-
Notifications
You must be signed in to change notification settings - Fork 0
/
RotaryEncoder.cpp
168 lines (134 loc) · 4.47 KB
/
RotaryEncoder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// -----
// RotaryEncoder.cpp - Library for using rotary encoders.
// This class is implemented for use with the Arduino environment.
//
// Copyright (c) by Matthias Hertel, http://www.mathertel.de
//
// This work is licensed under a BSD 3-Clause style license,
// https://www.mathertel.de/License.aspx.
//
// More information on: http://www.mathertel.de/Arduino
// -----
// Changelog: see RotaryEncoder.h
// -----
#include "RotaryEncoder.h"
#include "Arduino.h"
#define LATCH0 0 // input state at position 0
#define LATCH3 3 // input state at position 3
// The array holds the values �1 for the entries where a position was decremented,
// a 1 for the entries where the position was incremented
// and 0 in all the other (no change or not valid) cases.
const int8_t KNOBDIR[] = {
0, -1, 1, 0,
1, 0, 0, -1,
-1, 0, 0, 1,
0, 1, -1, 0};
// positions: [3] 1 0 2 [3] 1 0 2 [3]
// [3] is the positions where my rotary switch detends
// ==> right, count up
// <== left, count down
// ----- Initialization and Default Values -----
RotaryEncoder::RotaryEncoder(int pin1, int pin2, LatchMode mode)
{
// Remember Hardware Setup
_pin1 = pin1;
_pin2 = pin2;
_mode = mode;
// Setup the input pins and turn on pullup resistor
pinMode(pin1, INPUT_PULLUP);
pinMode(pin2, INPUT_PULLUP);
// when not started in motion, the current state of the encoder should be 3
int sig1 = digitalRead(_pin1);
int sig2 = digitalRead(_pin2);
_oldState = sig1 | (sig2 << 1);
// start with position 0;
_position = 0;
_positionExt = 0;
_positionExtPrev = 0;
} // RotaryEncoder()
long RotaryEncoder::getPosition()
{
return _positionExt;
} // getPosition()
RotaryEncoder::Direction RotaryEncoder::getDirection()
{
RotaryEncoder::Direction ret = Direction::NOROTATION;
if (_positionExtPrev > _positionExt) {
ret = Direction::COUNTERCLOCKWISE;
_positionExtPrev = _positionExt;
} else if (_positionExtPrev < _positionExt) {
ret = Direction::CLOCKWISE;
_positionExtPrev = _positionExt;
} else {
ret = Direction::NOROTATION;
_positionExtPrev = _positionExt;
}
return ret;
}
void RotaryEncoder::setPosition(long newPosition)
{
switch (_mode) {
case LatchMode::FOUR3:
case LatchMode::FOUR0:
// only adjust the external part of the position.
_position = ((newPosition << 2) | (_position & 0x03L));
_positionExt = newPosition;
_positionExtPrev = newPosition;
break;
case LatchMode::TWO03:
// only adjust the external part of the position.
_position = ((newPosition << 1) | (_position & 0x01L));
_positionExt = newPosition;
_positionExtPrev = newPosition;
break;
} // switch
} // setPosition()
void RotaryEncoder::tick(void)
{
int sig1 = digitalRead(_pin1);
int sig2 = digitalRead(_pin2);
int8_t thisState = sig1 | (sig2 << 1);
if (_oldState != thisState) {
_position += KNOBDIR[thisState | (_oldState << 2)];
_oldState = thisState;
switch (_mode) {
case LatchMode::FOUR3:
if (thisState == LATCH3) {
// The hardware has 4 steps with a latch on the input state 3
_positionExt = _position >> 2;
_positionExtTimePrev = _positionExtTime;
_positionExtTime = millis();
}
break;
case LatchMode::FOUR0:
if (thisState == LATCH0) {
// The hardware has 4 steps with a latch on the input state 0
_positionExt = _position >> 2;
_positionExtTimePrev = _positionExtTime;
_positionExtTime = millis();
}
break;
case LatchMode::TWO03:
if ((thisState == LATCH0) || (thisState == LATCH3)) {
// The hardware has 2 steps with a latch on the input state 0 and 3
_positionExt = _position >> 1;
_positionExtTimePrev = _positionExtTime;
_positionExtTime = millis();
}
break;
} // switch
} // if
} // tick()
unsigned long RotaryEncoder::getMillisBetweenRotations() const
{
return (_positionExtTime - _positionExtTimePrev);
}
unsigned long RotaryEncoder::getRPM()
{
// calculate max of difference in time between last position changes or last change and now.
unsigned long timeBetweenLastPositions = _positionExtTime - _positionExtTimePrev;
unsigned long timeToLastPosition = millis() - _positionExtTime;
unsigned long t = max(timeBetweenLastPositions, timeToLastPosition);
return 60000.0 / ((float)(t * 20));
}
// End