also
+ --------
+ ker
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("nt must be positive integer scalar.")
+ return _specfun.klvnzo(nt, 3)
+
+
+def kei_zeros(nt):
+ """Compute nt zeros of the Kelvin function kei.
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to compute. Must be positive.
+
+ Returns
+ -------
+ ndarray
+ First `nt` zeros of the Kelvin function.
+
+ See Also
+ --------
+ kei
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("nt must be positive integer scalar.")
+ return _specfun.klvnzo(nt, 4)
+
+
+def berp_zeros(nt):
+ """Compute nt zeros of the derivative of the Kelvin function ber.
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to compute. Must be positive.
+
+ Returns
+ -------
+ ndarray
+ First `nt` zeros of the derivative of the Kelvin function.
+
+ See Also
+ --------
+ ber, berp
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("nt must be positive integer scalar.")
+ return _specfun.klvnzo(nt, 5)
+
+
+def beip_zeros(nt):
+ """Compute nt zeros of the derivative of the Kelvin function bei.
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to compute. Must be positive.
+
+ Returns
+ -------
+ ndarray
+ First `nt` zeros of the derivative of the Kelvin function.
+
+ See Also
+ --------
+ bei, beip
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("nt must be positive integer scalar.")
+ return _specfun.klvnzo(nt, 6)
+
+
+def kerp_zeros(nt):
+ """Compute nt zeros of the derivative of the Kelvin function ker.
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to compute. Must be positive.
+
+ Returns
+ -------
+ ndarray
+ First `nt` zeros of the derivative of the Kelvin function.
+
+ See Also
+ --------
+ ker, kerp
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("nt must be positive integer scalar.")
+ return _specfun.klvnzo(nt, 7)
+
+
+def keip_zeros(nt):
+ """Compute nt zeros of the derivative of the Kelvin function kei.
+
+ Parameters
+ ----------
+ nt : int
+ Number of zeros to compute. Must be positive.
+
+ Returns
+ -------
+ ndarray
+ First `nt` zeros of the derivative of the Kelvin function.
+
+ See Also
+ --------
+ kei, keip
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("nt must be positive integer scalar.")
+ return _specfun.klvnzo(nt, 8)
+
+
+def kelvin_zeros(nt):
+ """Compute nt zeros of all Kelvin functions.
+
+ Returned in a length-8 tuple of arrays of length nt. The tuple contains
+ the arrays of zeros of (ber, bei, ker, kei, ber', bei', ker', kei').
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+ raise ValueError("nt must be positive integer scalar.")
+ return (_specfun.klvnzo(nt, 1),
+ _specfun.klvnzo(nt, 2),
+ _specfun.klvnzo(nt, 3),
+ _specfun.klvnzo(nt, 4),
+ _specfun.klvnzo(nt, 5),
+ _specfun.klvnzo(nt, 6),
+ _specfun.klvnzo(nt, 7),
+ _specfun.klvnzo(nt, 8))
+
+
+def pro_cv_seq(m, n, c):
+ """Characteristic values for prolate spheroidal wave functions.
+
+ Compute a sequence of characteristic values for the prolate
+ spheroidal wave functions for mode m and n'=m..n and spheroidal
+ parameter c.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not (isscalar(m) and isscalar(n) and isscalar(c)):
+ raise ValueError("Arguments must be scalars.")
+ if (n != floor(n)) or (m != floor(m)):
+ raise ValueError("Modes must be integers.")
+ if (n-m > 199):
+ raise ValueError("Difference between n and m is too large.")
+ maxL = n-m+1
+ return _specfun.segv(m, n, c, 1)[1][:maxL]
+
+
+def obl_cv_seq(m, n, c):
+ """Characteristic values for oblate spheroidal wave functions.
+
+ Compute a sequence of characteristic values for the oblate
+ spheroidal wave functions for mode m and n'=m..n and spheroidal
+ parameter c.
+
+ References
+ ----------
+ .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+ Functions", John Wiley and Sons, 1996.
+ https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+ """
+ if not (isscalar(m) and isscalar(n) and isscalar(c)):
+ raise ValueError("Arguments must be scalars.")
+ if (n != floor(n)) or (m != floor(m)):
+ raise ValueError("Modes must be integers.")
+ if (n-m > 199):
+ raise ValueError("Difference between n and m is too large.")
+ maxL = n-m+1
+ return _specfun.segv(m, n, c, -1)[1][:maxL]
+
+
+def comb(N, k, exact=False, repetition=False, legacy=None):
+ """The number of combinations of N things taken k at a time.
+
+ This is often expressed as "N choose k".
+
+ Parameters
+ ----------
+ N : int, ndarray
+ Number of things.
+ k : int, ndarray
+ Number of elements taken.
+ exact : bool, optional
+ For integers, if `exact` is False, then floating point precision is
+ used, otherwise the result is computed exactly. For non-integers, if
+ `exact` is True, is disregarded.
+ repetition : bool, optional
+ If `repetition` is True, then the number of combinations with
+ repetition is computed.
+ legacy : bool, optional
+ If `legacy` is True and `exact` is True, then non-integral arguments
+ are cast to ints; if `legacy` is False, the result for non-integral
+ arguments is unaffected by the value of `exact`.
+
+ .. deprecated:: 1.9.0
+ Using `legacy` is deprecated and will removed by
+ Scipy 1.13.0. If you want to keep the legacy behaviour, cast
+ your inputs directly, e.g.
+ ``comb(int(your_N), int(your_k), exact=True)``.
+
+ Returns
+ -------
+ val : int, float, ndarray
+ The total number of combinations.
+
+ See Also
+ --------
+ binom : Binomial coefficient considered as a function of two real
+ variables.
+
+ Notes
+ -----
+ - Array arguments accepted only for exact=False case.
+ - If N < 0, or k < 0, then 0 is returned.
+ - If k > N and repetition=False, then 0 is returned.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from scipy.special import comb
+ >>> k = np.array([3, 4])
+ >>> n = np.array([10, 10])
+ >>> comb(n, k, exact=False)
+ array([ 120., 210.])
+ >>> comb(10, 3, exact=True)
+ 120
+ >>> comb(10, 3, exact=True, repetition=True)
+ 220
+
+ """
+ if legacy is not None:
+ warnings.warn(
+ "Using 'legacy' keyword is deprecated and will be removed by "
+ "Scipy 1.13.0. If you want to keep the legacy behaviour, cast "
+ "your inputs directly, e.g. "
+ "'comb(int(your_N), int(your_k), exact=True)'.",
+ DeprecationWarning,
+ stacklevel=2
+ )
+ if repetition:
+ return comb(N + k - 1, k, exact, legacy=legacy)
+ if exact:
+ if int(N) == N and int(k) == k:
+ # _comb_int casts inputs to integers, which is safe & intended here
+ return _comb_int(N, k)
+ elif legacy:
+ # here at least one number is not an integer; legacy behavior uses
+ # lossy casts to int
+ return _comb_int(N, k)
+ # otherwise, we disregard `exact=True`; it makes no sense for
+ # non-integral arguments
+ return comb(N, k)
+ else:
+ k, N = asarray(k), asarray(N)
+ cond = (k <= N) & (N >= 0) & (k >= 0)
+ vals = binom(N, k)
+ if isinstance(vals, np.ndarray):
+ vals[~cond] = 0
+ elif not cond:
+ vals = np.float64(0)
+ return vals
+
+
+def perm(N, k, exact=False):
+ """Permutations of N things taken k at a time, i.e., k-permutations of N.
+
+ It's also known as "partial permutations".
+
+ Parameters
+ ----------
+ N : int, ndarray
+ Number of things.
+ k : int, ndarray
+ Number of elements taken.
+ exact : bool, optional
+ If `exact` is False, then floating point precision is used, otherwise
+ exact long integer is computed.
+
+ Returns
+ -------
+ val : int, ndarray
+ The number of k-permutations of N.
+
+ Notes
+ -----
+ - Array arguments accepted only for exact=False case.
+ - If k > N, N < 0, or k < 0, then a 0 is returned.
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from scipy.special import perm
+ >>> k = np.array([3, 4])
+ >>> n = np.array([10, 10])
+ >>> perm(n, k)
+ array([ 720., 5040.])
+ >>> perm(10, 3, exact=True)
+ 720
+
+ """
+ if exact:
+ if (k > N) or (N < 0) or (k < 0):
+ return 0
+ val = 1
+ for i in range(N - k + 1, N + 1):
+ val *= i
+ return val
+ else:
+ k, N = asarray(k), asarray(N)
+ cond = (k <= N) & (N >= 0) & (k >= 0)
+ vals = poch(N - k + 1, k)
+ if isinstance(vals, np.ndarray):
+ vals[~cond] = 0
+ elif not cond:
+ vals = np.float64(0)
+ return vals
+
+
+# https://stackoverflow.com/a/16327037
+def _range_prod(lo, hi, k=1):
+ """
+ Product of a range of numbers spaced k apart (from hi).
+
+ For k=1, this returns the product of
+ lo * (lo+1) * (lo+2) * ... * (hi-2) * (hi-1) * hi
+ = hi! / (lo-1)!
+
+ For k>1, it correspond to taking only every k'th number when
+ counting down from hi - e.g. 18!!!! = _range_prod(1, 18, 4).
+
+ Breaks into smaller products first for speed:
+ _range_prod(2, 9) = ((2*3)*(4*5))*((6*7)*(8*9))
+ """
+ if lo + k < hi:
+ mid = (hi + lo) // 2
+ if k > 1:
+ # make sure mid is a multiple of k away from hi
+ mid = mid - ((mid - hi) % k)
+ return _range_prod(lo, mid, k) * _range_prod(mid + k, hi, k)
+ elif lo + k == hi:
+ return lo * hi
+ else:
+ return hi
+
+
+def _exact_factorialx_array(n, k=1):
+ """
+ Exact computation of factorial for an array.
+
+ The factorials are computed in incremental fashion, by taking
+ the sorted unique values of n and multiplying the intervening
+ numbers between the different unique values.
+
+ In other words, the factorial for the largest input is only
+ computed once, with each other result computed in the process.
+
+ k > 1 corresponds to the multifactorial.
+ """
+ un = np.unique(n)
+ # numpy changed nan-sorting behaviour with 1.21, see numpy/numpy#18070;
+ # to unify the behaviour, we remove the nan's here; the respective
+ # values will be set separately at the end
+ un = un[~np.isnan(un)]
+
+ # Convert to object array if np.int64 can't handle size
+ if np.isnan(n).any():
+ dt = float
+ elif k in _FACTORIALK_LIMITS_64BITS.keys():
+ if un[-1] > _FACTORIALK_LIMITS_64BITS[k]:
+ # e.g. k=1: 21! > np.iinfo(np.int64).max
+ dt = object
+ elif un[-1] > _FACTORIALK_LIMITS_32BITS[k]:
+ # e.g. k=3: 26!!! > np.iinfo(np.int32).max
+ dt = np.int64
+ else:
+ dt = np.int_
+ else:
+ # for k >= 10, we always use object
+ dt = object
+
+ out = np.empty_like(n, dtype=dt)
+
+ # Handle invalid/trivial values
+ un = un[un > 1]
+ out[n < 2] = 1
+ out[n < 0] = 0
+
+ # Calculate products of each range of numbers
+ # we can only multiply incrementally if the values are k apart;
+ # therefore we partition `un` into "lanes", i.e. its residues modulo k
+ for lane in range(0, k):
+ ul = un[(un % k) == lane] if k > 1 else un
+ if ul.size:
+ # after np.unique, un resp. ul are sorted, ul[0] is the smallest;
+ # cast to python ints to avoid overflow with np.int-types
+ val = _range_prod(1, int(ul[0]), k=k)
+ out[n == ul[0]] = val
+ for i in range(len(ul) - 1):
+ # by the filtering above, we have ensured that prev & current
+ # are a multiple of k apart
+ prev = ul[i]
+ current = ul[i + 1]
+ # we already multiplied all factors until prev; continue
+ # building the full factorial from the following (`prev + 1`);
+ # use int() for the same reason as above
+ val *= _range_prod(int(prev + 1), int(current), k=k)
+ out[n == current] = val
+
+ if np.isnan(n).any():
+ out = out.astype(np.float64)
+ out[np.isnan(n)] = np.nan
+ return out
+
+
+
+
[docs]
+
def factorial(n, exact=False):
+
"""
+
The factorial of a number or array of numbers.
+
+
The factorial of non-negative integer `n` is the product of all
+
positive integers less than or equal to `n`::
+
+
n! = n * (n - 1) * (n - 2) * ... * 1
+
+
Parameters
+
----------
+
n : int or array_like of ints
+
Input values. If ``n < 0``, the return value is 0.
+
exact : bool, optional
+
If True, calculate the answer exactly using long integer arithmetic.
+
If False, result is approximated in floating point rapidly using the
+
`gamma` function.
+
Default is False.
+
+
Returns
+
-------
+
nf : float or int or ndarray
+
Factorial of `n`, as integer or float depending on `exact`.
+
+
Notes
+
-----
+
For arrays with ``exact=True``, the factorial is computed only once, for
+
the largest input, with each other result computed in the process.
+
The output dtype is increased to ``int64`` or ``object`` if necessary.
+
+
With ``exact=False`` the factorial is approximated using the gamma
+
function:
+
+
.. math:: n! = \\Gamma(n+1)
+
+
Examples
+
--------
+
>>> import numpy as np
+
>>> from scipy.special import factorial
+
>>> arr = np.array([3, 4, 5])
+
>>> factorial(arr, exact=False)
+
array([ 6., 24., 120.])
+
>>> factorial(arr, exact=True)
+
array([ 6, 24, 120])
+
>>> factorial(5, exact=True)
+
120
+
+
"""
+
# don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below
+
if np.ndim(n) == 0 and not isinstance(n, np.ndarray):
+
# scalar cases
+
if n is None or np.isnan(n):
+
return np.nan
+
elif not (np.issubdtype(type(n), np.integer)
+
or np.issubdtype(type(n), np.floating)):
+
raise ValueError(
+
f"Unsupported datatype for factorial: {type(n)}\n"
+
"Permitted data types are integers and floating point numbers"
+
)
+
elif n < 0:
+
return 0
+
elif exact and np.issubdtype(type(n), np.integer):
+
return math.factorial(n)
+
# we do not raise for non-integers with exact=True due to
+
# historical reasons, though deprecation would be possible
+
return _ufuncs._factorial(n)
+
+
# arrays & array-likes
+
n = asarray(n)
+
if n.size == 0:
+
# return empty arrays unchanged
+
return n
+
if not (np.issubdtype(n.dtype, np.integer)
+
or np.issubdtype(n.dtype, np.floating)):
+
raise ValueError(
+
f"Unsupported datatype for factorial: {n.dtype}\n"
+
"Permitted data types are integers and floating point numbers"
+
)
+
if exact and not np.issubdtype(n.dtype, np.integer):
+
# legacy behaviour is to support mixed integers/NaNs;
+
# deprecate this for exact=True
+
n_flt = n[~np.isnan(n)]
+
if np.allclose(n_flt, n_flt.astype(np.int64)):
+
warnings.warn(
+
"Non-integer arrays (e.g. due to presence of NaNs) "
+
"together with exact=True are deprecated. Either ensure "
+
"that the the array has integer dtype or use exact=False.",
+
DeprecationWarning,
+
stacklevel=2
+
)
+
else:
+
msg = ("factorial with exact=True does not "
+
"support non-integral arrays")
+
raise ValueError(msg)
+
+
if exact:
+
return _exact_factorialx_array(n)
+
# we do not raise for non-integers with exact=True due to
+
# historical reasons, though deprecation would be possible
+
res = _ufuncs._factorial(n)
+
if isinstance(n, np.ndarray):
+
# _ufuncs._factorial does not maintain 0-dim arrays
+
return np.array(res)
+
return res
+
+
+
+def factorial2(n, exact=False):
+ """Double factorial.
+
+ This is the factorial with every second value skipped. E.g., ``7!! = 7 * 5
+ * 3 * 1``. It can be approximated numerically as::
+
+ n!! = 2 ** (n / 2) * gamma(n / 2 + 1) * sqrt(2 / pi) n odd
+ = 2 ** (n / 2) * gamma(n / 2 + 1) n even
+ = 2 ** (n / 2) * (n / 2)! n even
+
+ Parameters
+ ----------
+ n : int or array_like
+ Calculate ``n!!``. If ``n < 0``, the return value is 0.
+ exact : bool, optional
+ The result can be approximated rapidly using the gamma-formula
+ above (default). If `exact` is set to True, calculate the
+ answer exactly using integer arithmetic.
+
+ Returns
+ -------
+ nff : float or int
+ Double factorial of `n`, as an int or a float depending on
+ `exact`.
+
+ Examples
+ --------
+ >>> from scipy.special import factorial2
+ >>> factorial2(7, exact=False)
+ array(105.00000000000001)
+ >>> factorial2(7, exact=True)
+ 105
+
+ """
+ def _approx(n):
+ # main factor that both even/odd approximations share
+ val = np.power(2, n / 2) * gamma(n / 2 + 1)
+ mask = np.ones_like(n, dtype=np.float64)
+ mask[n % 2 == 1] = sqrt(2 / pi)
+ # analytical continuation (based on odd integers)
+ # is scaled down by a factor of sqrt(2 / pi)
+ # compared to the value of even integers.
+ return val * mask
+
+ # don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below
+ if np.ndim(n) == 0 and not isinstance(n, np.ndarray):
+ # scalar cases
+ if n is None or np.isnan(n):
+ return np.nan
+ elif not np.issubdtype(type(n), np.integer):
+ msg = "factorial2 does not support non-integral scalar arguments"
+ raise ValueError(msg)
+ elif n < 0:
+ return 0
+ elif n in {0, 1}:
+ return 1
+ # general integer case
+ if exact:
+ return _range_prod(1, n, k=2)
+ return _approx(n)
+ # arrays & array-likes
+ n = asarray(n)
+ if n.size == 0:
+ # return empty arrays unchanged
+ return n
+ if not np.issubdtype(n.dtype, np.integer):
+ raise ValueError("factorial2 does not support non-integral arrays")
+ if exact:
+ return _exact_factorialx_array(n, k=2)
+ # approximation
+ vals = zeros(n.shape)
+ cond = (n >= 0)
+ n_to_compute = extract(cond, n)
+ place(vals, cond, _approx(n_to_compute))
+ return vals
+
+
+def factorialk(n, k, exact=True):
+ """Multifactorial of n of order k, n(!!...!).
+
+ This is the multifactorial of n skipping k values. For example,
+
+ factorialk(17, 4) = 17!!!! = 17 * 13 * 9 * 5 * 1
+
+ In particular, for any integer ``n``, we have
+
+ factorialk(n, 1) = factorial(n)
+
+ factorialk(n, 2) = factorial2(n)
+
+ Parameters
+ ----------
+ n : int or array_like
+ Calculate multifactorial. If `n` < 0, the return value is 0.
+ k : int
+ Order of multifactorial.
+ exact : bool, optional
+ If exact is set to True, calculate the answer exactly using
+ integer arithmetic.
+
+ Returns
+ -------
+ val : int
+ Multifactorial of `n`.
+
+ Raises
+ ------
+ NotImplementedError
+ Raises when exact is False
+
+ Examples
+ --------
+ >>> from scipy.special import factorialk
+ >>> factorialk(5, 1, exact=True)
+ 120
+ >>> factorialk(5, 3, exact=True)
+ 10
+
+ """
+ if not np.issubdtype(type(k), np.integer) or k < 1:
+ raise ValueError(f"k must be a positive integer, received: {k}")
+ if not exact:
+ raise NotImplementedError
+
+ helpmsg = ""
+ if k in {1, 2}:
+ func = "factorial" if k == 1 else "factorial2"
+ helpmsg = f"\nYou can try to use {func} instead"
+
+ # don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below
+ if np.ndim(n) == 0 and not isinstance(n, np.ndarray):
+ # scalar cases
+ if n is None or np.isnan(n):
+ return np.nan
+ elif not np.issubdtype(type(n), np.integer):
+ msg = "factorialk does not support non-integral scalar arguments!"
+ raise ValueError(msg + helpmsg)
+ elif n < 0:
+ return 0
+ elif n in {0, 1}:
+ return 1
+ return _range_prod(1, n, k=k)
+ # arrays & array-likes
+ n = asarray(n)
+ if n.size == 0:
+ # return empty arrays unchanged
+ return n
+ if not np.issubdtype(n.dtype, np.integer):
+ msg = "factorialk does not support non-integral arrays!"
+ raise ValueError(msg + helpmsg)
+ return _exact_factorialx_array(n, k=k)
+
+
+def zeta(x, q=None, out=None):
+ r"""
+ Riemann or Hurwitz zeta function.
+
+ Parameters
+ ----------
+ x : array_like of float
+ Input data, must be real
+ q : array_like of float, optional
+ Input data, must be real. Defaults to Riemann zeta.
+ out : ndarray, optional
+ Output array for the computed values.
+
+ Returns
+ -------
+ out : array_like
+ Values of zeta(x).
+
+ Notes
+ -----
+ The two-argument version is the Hurwitz zeta function
+
+ .. math::
+
+ \zeta(x, q) = \sum_{k=0}^{\infty} \frac{1}{(k + q)^x};
+
+ see [dlmf]_ for details. The Riemann zeta function corresponds to
+ the case when ``q = 1``.
+
+ See Also
+ --------
+ zetac
+
+ References
+ ----------
+ .. [dlmf] NIST, Digital Library of Mathematical Functions,
+ https://dlmf.nist.gov/25.11#i
+
+ Examples
+ --------
+ >>> import numpy as np
+ >>> from scipy.special import zeta, polygamma, factorial
+
+ Some specific values:
+
+ >>> zeta(2), np.pi**2/6
+ (1.6449340668482266, 1.6449340668482264)
+
+ >>> zeta(4), np.pi**4/90
+ (1.0823232337111381, 1.082323233711138)
+
+ Relation to the `polygamma` function:
+
+ >>> m = 3
+ >>> x = 1.25
+ >>> polygamma(m, x)
+ array(2.782144009188397)
+ >>> (-1)**(m+1) * factorial(m) * zeta(m+1, x)
+ 2.7821440091883969
+
+ """
+ if q is None:
+ return _ufuncs._riemann_zeta(x, out)
+ else:
+ return _ufuncs._zeta(x, q, out)
+